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Abstract—In social activities, the conflict between individual
interests and group interests often leads to social dilemmas. The
theory of direct reciprocity suggests that repeated interactions
can alleviate this dilemma, but it often assumes homogeneity
among individuals. However, the widespread heterogeneity in
the real world often diminishes cooperation. Fortunately, the
dynamics of bidirectional feedback between game mechanisms
and environmental conditions can exert a positive influence
on the evolutionary progression of cooperative behavior. This
paper investigates how heterogeneous individuals affect the
evolution of cooperation with environmental feedback. Despite
extensive literature showing that endowment inequality among
individuals tends to diminish cooperation, our findings suggest
that the implementation of appropriate environmental feedback
mechanisms can facilitate the development of cooperation.
Furthermore, our results demonstrate that appropriate en-
vironmental feedback mechanisms can significantly augment
the propensity of homogeneous individuals for cooperative
behavior. These results provide insights for decision-makers in
formulating strategies related to fairness and the sharing of
public goods.

Index Terms—Evolutionary games, stochastic games, public
goods games, game-environmental feedback, heterogeneity.

I. INTRODUCTION

In social dilemmas, rational individuals tend to defect due
to shortsightedness, yet maximum collective benefits can only
be achieved when all individuals choose to cooperate. This
conflict between individual rationality and collective welfare
is pervasive across various domains [1]-[5]. The theory of
direct reciprocity, grounded in repeated interactions, serves as
a potent mechanism for mitigating this conflict and fostering
the evolution of cooperation [6]—[8]. It typically necessitates
equality among individuals, such that those adopting the same
strategy receive identical payoffs [9], [10].

Previous models have often assumed uniformity in factors
such as individual contributions and the set of optional
strategies, with only a limited number of models considering
the influence of unequals on individual decision-making.
However, heterogeneity is prevalent in the real world, empha-
sizing the importance of exploring its impact on individual
cooperation. So far, the effect of heterogeneity on cooperation
remains ambiguous [11]-[14]. Experimental findings in [11]
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indicate that when income is transparent, participants tend to
penalize the wealthy and reward the poor. Conversely, when
income is concealed, participants tend to penalize the poor
and reward the wealthy. Moreover, disclosing income leads to
greater overall contributions to public goods, suggesting that
inequality may yield social benefits. Vasconcelos et al. [12]
examine the impact of wealth inequality in countries on
climate policies. Their model suggests that wealth inequality
fosters greater global cooperation, with the affluent generally
contributing more than the less affluent. In contrast, exper-
iments conducted by [15] suggest that unequal individual
endowments diminish cooperation. Similarly, experiments
by [16] espouse a similar perspective, albeit designing their
experiments to mitigate the influence of the total sum of
endowments on the results. Hauser er al. [17] develop a
model that comprehensively considers the impact of potential
multi-source heterogeneity on the evolution of cooperation.
They find that extreme inequality impedes cooperation, yet
successful cooperation may necessitate a certain degree of
unequal endowments if individuals’ productivities vary.

The models mentioned above typically assume fixed and
unchanging environmental resources. This implies that once
players’ strategies are determined, they receive the expected
returns associated with those strategies. However, in many
applications, especially those involving the consumption of
common environmental resources, individuals have become
aware of the dynamic nature of environmental resources.
If environmental resources are limited, the “tragedy of the
commons” becomes inevitable. Recent attention has been fo-
cused on exploring the dynamics of environmental resources
changing over time due to individual behavior [18]-[21].
In these models, individuals’ returns are influenced by the
external environment, and conversely, individuals’ strategies
also change the surrounding environment, forming a bidi-
rectional game-environment feedback loop. This line of re-
search originated with [18], whose integrated dynamic model
combines replicator dynamics of a two-person, two-strategy
game with environmental resource dynamics, demonstrating
rich dynamic behaviors. In most cases, the joint state of
strategy and environment converges to an equilibrium point
on the phase space boundary where the environmental state
is zero, reflecting the tragedy of the commons. Furthermore,
system dynamics may also converge to limit cycles on the
boundary, where the environmental state cycles between low
and high values, known as the “oscillating tragedy of the
commons”. Subsequently, Hilbe et al. [19] further introduced
environmental feedback into the analysis of finite popula-
tions. Their model suggests that when the environmental
feedback mechanism is such that cooperation leads to playing
more valuable games, while defection leads to playing less
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valuable games, it can significantly enhance individuals’ ten-
dency to cooperate. Intuitively, some environmental feedback
mechanisms favor cooperation, while others may hinder it.
The question of which environmental feedback mechanisms
are favorable for cooperation is also of particular interest.

Research on game-environment feedback has been exten-
sive, but there has been relatively little study on the effects of
game-environment feedback on cooperation in the presence
of heterogeneity among individuals. This paper contributes to
the field in several ways. First, we propose a general model
framework to study the effects of environmental feedback on
the cooperation behavior of heterogeneous individuals. Next,
we conduct simulation analyses to examine the outcomes
of homogeneous individuals under various environmental
feedback conditions and derived the condition under which
the WSLS strategy is a subgame perfect Nash equilibrium.

The remaining sections of this paper are organized as
follows. Section II introduces the stochastic game model, the
calculation of payoffs for reactive strategies, and concludes
with the strategy evolution process. Section III presents
the main conclusions: firstly, the analysis of the impact of
introducing appropriate environmental feedback on coopera-
tion; secondly, the comparison of all possible environmental
feedback modes; and finally, the analysis of the impact of in-
troducing appropriate environmental feedback on individual
cooperation behavior in the presence of heterogeneity among
individuals. The last section summarizes our contributions
and discusses future research directions.

II. MODEL

In this section, we begin by outlining a model for the
repeated public goods game that incorporates time-varying
environmental factors within a stochastic game framework.
Subsequently, we introduce a memory-one strategy and detail
the method for calculating the payoff function. Lastly, we em-
ploy “introspection” dynamics to elucidate the evolutionary
process of strategies.

A. Stochastic Games

In this study, we consider a repeated public goods game
with n players. At the beginning of each game round, player
1 receive a fixed endowments e; > 0. To simplify the
analysis, we assume ZZ’:l e; = 1. Each player independently
determines the proportion x; of their received endowments
e; to contribute to the public goods, based on their previous
contributions. Additionally, we assume that all players have
identical productivity c;, resulting in each player’s actual
contribution to the public pool being c;x;e;. The total contri-
bution in the public pool is then multiplied by time-varying
environmental factors r; and evenly distributed among all
participating players. Player ¢’s payoff w; is contingent upon
both the distribution of endowments ej,...,e, and the
contributions of all players zi,...,z,. The specifics are
detailed as follows:

1) The set of players. The set A" = {1,2,...,n} denotes

the collection of players engaged in a public goods
game.
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2)

3)

4)

)

The set of environment states. Let & =
{s1,82,...,8m} denote the set, where the
environmental state represents the aggregate of all
external and endogenous factors. The environmental
factor r; indicates the multiplication factor when
the environmental state is sp, with changes in the
environmental state depending on the players’
historical ~ contributions. This paper assumes,
without loss of generality, the presence of only
two environmental states, s; and so, with the game
initiating in state s;.

The set of optional contribution for players. The set
X = {0,1} represents the optional contribution for
players, where z; = 1 indicates full contribution of the
endowments (cooperation), and x; = 0 indicates no
contribution (defection). In each round of the game,
players independently determine their contributions
based on their historical actions. The contribution of
all players at time ¢ are represented by the vector
z(t) = (21(t),...,2n(t)), where z;(t) € X denotes
the contribution of player ¢ at time ¢.

State transition function. We assume that the environ-
mental state in which players are situated changes over
time, and these changes depend on players’ historical
contributions. This is represented by the following

function:
Q(z) = (21, ..

where zj, represents the probability of the environmen-
tal state transitioning to s; given the contributions z,
and it satisfies ), ; z; = 1. Here, z(t) is abbreviated
as z, and the same notation applies throughout. we
consider only the history of the previous round. When
m = 2, the state transition function can be expressed
as q(z) = (¢n,Gn-1,---,q1,qo), Where g, denotes the
probability of transitioning to state s; in the current
round when n players cooperated in the previous round,
and 1 — g, represents the probability of transitioning
to state sy accordingly.

Payoff function. The payoff for player ¢ is represented
by the following function:

L) Zm)a

K T o
e, x) = — E ixje; + (1 —x;)ey, 1
u; (e, x) n L cjrje; + (1 —z)e ey

where c; represents player j’s productivity, r, de-
notes the multiplication factor when a player is in
environmental state s;. x; and e; represent player
1’s contribution proportion and the initial endowment
received per round, respectively. To ensure that this
game conforms to the standards of a social dilemma,
the following three conditions need to be satisfied:

a) Positive externalities (PE): Each player prefers
that other players contributing to the game con-
tribute more. For two contribution vectors x and
o, if z; = 2} and z; > x; for i # j, then
ui(e, z) > u;(e, z’).

b) Incentive to free-ride (IF): Each player strives to
minimize their own contribution while benefiting



from others’ contributions. For two contribution
vectors = and 2/, if z; < ) and x; = x; for
i # 7, then u;(e,x) > u;(e,a’).
¢) Optimality of cooperation (OC): Cooperation re-
sults in greater collective benefits. For two contri-
bution vectors z and «’, if x < a’, then U(e, x) <
Ul(e,z’), where U(e,z) = > 1", u;(e, x).
According to the given payoff function (1), if the
game meets the requirements of a social dilemma, PE
requires ¢; > 0, IF requires ¢;r; < n, and OC requires
¢;rr > 1. Therefore, to satisfy the conditions of a social
dilemma, the following equations should hold:

c; >0,
1 <cry <n,
Assuming individuals interact for an infinite number of

rounds, with ¢ denoting the round of the game, the average
payoff per round of the game for individual ¢ is

ieN

ieN,ke{l,...,m}. @

T
R k(t)
= qlgnoo T ;ul (e, x(t)). 3

B. Memory-One Strategy

In this paper, the memory-one strategy is represented by
a vector p = (po,pg), where py denotes the probability
of a player choosing cooperation in the first round of
the game, and p, represents the probability of a player
choosing cooperation in the current round given that the
contribution distribution of players in the previous round was
x € X™. The strategy p encodes the conditional probabilities
of choosing cooperation in the current round for all possible
contribution distributions in the previous rounds. When there
are n players, the number of dimensions in the memory-one
strategy is 2"+ 1. We assume that strategies have a execution
error €, a player with strategy p effectively implements the
strategy (1 — €)p + €(1 — p). Games with errors exhibit a
favorable property in long-term dynamics: they can disregard
the influence of players’ initial actions [22]. Therefore, the
construction of the strategy can disregard pg, and the number
of dimensions in the strategy becomes 2".

When all n players employ memory-one strategies
p',p?,...,p", the dynamics of the stochastic game can
be modeled as a Markov chain with state (s,z). Here,
(s,x) represents the combination of the environmental state
s and the possible contribution distribution x. In the case
of m environmental states, this Markov chain encompasses
m2™ possible states. The elements of the corresponding
state transition probability matrix consist of two parts: the
transition probabilities () between environmental states in
consecutive game rounds, and the probability p” that a
player chooses cooperation in the current round, given the
contribution distribution x from the previous round. The
specific calculation method is outlined as follows:

Mg, 0) (s, ) = Q(spr]) H Yis
ieEN

where ‘

yi:{p; ifal=1

1—-p, if 2 =0,
Q(sk|z) denotes the probability of transitioning to state
sk in the current round given the contribution proportion
x of players in the previous round, and p‘ represents the
probability that player ¢ chooses cooperation in the current
round given the contribution distribution x from the previous
round. According to our setup, the steady distribution is
independent of the initial distribution. The steady distribution
is the left eigenvector of the state transition probability matrix
M with an eigenvalue of 1. The elements of vector v, denoted
as v(s 5, represent the expected frequency of each Markov
state. According to equation (3), the expected payoff per

round is
p— S
T = § 'U(s,a:)ui(evx)'
s,x

C. Evolutionary Process

In this subsection, we primarily explore the evolution of
players’ strategies over time. In scenarios where payoffs
are symmetric, players employing identical strategies receive
equivalent payoffs. Evolutionary advancements can occur
through the imitation of more successful strategies or by
successful strategies leading to increased offspring. However,
in games characterized by unequal payoffs, the intuitive
impracticality of imitating other players’ strategies arises
because a strategy yielding high payoffs for one player may
result in low payoffs for others. While numerous studies
have examined evolutionary games with unequal payoffs,
their frameworks often categorize populations, restricting
interactions to occur solely among individuals within the
same category. This approach lacks realism when considering
populations where every individual differs in some aspect.
Hauser et al. [17] introduced a novel evolutionary process in
which individuals do not imitate others’ strategies but instead
update their own. An individual randomly generates a new
strategy, compares the payoffs of the new and original strate-
gies, and adopts the new strategy with a certain probability
if it yields a higher payoff.

In this paper, at each evolutionary time step ¢, one in-
dividual ¢ is randomly selected from the population of n
individuals to update their strategy. Individual ¢ randomly
selects a new strategy from the set of available strategies
(while the strategies of other players remain unchanged),
then compares the payoffs of the new and old strategies.
The selected player switches to the new strategy with the
following probability [23]:

_ 1

1+ exp{—o(m —m)}’
where 7; and 7; represent the payoffs of individual ¢ for the
old and new strategies, respectively, and the parameter o > 0
denotes the selection intensity. As ¢ — 0, the switching
probability p = 1/2, indicating a random strategy switch
independent of the payoff. When ¢ — oo, an individual
adopts the new strategy only if its payoff exceeds that of
the old strategy.

p @)

4532



Assuming individuals employ pure one-step memory
strategies, the strategy space is finite. It is possible to
calculate the expected trajectory of introspective dynamics.
With a total of [ strategies, introspective dynamics can be

ﬁp(m,fn)
={1- kz ﬁp(mﬁi)
pr#p’
0

Due to the random selection of only one player ¢ from
the n players to update their strategy at each evolutionary
time step, only one player’s strategy changes at each time
step, with player ¢ being selected with a probability of 1/n.
Once selected, player 7 can randomly choose a new strategy
from the strategy set (if different from the old strategy) with
a probability of l_% Subsequently, the player switches to
the new strategy with a probability of p(m;, ;). The matrix
W in (5) describes the state transition probabilities of the
Markov process representing introspective dynamics. Assum-
ing the initial distribution of given strategies is v(0), the
distribution of strategies after ¢ time steps is v(t) = v(0)W*.
Since the selection intensity is finite, thus, no strategy can
guarantee non-replacement. When ¢ is sufficiently large, the
distribution of strategies converges to a unique steady distri-
bution v. This steady distribution, representing the expected
frequency of strategies in introspective dynamics, is obtained
by solving for the left eigenvector of W corresponding to the
eigenvalue 1.

D. Problem of Interests

In this study, we investigate the influence of dynamic
environments relative to fixed environments on individual
cooperation and strategy selection throughout the evolution-
ary process. Furthermore, we analyze interactions among
individuals with varying endowments and examine how the
introduction of environmental feedback affects the decisions
of individuals with unequal endowments.

III. MAIN RESULTS

“The tragedy of the commons” represents a fundamental
problem. To alleviate this issue, we propose a general frame-
work featuring environmental feedback to avoid social dilem-
mas. Initially, we illustrate the positive impact of suitable
environmental feedback on individual cooperative behavior
through three examples. These examples are all executed
within the framework of section II, with differences solely
in the state transition function g(x).

Consider the simplest scenario: three individuals partici-
pate in a public goods game, interacting for an infinite num-
ber of rounds. In each round, individuals are in one of two
environmental states, s; or so, determined by the state transi-
tion function ¢(z). Each individual can choose to contribute
fully (cooperate) or contribute nothing (defect), with their
payoff determined by (1). In the first example, individuals
only play in the environmental state with a lower payoff,

modeled as a Markov process with [" states, denoted as
P = (p',p?,...,p"). The state transition probabilities can
be represented as:

if p' £ ¢, and p/ = p/ for all j # 1,
if P=DP, )

otherwise.

regardless of their contributions in the previous round. The
state transition function is g2(x) = (0,0,0,0) (see Fig. 1a),
where all elements are 0, indicating that the probability of
transitioning to the environmental state with a higher payoff
is 0. This means that the environmental state remains fixed
at so, regardless of how many individuals chose to cooperate
in the previous round. In the second example, individuals
only play in the environmental state with a higher payoff,
independent of their contributions in the previous round. The
state transition function is given by ¢1(x) = (1,1,1,1) (see
Fig. 1a). Both of the above examples are considered instances
of fixed environment scenarios, both of which are within
the context of a social dilemma. Additionally, in the third
example, we consider that the environmental state changes
over time, depending on the contributions in the previous
round. The state transition function is ¢s(x) = (1,0, 0,0) (see
Fig. 1a), where the transition probability to the higher-payoff
environmental state is 1 only if all individuals contribute fully
in the previous round; otherwise, it is 0. This implies that
individuals aiming to play in the higher-payoff environment
require full cooperation in the previous round; otherwise, the
environmental state deteriorates.

When simulating the evolutionary dynamics of the three
scenarios, we observed a continuous learning process towards
cooperation among individuals, both in situations where they
exclusively played in a high-yield environment and in scenar-
ios involving a changing environment (see Fig. 1b). However,
the latter exhibited a higher cooperation rate. Although it
might appear that maintaining a fixed environment state
at s; would yield higher returns, the introduction of an
additional, relatively poorer environment state s, as part of
the environmental feedback actually favored the evolution of
cooperation.

Furthermore, we noted that compared to a fixed environ-
ment state, introducing environmental feedback resulted in a
quicker attainment of a cooperative equilibrium. To elucidate
this outcome, we numerically computed the prevalence of
individual strategies in the evolutionary process of the three
scenarios (see Fig. 1c). In the first scenario, no strategy
emerged as dominant, thereby impeding the sustainability
of cooperation among individuals. In contrast, in the second
and third scenarios, individuals predominantly adopted the
well-known WSLS strategy p = (1,0,0,0,0,0,0,1) [10].
The distinction lies in the fact that in the third scenario,
the prevalence of the WSLS strategy was higher than that
in the second scenario. As a population comprised entirely
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Abundance of strategies

Cooperation rate

Fig. 1: Introducing appropriate environmental feedback can enhance population learning for cooperation. a, We examine
the impact of three types of environmental state transition functions on individual cooperative behavior: exclusive play
in a low-yield environment, exclusive play in a high-yield environment, and alternating between high-yield and low-yield
environments. b, The different evolutionary trajectories correspond to state transition functions ¢z (z) = (0,0, 0, 0) (red line),
¢1(z) = (1,1,1,1) (green line), and gs(z) = (1,0,0,0) (blue line). ¢, The prevalence of strategies among individuals across
10° time steps under three types of state transition functions. The horizontal axis represents the decimal number corresponding
to strategies converted from an 8-bit binary representation. For instance, the WSLS strategy p = (1,0,0,0,0,0,0,1) is
converted to the decimal number 130. d, The mean cooperation rate across all potential state transition functions during
the evolutionary process. Parameters: ey = es = e3 =1/3,¢; =ca =c3 =2, 1 =1, ro = 0.5, ¢ = 0.05, nGen = 104,

s = 1000.
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Fig. 2: The distribution of strategies among individuals over 10° time steps is analyzed under the three state transition
functions. The horizontal axis corresponds to the decimal number derived from an 8-bit binary representation of strategies.
For instance, the WSLS strategy p = (1,0,0,0,0,0,0, 1) is represented by the decimal number 130. The parameters are the

same as in Fig. 3.

of WSLS strategies can achieve full cooperation, a higher
prevalence of the WSLS strategy during the evolutionary
process corresponds to a higher average cooperation rate
among individuals.

Theorem 1. Consider a public goods game with n players
and a decreasing multiplication factor r1 > 1o > -+ > .
The strategy WSLS is subgame perfect Nash equilibrium if
and only if the following condition are met in all environment
So

(2n — roc;)e;

(2gn — qo)(r1 —72) > ==
> i1 Ci€j

(6)

— 7.

Proof. We use a one-shot deviation principle to prove that the
WSLS strategy is a subgame perfect Nash equilibrium: in a
population entirely adopting the WSLS strategy, if one player
deviates from WSLS in a single round due to error but returns
to WSLS in subsequent rounds, they cannot achieve a higher
payoff. We assume that future payoffs will be discounted by
a factor of §. We consider two cases based on the nature of
the WSLS strategy: 1) in the initial or pre-deviation round,
all players contribute equally; 2) in the pre-deviation round,
players’ contributions are unequal.

First, we consider the first case. Assuming that in the initial
or previous round of the game, all players contributed equally
and the current environmental state is s,, the payoff of the
WSLS strategy in the current and subsequent rounds of the
game can be expressed as follows::

m

mr=(1-9ui(e, 1)+ 52 Q(sk|n)uk (e, 1).

k=1

If a mutation occurs at this time, causing a deviation from
the WSLS strategy in the current round of the game, and
then returning to the WSLS strategy in the next round, the

payoff of the mutation is

T = (1= 0)uf(e, 1)

m

+63 Qsiln — 1){(1 — )ul (e, 0)

k=1

+6 3 Qsul0){ (1 - )ut’(e, 1)

#53 Qslnd e, )}

For the second case, assuming that in the initial or previous
round of the game, players’ contributions were different and
the current environmental state is s,,, the payoff of the WSLS
strategy in the current round and subsequent rounds is

Tr = (1= 0d)uj(e,0)

+6 Qskl0){ (1 = )ul(e, 1)
k=1

+90 Z Q(sw|n)u’ (e, 1)}
w=1

If a mutation occurs at this point, causing a deviation in
the individual’s decision: instead of choosing betrayal, the
individual chooses cooperation, and then returns to the WSLS
strategy in the next round. The player’s payoff becomes

7%]\4 = (1 - (5)’&?(6, 01)
+3 3 Qs ){ (1 = duf(e,0)
k=1
+63 Qlsulout(e )}
w=1

According to the definition of subgame perfect Nash equi-
librium, the WSLS strategy is a subgame perfect Nash
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equilibrium if and only if 7 > 7y, and 7p > 7. That
is,
uf(e,1) — ufle, 1)

+5Z{ (sg|n)ul(e,1) —
+522{ (sln)ub (e, 1) —

Qsiln — 1)uf(e.0) |

Qskl0yuf(e,1)}

k=1
=0 (7)
ui(e, 0) — ug (e, 0;)
+5Z{ (skl0)uf (e, 1) = Qs 1)uf (e, 0)}

+52§:{ (sln)uk (e, 1) —
k=1
> 0.

Qsl0)ul (e, 1) |

Combining equation (1) with m = 2 and § = 1, condition(7)
can be simplified to
(2n — roc;)e;

D — 2. ®)

(2‘171 —qo
> j=1Cij

)(ry —rg) >

O

The preceding three scenarios demonstrate the significant
impact of environmental state-switching mechanisms, which
modify players’ strategy selections and thereby their in-
clination to cooperate. In essence, introducing appropriate
environmental feedback may be more favorable for coop-
eration compared to a fixed environmental. In our model,
with a game involving three players, there are a total of
23+1 = 16 state transition functions. To investigate the effects
of environmental feedback mechanisms on cooperation, we
enumerated all possible environmental feedback mechanisms
and computed their average cooperation rates over 10% evo-
lutionary steps (see Fig. 1d). Surprisingly, apart from the
state transition function ¢, (=) employed in the third scenario,
there exist 7 other state transition functions that can drive the
population toward higher cooperation rates. Their common
characteristic is that when all individuals opt to cooperate in
the preceding round, the environmental state improves. This
indicates that introducing specific positive incentives when all
individuals cooperate can facilitate population-wide learning
to cooperate.

Heterogeneity is prevalent in social systems, and numerous
experiments have demonstrated that unequal endowments
diminish cooperation. However, introducing environmental
feedback under conditions of unequal endowments yields
unexpected outcomes. It is noteworthy that, due to endow-
ment heterogeneity, individuals’ payoffs become asymmetric.
Cooperation rates and the prevalence of strategies among
individuals may vary throughout the evolutionary process.
In addition to varying endowments, we conducted numerical
simulations using the three aforementioned scenarios. We
observed that, compared to the scenario depicted by the
green line in Fig. 1b, which represents equal endowments,

1.0p
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o
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=]
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5 04} o ity
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Fig. 3: Introducing appropriate environmental feedback fa-
cilitates population learning to cooperate, even in the pres-
ence of heterogeneity among individuals. We examine the
influence of the three environmental state transition func-
tions depicted in Fig. 1a on unequal individual cooperative
behavior. The parameters are the same as in Fig. 1 except
for e; = 0.1,e5 = 0.4, e3 = 0.5.
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Fig. 4: Introducing appropriate environmental feedback can
enhance the tolerance of cooperative individuals to unequal
endowments. We consider a public goods game involving
three players and compare the effects of heterogeneous
endowments on Player 1 (a,d), Player 2 (b,e), and Player
3 (¢, f) under the conditions of environmental feedback
introduction (a — ¢) and fixed environment (d — e). The
triangle represents the possible initial endowment distribu-
tions for players, where each vertex corresponds to one player
receiving all the initial endowments, and the edges represent
players not receiving any initial endowments relative to the
corresponding vertices. The center of the triangle represents
all three players receiving the same initial endowments. The
cooperation rate is the average cooperation rate of players
over 10 time steps in the evolutionary process. Parameters:
ci=co=c3=2,7r1 =1,79=0.5, e =0.05 nGen = 10%,
s = 1000, q1 = (17 1,1, 1)’ qs = (1707()’0)
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the scenario illustrated by the ¢;(z) in Fig. 3, reflecting
unequal endowments, indeed diminishes cooperation, thereby
validating certain prior experimental findings. Moreover, we
discovered that the introduction of environmental feedback
significantly enhances individuals’ propensity to cooperate,
even in the presence of heterogeneity (see Fig. 3). To eluci-
date this outcome, we computed the prevalence of strategies
for each individual over 10° evolutionary steps (see Fig. 2).
Our findings indicate that in the presence of heterogeneity,
no strategy emerges as dominant in the evolutionary process
under a fixed environment. Conversely, the introduction of
suitable environmental feedback leads individuals to pre-
dominantly adopt the WSLS strategy, facilitating cooperative
behavior.

To further investigate the influence of environmental feed-
back and heterogeneous endowments on cooperation, we uti-
lized the state transition functions ¢; (x) and gs(x) to respec-
tively represent scenarios with fixed environmental states and
introduced environmental feedback. We then systematically
varied the initial endowment distribution in increments of
0.01 and calculated the average cooperation rate for each
distribution during the evolutionary process (see Fig. 4). Our
analysis revealed that, compared to a fixed environmental
state, the introduction of suitable environmental feedback
enables a broader range of initial endowment distributions
conducive to the evolution of cooperation. Notably, even
when a player’s endowment is 0, it does not influence
their decision to cooperate. In essence, the introduction of
appropriate environmental feedback enhances the capacity
of cooperative individuals to withstand greater levels of
inequality.

IV. CONCLUSIONS

In summary, we present a novel framework incorporating
environmental feedback, applicable across a broad spec-
trum of human decision-making scenarios in social dilem-
mas characterized by individual heterogeneity. Initially, we
examine the influence of environmental feedback on the
decision-making behavior of homogeneous individuals and
the prevalence of strategies during the evolutionary process.
Our model demonstrates that appropriate environmental feed-
back fosters cooperation. Furthermore, we derived the con-
ditions under which the strategy that promotes cooperation
is subgame perfect Nash equilibrium. To further elucidate
the impacts of various environmental feedback mechanisms,
we analyze the cooperation rates of individuals across all
potential scenarios. Additionally, we investigate the effects
of environmental feedback on the decision-making behavior
of heterogeneous individuals. Our model corroborates the ex-
perimental finding that heterogeneous endowments diminish
cooperation. Importantly, even in the presence of heterogene-
ity, the introduction of suitable environmental feedback can
enhance individual cooperation and expand the spectrum of
initial endowment distributions conducive to the evolution of
cooperation.
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