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Abstract— Nonlinear model predictive control (MPC) is an
established control framework that not only provides a sys-
tematic way to handle state and input constraints, but also
offers the flexibility to incorporate data-driven models. With
the proliferation of machine learning techniques, there is an
uptrend in the development of learning-based MPC, with neural
networks (NN) being an important cornerstone. Although it
has been shown that NNs are expressive enough to model
the dynamics of complex systems and produce accurate state
predictions, these predictions often do not include uncertainty
estimates or have practical finite sample guarantees. In contrast
to existing work that either requires the data samples to be
exchangeable or relies on properties of the underlying data
distribution, we propose an approach that utilizes weighted
conformal prediction to alleviate these assumptions and to
synthesize provably valid, finite-sample uncertainty estimates
for data-driven dynamics models, in a distribution-free manner.
These uncertainty estimates are generated online and incor-
porated into a novel uncertainty-aware learning-based MPC
framework. Through a case study with a cartpole system con-
trolled by a state-of-the-art learning-based MPC framework,
we demonstrate that our approach not only provides well-
calibrated uncertainty estimates, but also enhances the closed-
loop performance of the system.

I. INTRODUCTION
With an increase in data availability, the field of learning-

based model predictive control (MPC) is expanding rapidly
[1], [2]. A prominent direction within this field is to utilize
tools from machine learning to model the dynamics of the
system, before applying them within an MPC framework [2].
These learning tools are leveraged to reduce the discrepancy
between the true system dynamics and the model, by utilizing
data or measurements collected from the system. With more
accurate dynamics models, the closed-loop performance of
the system, under model-based control frameworks such as
nonlinear MPC, has the potential to improve substantially
[1].

Related works: The approaches developed to learn dy-
namics models can be broadly classified into parametric and
non-parametric methods. Within the class of non-parametric
methods, Gaussian process (GP) regression [3] stands out as
a popular choice. For instance, GPs are used in [4] and [5] to
model vehicle dynamics, before they are integrated into an
MPC framework. Although these models provide uncertainty
estimates, a well-known drawback of GPs is their relatively
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high computational cost, which is detrimental when working
with large datasets [3].

On the other hand, a parametric model, such as a neural
network (NN), can be used to model the dynamics of
nonlinear systems. In [6], a feedforward NN is used to
model the dynamics of a reactor, before applying it in an
MPC framework. Other NN architectures, e.g., recurrent
NNs, have also been utilized to model system dynamics [7],
[8], [9]. In these works, since the NNs are used to model
the full system dynamics, they tend to be architecturally
complex. This incurs significant computational costs when
used in conjunction with nonlinear MPC, where a nonlinear
optimization problem needs to be solved at every time step.
One viable solution is to use NNs to model just the unknown
dynamics, instead of the full dynamics. In previous works
[10] and [11], a neural ordinary differential equation (NODE)
model is used to model the unknown dynamics of the system.
Experimental results have shown that this approach improves
the performance of the system [10].

While it has been demonstrated that NNs have the ability
to model dynamical systems accurately, many of the con-
ventional NN architectures lack the ability to quantify uncer-
tainty about their predictions. Within the machine learning
community, there have been attempts to mitigate this, such as
incorporating dropout [12], or by constructing Bayesian NNs
[13] or deep ensembles [14]. These methods are intuitive, but
they often do not come with theoretical guarantees.

A recent approach to quantify uncertainty for NNs is
to use tools from the conformal prediction literature [15].
By leveraging statistical properties inferred from the data,
conformal prediction not only give estimates of the uncer-
tainty, but also provide probabilistic coverage guarantees
for these estimates. This implies that the predictions are
guaranteed to lie within a neighborhood of the true values,
with high probability. A key assumption in the formulation
of conformal prediction is that the data samples are assumed
to be exchangeable, i.e., the joint probability distribution of
the data samples remains the same under any permutation
[15]. This is a challenging assumption to make, especially
for time-series data. A few methods have been proposed
in recent years to alleviate this assumption. In [16], an
adaptive conformal inference algorithm is proposed, where
the miscoverage rate is updated based on the estimates of
the historical miscoverage frequency. In [17], an ensemble
of models is used to extract uncertainty predictions and do
not require the samples to be exchangeable. In [18], a set
of methods that utilize a concept of weighted quantiles is
proposed, which alleviates exchangeability in a natural way.
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In particular, the trade-off required for nonexchangeability
is dependent on the amount of distribution shift between the
distributions of the training and test data samples.

In the context of learning-based MPC, there are a couple
of recent works that incorporate conformal predictions for
uncertainty quantification. In [19], conformal prediction is
used in conjunction with recurrent NNs to generate predic-
tion regions, which are used as constraints within an MPC
scheme. In this work, it is assumed that the data samples
are exchangeable. In [20], adaptive conformal inference [16]
is introduced to alleviate exchangeability, before integrating
the uncertainty estimates as part of the constraints.

In contrast to these works, we utilize the concept of
weighted quantiles [18] to counteract the effects of distri-
bution shifts and to ease the exchangeability assumption.
Additionally, we present a holistic integration of the un-
certainty quantification procedure and the model predictive
controller by propagating the uncertainty estimates forward
in time, and by incorporating them into the cost function of
the MPC scheme. A third distinction between these works
and our work is that while our framework is flexible and
allows uncertainty quantification of either the full dynamics
or just the unknown dynamics, we focus on the latter as it
allows the prediction intervals to be small, as observed in
our experiments in Section V.

Contributions: Our contributions in this work are three-
fold. First, we utilize conformal prediction [15] with the
concept of weighted quantiles [18], collectively referred to as
weighted conformal prediction, to synthesize provably valid,
finite-sample, uncertainty estimates for the predictions of a
data-driven dynamics model, in a distribution-free manner.
We incorporate these tools into an algorithm, where the
uncertainty estimates are generated in an online manner.
Second, we propose a novel, uncertainty-aware learning-
based MPC framework, where the uncertainty estimates
are propagated forward in time using the unscented trans-
formation (UT) [21], with an augmentation of the cost
function. To the best of the authors’ knowledge, this is
the first work that utilizes weighted conformal prediction
within a learning-based MPC framework. Third, we verify
the efficacy of the proposed framework by considering a
case study, where a nonlinear cartpole system is controlled
using a learning-based MPC framework, KNODE-MPC.
Importantly, we demonstrate through this case study that the
uncertainty estimates synthesized by our approach are well
calibrated and the proposed framework enhances the closed-
loop performance of the system.

Notation: The sets R, N and N+ denote the sets of real
numbers, non-negative and positive natural numbers. For a
vector x := [x(1) . . . x(n)]⊤ ∈ Rn and matrix A ∈ Rn×n,
||x||2A denotes x⊤Ax, while ||x||1 and ||x||2 denote its 1-
norm and 2-norm. The matrix B := diag

(
x(1), . . . , x(n)

)
∈

Rn×n is a diagonal matrix with {x(1), . . . , x(n)} as the
diagonal components and zero elsewhere. For a number
c ∈ R, ⌈c⌉ denotes the ceiling of c. For a set D, the function
1 : D → {0, 1} denotes the indicator function and |D|
denotes its cardinality.

II. PROBLEM FORMULATION AND
LEARNING-BASED MPC

We consider a nonlinear, discrete-time system with par-
tially known dynamics,

x+ = f (x, u, d(x, u)) (1)
where x, x+ ∈ Rn are the current and successor states and
u ∈ Rm is the control input. The function f : Rn × Rm ×
Rp → Rn denotes the full dynamics of the system, and
the function d : Rn × Rm → Rp represents the unknown
dynamics.

The first step in the application of a learning-based MPC
framework is to synthesize a data-driven dynamics model.
We consider the utility of a differentiable, parametric model,
e.g., a feedforward NN, to parameterize either the full
dynamics f or the unknown dynamics d. The parameters of
this model, θ, are trained using a backpropagation procedure
[22]. This is done by leveraging data collected from the
system, denoted by O := {(xi, ui)}Ti=1, where T denotes
the number of data points, and through the formulation of
a loss function, L(θ). After training, we obtain a learned
model f̂(x, u; θ⋆) that represents the full dynamics in (1).
This model acts as the dynamics model within the learning-
based MPC framework.

In this framework, the following finite-horizon constrained
optimization problem is solved at each time step k ∈ N,

minimize
U

N−1∑
i=0

||xi − xr,i||2Q + ||ui||2R (2a)

+ ||xN − xr,N ||2P (2b)

subject to xi+1 = f̂(xi, ui; θ
⋆), ∀ i ∈ [0, N − 1] (2c)

xi ∈ X , ui ∈ U , ∀ i ∈ [0, N − 1] (2d)
xN ∈ Xf , x0 = x(k), (2e)

where N ∈ N+ is the prediction horizon and X , Xf ⊆
Rn, U ⊆ Rm are sets in which state and control input
constraints are defined. The matrices Q, P ∈ Rn×n and R ∈
Rm×m penalize the stage and terminal costs, and the con-
trol input cost respectively. The sequence {xr,0, . . . , xr,N}
denotes reference states, and the vector x(k) ∈ Rn is
the state measurement obtained at each time step k. Upon
solving (2), we obtain a sequence of optimal control inputs,
U⋆(x(k)) := {u⋆

0, . . . , u
⋆
N−1}. The first vector in this se-

quence u⋆
0(x(k)) ∈ Rm is then applied as the control action.

This proceeds in a receding horizon manner, as the prediction
horizon shifts forward at each time step.

Problem 1: Although the learned model f̂(x, u; θ⋆) may
provide accurate predictions of the system dynamics given
sufficient data and after adequate training, there are no
formal guarantees that the predicted states will be close
to the true states, as depicted by the dashed line in Fig.
1. In the case where the predictions deviate from the true
states significantly, the performance of the closed-loop sys-
tem under the learning-based MPC framework is likely to
degrade substantially. Hence, to achieve guarantees for the
predictions, we aim to find an uncertainty region such that

P
{
f (x, u, d(x, u)) ∈ C(x, u, f̂(x, u; θ⋆))

}
≥ 1− δ,
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Fig. 1. Problem setting: Given that there are no guarantees that f̂ is
close to f , the goal is to find an uncertainty region C(f̂) such that it is
guaranteed to contain the true dynamics f with high probability.

where the set C represents the uncertainty region that is guar-
anteed to contain the true dynamics with a high probability
of 1− δ. This problem setting is illustrated in Fig. 1.

To solve Problem 1, our approach is to utilize weighted
conformal prediction to synthesize provably valid uncertainty
estimates for the predictions of the learned model. These
uncertainty estimates are constructed in the form of predic-
tion intervals and importantly, the true states are guaranteed
to lie within these intervals with high probability. This not
only enables us to quantify the accuracy and uncertainty
about the predictions, but also provides an avenue to enhance
uncertainty awareness for learning-based MPC.

The rest of the paper is organized as follows. Conformal
prediction, and in particular, weighted conformal prediction
are described in Section III. In Section IV, we discuss
how the uncertainty estimates can be incorporated into the
learning-based MPC framework. In Section V, the proposed
framework is analyzed through a case study and a conclusion
is drawn in Section VI. A schematic of the overall framework
is depicted in Fig. 2.

III. UNCERTAINTY QUANTIFICATION
A. Conformal Prediction

Conformal prediction (CP) is a statistical method that
can be applied to a given regression model to produce
prediction intervals [15]. While there exist other methods to
quantify uncertainty, e.g., quantile regression [23], the esti-
mates obtained from these methods either do not possess any
coverage guarantees, i.e., guarantees in which the predictions
lie within an interval, or require additional assumptions on
the underlying distribution. This motivates the development
of conformalized prediction intervals, and in particular, the
split conformal prediction (SCP) algorithm [15].

Given a dataset of M samples, D := {(zi, yi)}Mi=1, where
{zi}Mi=1 and {yi}Mi=1 are the features and labels of the
dataset, the objective of the SCP algorithm is to generate a
conformalized prediction interval C(z) such that for a newly
given test data sample zM+1 = z, its label yM+1 lies within
the prediction interval, with a pre-specified probability.

The algorithm starts by splitting D into two disjoint sets,
D1 and D2, indexed by I1 and I2 respectively. Next, a
regression model is learned using the first set, D1. Using

the second set D2 and the learned regression model, a set of
mean predictions {ŷi(zi)}pi=1 is computed, together with a
set of nonconformity scores S := {Si}pi=1 where

Si(zi) := ||yi − ŷi(zi)||1, (3)
and p := |I2| denotes the size of D2. The nonconformity
score accounts for the deviation between the predictions
given by the regression model and the true labels in an
intuitive way. The larger the nonconformity scores, the less
accurate the predictions are. This score acts as a measure of
the uncertainty about the predictions. Next, given a target
miscoverage rate α ∈ (0, 1), we compute the (1 − α)th

empirical quantile of S, denoted by Q1−α(S). This quantile
is also the ⌈(1− α)(1 + p)⌉ th-smallest value of S [18].
Equivalently, it can be expressed as

Q1−α(S) := Q1−α

(
p∑

i=1

1

1 + p
δSi +

1

1 + p
δ+∞

)
, (4)

where δa denotes a probability point mass for a real number
a on the extended real line, i.e., a ∈ R ∪ {−∞,+∞} [18].
Finally, the following conformalized interval is attained by
expanding symmetrically about the mean prediction,

C(z) := [ql(z), qu(z)]

= [ŷ(z)−Q1−α(S), ŷ(z) +Q1−α(S)] .
(5)

This interval can be applied to any test data sample zM+1 =
z. Overall, this conformalization procedure uses D2, also
known as the calibration set, to compute the width of
the prediction intervals such that coverage guarantees are
attained. Formally, these conformalized intervals satisfy the
following coverage guarantees, first described in [24].

Theorem 1: (Exchangeable CP, [18]) If the data samples
{(zi, yi)}p+1

i=1 are independent and identically distributed
(i.i.d.), the prediction interval C (zp+1) produced by the SCP
algorithm satisfies

P {yp+1 ∈ C (zp+1)} ≥ 1− α, (6)
where α ∈ (0, 1) is a specified miscoverage rate.

Proof: Refer to Theorem 1 in [18] and Proposition 1
in [24].

In general, the i.i.d. assumption in Theorem 1 can be
subsumed under the property of exchangeability [15]. This
implies that the joint probability distribution of the dataset
{(zi, yi)}p+1

i=1 and consequently the nonconformity scores
{Si}p+1

i=1 , has the same distribution as {Sσ(i)}p+1
i=1 , under any

permutation σ of the indices 1, . . . , p + 1. For time series
data, requiring the data points to be i.i.d. or exchangeable is
a strong assumption. Obtaining coverage guarantees for the
prediction intervals for time series data in this nonexchange-
able setting is an active research direction with some recent
developments reported in [16], [17] and [18]. In this work,
we deploy the concept of weighted quantiles [18] to alleviate
the exchangeability assumption.

B. Weighted Conformal Prediction
To mitigate the effects of distribution shifts, weights

{w1, . . . , wp} ∈ [0, 1] can be introduced into the formulation
of the empirical quantiles, as described in [18]. This is
motivated by the fact that a higher weight should be given to
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Fig. 2. Overall schematic of the proposed framework. Offline (blue): The dynamics model f̂(x, u; θ) is learned via an optimization procedure, using
the dataset O that is collected before deployment. The dashed lines denote signals activated before deployment. Online (orange): During deployment, the
optimized model f̂(x, u; θ⋆), together with a moving window of data samples Op, are utilized to obtain uncertainty estimates via weighted conformal
prediction and the unscented transform, before incorporating them into the uncertainty-aware learning-based MPC (LMPC) framework.

a data sample that comes from a distribution that is similar
to the distribution of the training dataset. This implies that
the empirical quantile in (4) is modified to be

Q′
1−α(S) := Q1−α

(
p∑

i=1

w̃i δSi + w̃p+1 δ+∞

)
, (7)

where
w̃i :=

wi

w1 + . . .+ wp + 1
, i = 1, . . . , p,

w̃p+1 :=
1

w1 + . . .+ wp + 1

(8)

are a set of normalized weights [18]. If the weights are
chosen such that wi := 1, i = 1 , . . . , p, the empirical
quantile in (4) is recovered. With this modification, we have
the following coverage guarantees in the setting when the
data samples are nonexchangeable.

Theorem 2: (Nonexchangeable CP, [18]) For a given
dataset Dc := {(zi, yi)}p+1

i=1 and a pre-trained regression
model, the nonexchangeable SCP algorithm satisfies

P {yp+1 ∈ C (zp+1)} ≥ 1− α−
p∑

i=1

w̃i dTV

(
Sc, S

i
)
, (9)

where Sc denotes the set of nonconformity scores for Dc,
and Si are the nonconformity scores when the data sample
(zp+1, yp+1) is swapped with the ith sample (zi, yi) in
Sc. The metric dTV denotes the total variation between
distributions.

Proof: Refer to Theorem 2 in [18].
With this result, the following corollary shows that the

true dynamics f(x, u, d(x, u)) is guaranteed to lie within a
neighborhood of the learned model f̂(x, u, θ⋆), providing a
solution to Problem 1.

Corollary 1: Given a dataset {(xi, ui)}p+1
i=1 and the

learned model f̂(x, u, θ⋆), it holds that
P
{
f(x, u, d(x, u)) ∈ C

(
x, u; f̂(x, u; θ⋆)

)}
≥ 1− δ, (10)

where δ = α+
∑p

i=1 w̃i dTV

(
Sc, S

i
)
.

Proof: We define the state and control inputs (xi, ui)
and the successor states xi+1 to be the features zi and
labels yi, and let f̂(x, u, θ⋆) be the regression model for the
nonexchangeable CP algorithm. An application of Theorem
2 gives the required result.

While it can be challenging to compute dTV since the
distributions are unknown, this set of results offers a number
of important insights [18]. When the data points are ex-
changeable, then Sc

d
= Si, in distribution. This implies that

the same coverage guarantees in Theorem 1 are attained.
Hence, this weighting procedure does not affect coverage,
when the data points are indeed exchangeable. While there
are no assumptions on the type of distributions, there is a
trade-off in the selection of the weights {wi}pi=1. If they are
chosen to be large, the effects from distribution shifts may
not be effectively alleviated. Conversely, if they are small, the
quantiles computed with (7) may be overly conservative. In
time series data, if the distribution shift occurs with respect
to time, the weights can be chosen such that they promote
recency, i.e., wp ≥ . . . ≥ w1. One possible approach to select
the weights is to apply a geometric decay, i.e., wi := ρn−i+1,
where n is the size of the calibration dataset and ρ ∈ (0, 1),
as proposed in [18]. It is important to note that even though
the term dTV is difficult to compute, we can use the weights
wi to control or adjust the last term in (10) such that the
desired coverage is achieved.

The proposed approach assumes a window of historical
data samples, which implies that the CP algorithm should be
altered such that it needs to operate in an online manner. To
achieve that, we first train the model using an offline dataset
O. Next, during deployment, we apply an online version of
the CP algorithm described in Section III-A, with the weight
modifications in Section III-B, onto a moving window of
data samples Op to obtain conformalized prediction intervals
in an online fashion. Details of the online conformalization
procedure are listed in the first part of Algorithm 1.

With this integrated learning and conformalization strat-
egy, not only are the states x̂ predicted by the model close
to the true states, but more importantly, the true states are
also guaranteed to lie within the prediction interval C(f̂)
with a high probability of 1− δ.

IV. UNCERTAINTY-AWARE LEARNING MPC
A. Uncertainty Propagation

To allow for a holistic integration between the uncertainty
estimates and the learning-based MPC framework, we propa-
gate the uncertainty estimates along the prediction horizon of
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the optimization problem in (2), through the learned model
f̂(x, u; θ⋆). This is achieved by utilizing the unscented
transformation (UT) [21]. The UT algorithm computes the
statistics of a random variable that undergoes a nonlinear
transformation. It considers a smaller number of samples,
in contrast to the Monte Carlo sampling methods [21]. As
a result, it is sample efficient and amenable to practical
deployment. With the conformalized prediction intervals
obtained from the first step of Algorithm 1, we consider
the larger deviation between the quantiles of the prediction
interval and the current state measurement to be an estimate
of the standard deviation. Specifically, at each time step k,
for the ℓ th component of the state x, we define

σ
(ℓ)
k := max

{
x(ℓ)(k)−q

(ℓ)
l (zk−1) , q

(ℓ)
u (zk−1)−x(ℓ)(k)

}
, (11)

where q
(ℓ)
l (zk−1) and q

(ℓ)
u (zk−1) denote the ℓ th com-

ponent in the vectors of lower and upper quantiles,
ql(zk−1), qu(zk−1) ∈ Rn respectively. Next, we form the
covariance matrix of the states at time step k to be Σk :=

diag
(
σ
(1)
k

2
, . . . , σ

(n)
k

2)
. The state measurement x(k) and

the covariance matrix Σk are then propagated through the
learned model to obtain a sequence of covariance matrices.
Specifically, for each i ∈ {0, . . . , N − 2} along the horizon
in the optimization problem (2), we propagate the state
and covariance matrix forward in time by computing the
following quantities,
Z0 = µ̄i,

Zj = µ̄i +

(√
(J + λ)Σ̂i

k

)
j

, j = 1, . . . , J,

Zj = µ̄i −
(√

(J + λ)Σ̂i
k

)
j−J

, j = J + 1, . . . , 2J,

Yj = f̂ (Zj , ū; θ
⋆) , j = 0, . . . , 2J,

µ̄i+1 =

2J∑
j=0

w
(m)
j Yj , e

ij
y = Yj − µ̄i+1, Σ̄i+1

k =

2J∑
j=0

w
(c)
j eijy eijy

⊤,

(12)
where the initial state and covariance matrix are given as
µ̄0 := x(k) and Σ̄0

k := Σk and the vector ū is the most recent
control input. The matrices {Σ̄i

k}
N−1
i=0 denote the sequence

of propagated covariance matrices. The weights {w(m)
j }2Jj=0

and {w(c)
j }2Jj=0 are functions of the scaling parameter λ and

dimension J . Details on the computation of these weights
and the parameter λ are given in [25].

B. Enhancing Uncertainty Awareness
To enhance the uncertainty awareness of learning-based

MPC, the cost matrices in (2a) are augmented to account
for the sequence of propagated covariance matrices. Given
a predefined cost matrix Q, the stage cost matrices at each
time step k are modified to be

Qi
k := Q

(
∆i

k

)−1
, i = 0, . . . , N − 1, (13)

where ∆i
k := diag

(
|x(k)−x̂(k)|

2σ̄i
k

+ ξ
)

, where the operations
are performed element-wise. The predicted state x̂(k) is
computed using the regression model f̂ and the vector
σ̄i
k is the square root of the diagonal vector of Σ̄i

k. The
constant ξ shifts the values of the diagonal elements to an

Algorithm 1: Weighted CP for Learning-based MPC
Input: Incoming data {(z0, y0), (z1, y1), . . . },

learned model f̂(x, u; θ⋆), window size p,
target miscoverage rate α, weights {wi}pi=1,
UT parameters {λ, J}, cost matrix Q

Output: Conformalized interval C(zk), estimated
covariances

{
Σ̄i

k

}N−1

i=0
, cost matrices{

Qi
k

}N−1

i=0
1 Initialize: Op ← {0}
2 for k = 0, 1, . . . do
3 // Step 1: Weighted CP
4 Append latest data point, Op ← Op ∪ {zk}
5 if k ≥ p then
6 for i = k − p, . . . , k − 1 do
7 Compute predictions ŷ(zi) using

f̂(xi, ui; θ
⋆)

8 Compute scores Si(zi) in (3)

9 Compute Q′
1−α(Sk) in (7) using {wi}pi=1 and

α, where Sk := {Si}k−1
i=k−p

10 Remove oldest data point, Op ← Op \ {zk−p}
11 Compute C(zk) usings Q′

1−α(Sk) and (5)
12 // Step 2: Unscented Transformation
13 Compute initial covariance Σk with (11)
14 Propagate covariances {Σ̄i

k}
N−1
i=0 using (12)

15 // Step 3: Uncertainty-aware Augmentation
16 Compute matrices {Qi

k}
N−1
i=0 with Q and (13)

17 Apply {Qi
k}

N−1
i=0 to (2a) and solve (2)

appropriate range. This augmentation promotes uncertainty
awareness by decreasing the cost weights for states in which
the uncertainty estimates are high, i.e., when the true state
is far from the predicted state with respect to the width of
the uncertainty interval, 2σ̄i

k. Conversely, the states that are
less uncertain are allowed to converge faster.

One advantage of this cost augmentation is that it is
minimally invasive and does not compromise any existing
theoretical guarantees of the learning-based MPC framework.
For instance, if the terminal cost matrix P in (2b) and
constraint set Xf in (2e) are constructed such that the
conditions described in [26] (see first paragraph of Section
2.2.1 therein) are satisfied, recursive feasibility and stability
of the closed-loop system can be established. The proposed
cost augmentation in (13) only modifies the stage cost and
hence, does not affect recursive feasibility and stability of
the closed-loop system.

Furthermore, this online conformalization and uncertainty
propagation procedure together with the cost augmentation,
as detailed in Algorithm 1, is applicable to a variety of data-
driven models and learning-based MPC frameworks. In other
words, this framework can be seen as a straightforward,
efficient add-on module to existing learning-based MPC
frameworks that promotes uncertainty awareness.

V. CASE STUDY WITH KNODE-MPC
We consider a cartpole system with the following dynam-

ics [27],
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γ̈ =
g sin γ − cos γ

(
F +mplγ̇

2 sin γ
)

l
(

4
3 −

mp cos2 γ
mc+mp

) ,

ẍc =
F +mpl

(
γ̇2 sin γ − γ̈ cos γ

)
mc +mp

,

(14)

where xc is the position of the cart and γ is the angle
between the pole and the vertical. The cart and the pole
have masses mc and mp and the pole has a length of 2l.
The gravitational force is denoted by g and F is the force
acting on the system. By defining x := [xc ẋc γ γ̇]⊤ ∈ R4

and u := F ∈ R, the dynamics in (14) are discretized and
act as the known dynamics of the system. For the unknown
dynamics, we assume the cart has a true mass of 1.5kg,
while the mass of the cart within the known dynamics is 1kg.
Additionally, we consider unknown dynamics in the form of
additive process noise. The noise distributions are assumed
to be Gaussian with zero mean and standard deviations of
{0.1m, 0.5m/s, 1o, 20o/s}. The full dynamics of the system
are numerically simulated using an explicit 5th order Runge-
Kutta method with a sampling time of 0.01s.

We utilize KNODE-MPC [10] as an instantiation of the
learning-based MPC framework for the control of the cart-
pole. First, we collect data from the system to synthesize
a Knowledge-based Neural ODE (KNODE) model. For this
model, we assume that the dynamics can be decomposed as

x+ = f(x, u, d(x, u)) := f̃(x, u) + d(x, u), (15)
where the functions f̃ , d : Rn × Rm → Rn denote the
known and unknown dynamics. Next, given a dataset O :=
{(xi, ui)}Ti=1 with sampling times {ti}Ti=1, we compute one-
step predictions of the states,

x̂i+1(θ) := xi +

∫ ti+1

ti

f̃c(xi, ui) + dc(xi, ui; θ) dt

:= f̂(xi, ui, ti, ti+1; θ),

(16)

where the functions f̃c, dc : Rn × Rm → Rn are the
continuous-time representations of the dynamics in (15). The
data-driven model f̂ : Rn×Rm×R×R→ Rn is the KNODE
model that represents the full system dynamics f(x, u). For
brevity, we suppress the dependency of sampling times for
the KNODE model. The unknown dynamics dc(x, u) are
parameterized as a NN with L layers, which is given by

h0 = [x⊤ u⊤]⊤,

hl+1 = σ (Wlhl + bl) , l = 0, . . . , L− 1,

dc(x, u; θ) = WLhL + bL,

(17)

where the matrix Wl ∈ Rnl+1×nl and the vector bl ∈ Rnl+1

are the weights and biases of the lth layer. The set θ :=
{(W0, b0), . . . , (WL, bL)} to denotes the parameters of the
NN. The function σ : Rnl → Rnl is an activation function,
e.g., the hyperbolic tangent function.

To train the KNODE model, we define a loss function by
considering the mean squared errors between the states and
the one-step predictions,

L (θ) := 1

T − 1

T∑
i=2

∥x̂i(θ)− xi∥22 . (18)

TABLE I
COVERAGE PERCENTAGES, UNDER 3 CP METHODS.

Method Coverage percentages for each state

xc [%] ẋc [%] γ [%] γ̇ [%]
SCP, offline 99.00 98.96 99.14 99.00

Unweighted CP, online 98.96 98.87 99.00 99.02
Weighted CP, online 99.47 99.47 99.51 99.51

We compute the gradient of L with respect to the parameters
θ and update θ in an episodic manner, with a backpropagation
procedure. After training, the KNODE model with optimized
parameters θ⋆ serves as the dynamics model within an MPC
framework. In this case study, the cost matrices in (2a) are set
to Q := I and R := 0.5. The prediction horizon N is set to
12 and the control sampling rate is 0.15s. The weighted CP
procedure operates at the same rate as the control scheme.
The miscoverage rate is α := 0.01 and the weights {wi}pi=1

are defined according to a geometric decay, with a scaling
factor of 0.995. The size of the moving window is p :=
300. The UT parameters are {α, β, κ} := {0.1, 2,−1}. The
constant ξ in (13) is set to 0.5. The CasADi library [28] and
the solver IPOPT [29] are used to formulate and solve the
optimization problem in (2).
A. Results and Discussion

We first verify the coverage guarantees obtained from the
online weighted CP procedure by tabulating the empirical
coverage percentages in Table I. These are computed by
summing the number of time instances in which the true
data samples lie within the conformalized prediction intervals
across a test dataset. For comparison, we consider three
conformalization methods - (i) the SCP procedure described
in Section III-A, (ii) an online unweighted CP procedure
that utilizes a moving window of historical data samples,
and (iii) the online weighted CP scheme that uses the same
moving window of data samples, but with weights. The
intervals for SCP are computed using a calibration dataset,
which is different from the test dataset. While SCP is able to
provide a coverage rate close to 99%, the algorithm generates
a fixed prediction interval before deployment. Hence, the
computed intervals cannot account for distribution shifts in
data samples that may happen in subsequent deployments.
One instance is observed from the lower coverage percentage
for ẋc. The unweighted CP procedure is able to provide
uncertainty estimates in an online fashion, but may fall
short of the coverage level, as observed in the coverage
percentages for some of the states. The online weighted CP
is more conservative and provides sufficient and the highest
coverage for all states.

Next, we examine the size of the prediction intervals, with
respect to the states of the cartpole system in a closed-
loop simulation. In this experiment, the cart is required to
track a sequence of reference step commands, as shown
in Fig. 3. In Fig. 3, the time histories of the states are
plotted with the corresponding prediction intervals shown in
light blue. It is observed that the intervals have magnitudes
that are comparable to those of the states, which makes
them practically useful for downstream tasks that require
uncertainty quantification.
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Fig. 3. The time histories of the states of the cartpole system under the
proposed framework. The light blue regions depict the intervals computed
by the online WCP algorithm, in which the true states are guaranteed to lie
within, with a given probability. The black dashed line in the first subplot
depicts the reference trajectory. The vertical dashed line indicates the time
instance, t = 45.15s, when the predictions are activated. The insets are
zoomed-in plots from t = 50− 54s.

Fig. 4. The time histories of the cart position, under three control
frameworks - (i) nominal MPC, (ii) KNODE-MPC: MPC with a KNODE
model and without uncertainty awareness, and (iii) Uncertainty-aware (UA)
KNODE-MPC. The top panel is for a single run, while the bottom panel
depicts the spread across 30 runs. The orange and blue shaded regions in
the bottom panel denote the spread of the trajectories across 30 runs for
KNODE-MPC and UA KNODE-MPC respectively.

To evaluate the differences in closed-loop performance
when the uncertainty awareness augmentation is incorporated
into the control scheme, the time histories of the cart position
for a single run and across 30 runs are shown in Fig. 4. As
observed in the top panel of Fig. 4, due to the presence
of the unknown dynamics and inaccuracy of the model,
oscillatory responses are observed in the trajectories under a
nominal MPC framework. On the other hand, the KNODE-
MPC framework mitigates these oscillations and achieves
improved tracking performance. With the uncertainty-aware
augmentation, it is observed that the closed-loop responses
under the uncertainty-aware KNODE-MPC framework are
faster and do not induce oscillations. The bottom panel
of Fig. 4 depicts the spread of the trajectories of the cart
position across 30 runs. The spread is computed using the
maximum and minimum values at each time step across 30
runs, while the solid lines depict the mean across the runs at
every time step. The uncertainty-aware KNODE-MPC frame-
work achieves a narrower spread, as compared to KNODE-
MPC, ascertaining the improvement in responsiveness of the
closed-loop system.

Next, we examine the computation times for (i) solving the
optimization problem (2), (ii) for computing the quantiles in

TABLE II
STATISTICS OF COMPUTATION TIMES, IN MILLISECONDS.

Median Mean Std dev.

Optimization time 3.72 3.80 0.31
Quantile computation time 0.70 0.71 0.06
Unscented transform time 40.38 40.62 1.06

(7), and (iii) the time required for the unscented transforma-
tion, as described in (12). The statistics of the computation
times shown in Table II are computed across all time steps
of 30 runs, after the uncertainty aware augmentation is
activated. It is evident that the main computational limitation
lies with the uncertainty propagation step. We leave exploring
computationally efficient uncertainty propagation procedures
as part of future work.

VI. CONCLUSION
We present an uncertainty-aware learning-based MPC

framework that incorporates an online weighted CP proce-
dure for uncertainty estimation and UT for uncertainty prop-
agation. The framework not only quantifies the uncertainty in
the state predictions, but also promotes uncertainty awareness
in the closed-loop system. As part of future work, we plan
to incorporate the uncertainty estimates into other aspects
of the learning-based MPC framework to further enhance
uncertainty awareness.
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