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Abstract— This paper derives a new and unifying state-
space characterisation for the entire class of real, rational,
proper Output Negative Imaginary (ONI) systems, allowing
poles on the imaginary axis even at the origin. The proposed
result captures the existing versions of the NI state-space
characterisations, particularly the ones that apply to the NI
systems with poles at the origin. A necessary and sufficient
LMI condition has been derived to test the strict/non-strict
ONI properties of an LTI system with a given minimal state-
space realisation. The LMI-based characterisation offers easy
and convenient execution due to the easily accessible SDP solver
packages. Finally, a necessary and sufficient internal stability
theorem is also derived for a positive feedback ONI systems
interconnection containing pole(s) at the origin. The proposed
stability result specialises to the earlier versions when the earlier
assumptions are imposed. Numerical examples are given to
show the usefulness of the proposed theoretical results.

I. INTRODUCTION

The theory of Negative Imaginary (NI) systems was first
proposed in [1] and it was originally motivated by the vi-
bration control of mechanical systems and flexible structures
with high-frequency modes. Such systems with collocated
position outputs and force inputs exhibit NI property. Posi-
tion sensors are sometimes more useful than velocity sensors
as they do not aid in injecting sensor noise. Besides the
vibration control [1], NI theory finds other significant ap-
plications in control of flexible robotic arms [2]–[4], control
of Nanopositioning systems [5], [6], cooperative control of
various multi-agent systems (e.g. UAVs, UGVs, vehicle &
train platoons) [7]–[11], etc. In contrast to Positive-real (or
Passive) systems, NI systems allow relative degree up to two
and accept RHP zeros [1], [12]. At its inception, NI theory
was developed only for asymptotically stable systems [1]. It
was later extended in [13] to include poles on the jω axis but
excluding the origin. The article [4] further extended the NI
definition to allow up to two poles at s = 0 (e.g. 1

s , s+4
s(s+2) ,

1
s2 , etc.). Such systems possess free-body dynamics (e.g. 1

s2 )
[4] and arise when a rigid body moves freely in space due to
Newton’s second law of motion. During the last five years,
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Fig. 1: Relationship among the strict and non-strict subsets
within the ONI systems class.

NI theory has been intrigued in the direction of dissipativity
and energy-based control approaches [14]–[18].

NI theory became appealing due to its simple internal sta-
bility condition [λmax

(
N(0)M(0)

)
< 1] that depends on the

loop gain only at ω = 0 [1]. In a SISO setting, an NI transfer
function’s imaginary part remains non-positive for all ω ≥ 0.
Among the strict subclasses within the NI class, Strictly NI
(SNI [1]), Strongly Strict NI (SSNI [19]) and Output Strictly
NI (OSNI [12], [14]–[17], [20]) appear quite often in the
literature. The internal stability condition for a stable NI-
SNI interconnection was first derived in [1]. The result was
generalized later to capture the NI systems with poles on the
jω axis excluding the origin [13]; and finally, to include NI
systems with poles (up to two) at the origin [4], [21]. The NI-
OSNI stability results have also been enriched consistently
[12], [16], [17] since its foundation in [12]. However, none
of these articles addressed the internal stability problem of an
ONI systems interconnection containing poles at the origin.
Although [4] and [21] derived a set of stability criteria for
an NI-SNI interconnection containing poles at the origin, it
does not apply to an NI-OSNI interconnection because the
OSNI and SNI sets are not identical, as illustrated through
the Venn diagram in Fig. 1.

This paper deals with the internal stability problem of an
ONI-OSNI interconnection allowing poles at the origin. The
proposed result (see Theorem 2) also covers all the existing
versions of the NI-OSNI stability result as special cases. This
paper has also derived a new state-space characterisation (see
Lemma 4) for the full class of ONI systems considering poles
on the entire jω axis, even at the origin. This result can
be regarded as a non-trivial extension of the generalised NI
lemma in [22] to capture NI systems with poles at the origin.
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II. TECHNICAL BACKGROUND

Section II caters the definitions and properties of the class
of ONI1 systems and its strict subsets. Then it portrays the
relationship among the ONI, OSNI, NI and SNI systems.

The class of finite-dimensional, square and causal systems
with no poles in {s ∈ C : <[s] > 0} to be studied in this
paper is governed by the following state-space equations:

M :

{
ẋ = Ax+Bu, x0 = x(0) = 0;

y = Cx+Du.
(1)

Let M have a minimal state-space realisation
[
A B
C D

]
and M(s) ∈ Rm×m be its transfer function representation.
We will first define the ONI and OSNI systems in the
frequency domain. A parameter δ ≥ 0 is involved with the
ONI definition which is an index that classifies the strict
(i.e. δ > 0) and non-strict (i.e. δ = 0) subsets under the ONI
class. We also set a new notation M̄(s) = M(s) −M(∞),
which is nothing but the strictly proper version of M(s).

Definition 1: (ONI System) An LTI system M , as defined
in (1), is said to be Output Negative Imaginary (ONI) with
a level of strictness δ ≥ 0 if

i) j[M(jω) −M(jω)∗] − δ ωM̄(jω)∗M̄(jω) ≥ 0 for all
ω ∈ (0,∞) except the values of ω where s = jω is a
pole of M(s);

ii) If s = jω0 with ω0 ∈ (0,∞) is a pole of M(s), then it is
at most a simple pole and the residue matrix lim

s→jω0

(s−
jω0)jM(s) is Hermitian and positive semidefinite;

iii) If s = 0 is a pole of M(s), then lim
s→0

skM(s) = 0 for

all k ≥ 3 and lim
s→0

s2M(s) is Hermitian and positive
semidefinite.

Note that the point-wise frequency-domain condition given
in (i) can equivalently be expressed as:

jω[M(jω)−M(jω)∗]− δ ω2M̄(jω)∗M̄(jω) ≥ 0 (2)

for all ω ∈ R where s = jω is not a pole of M(s). It can be
readily observed that for δ = 0, the frequency-domain con-
dition given in (i) reduces to j[M(jω)−M(jω)∗] ≥ 0 and
Definition 1 boils down to the definition of NI systems [4],
[21]. Below, we define the OSNI systems, which are defined
only for asymptotically stable systems and characterised by
δ > 0. This definition resembles Definition 5 of [14].

Definition 2: (OSNI system) An LTI system M , as de-
fined in (1), is said to be Output Strictly Negative Imaginary
(OSNI) with a level of strictness δ > 0 if M is asymptotically
stable [i.e., M(s) ∈ RH m×m

∞ ] and

j[M(jω)−M(jω)∗]− δ ωM̄(jω)∗M̄(jω) ≥ 0 (3)

for all ω ∈ (0,∞).
After defining the ONI and OSNI systems, we will now

recapitulate the definition of SNI systems.

1Although the ONI system property is defined in this paper for LTI
systems only, it can be readily extended to LTV and nonlinear input-
affine systems by exploiting a particular time-domain dissipative supply
rate w(u, ẏ) = 2ẏ>u� δ ẏ>ẏ, as developed in [15]–[18].

Definition 3: (SNI System) [1], [21] An LTI system M ,
as defined in (1), is said to be Strictly Negative Imaginary
(SNI) if M is asymptotically stable [i.e., M(s) ∈ RH m×m

∞ ]
and j[M(jω)−M(jω)∗] > 0 for all ω ∈ (0,∞).

It is already revealed and explained in [12], [14], [17] that
SNI and OSNI systems are not identical. These two strict
subsets under the parent ONI class intersect each other as
illustrated in the Venn diagram shown in Fig. 1. Note also
that the class of Strongly Strict Negative Imaginary (SSNI)
systems defined in [19] belongs to the intersection of the
SNI and OSNI subsets.

To this end, we will recall the state-space characterisation
for Input-Output Passive systems as it will be required to
derive the intended ONI lemma in the next section.

Lemma 1: (Input-Output Passive lemma) [12] The sys-
tem M as defined in (1) is said to be Input-Output Passive
(IOP) if and only if there exist a real matrix P = P> > 0
and two real parameters δ ≥ 0 and ε ≥ 0 such that[

(−PA−A>P − δC>C) (−PB + C> − δC>D)

(−PB + C> − δC>D)> (D +D> − εIm − δD>D)

]
≥ 0. (4)

The following lemma is pretty interesting and it reveals the
relationship between the ONI and Output Passive systems
properties.

Lemma 2: An LTI system M , as defined in (1), is ONI
with a level of output strictness δ ≥ 0 if and only if it is
Output Passive with respect to the same δ.

Proof. The proof readily follows from Lemma 5 of [12].
�



c




Fig. 2: A positive feedback interconnection of ONI systems.

We will now recall the well-known internal stability result
of an NI-SNI interconnection as shown in Fig. 2.

Theorem 1: [21] Let Σ(s) be an NI system without
poles at the origin and Σc(s) be an SNI system. Then, the
positive feedback interconnection of Σ(s) and Σc(s) shown
in Figure 2 is internally stable if and only if

det[I −Σ(∞)Σc(∞)] 6= 0,

λmax

[
(I −Σ(∞)Σc(∞))−1(Σ(∞)Σc(0)− I)

]
< 0,

λmax

[
(I −Σc(0)Σ(∞))−1(Σc(0)Σ(0)− I)

]
< 0.

(5)

III. MAIN RESULT: ONI LEMMA CONSIDERING POLES ON
THE IMAGINARY AXIS INCLUDING ORIGIN

This section derives a new version of the Output Negative
Imaginary (ONI) lemma that gives a complete state-space
characterisation for the full class of ONI systems (including
the strict subsets) allowing poles on the jω axis including
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the origin. This lemma can be seen as an extension of the
generalised NI lemma in [22] and an unification of all the
earlier NI lemmas reported in [1], [4], [12]–[14], [17], [21]
since its inception.

The following two lemmas are essential pre-requisites
for proving the main results. Lemma 3 provides a set of
necessary and sufficient conditions for a system with/without
double poles at the origin to have NI property.

Lemma 3: Let an LTI system Σ be defined via (1) with no
poles at s = 0 and have a transfer function matrix Σ(s). Let
there exist a δ ≥ 0. Then, M(s) , Σ(s) +R1/s+R2/s

2 is
ONI if and only if N(s) , Σ(s) +R1/s is ONI and R2 =
R>2 ≥ 0, where R1 and R2 are the residue and quadratic
residue of the pole at s = 0.

Proof. The proof has been divided into the necessary and
sufficiency parts. We declare M̄(s) = M(s) −M(∞) and
N̄(s) = N(s)−N(∞).

(⇒) We begin this proof on noting that the set of poles of
M(s) is the union of the set of poles of N(s) and a double
pole at s = 0. Hence, N(s) has no poles in the open RHP
as M(s) has no poles there. Now, M(s) being ONI with a
δm ≥ 0 gives j[M(jω)−M(jω)∗]−δm ωM̄(jω)∗M̄(jω) ≥
0 for all ω ∈ (0,∞) where s = jω is not a pole of M(s)
via condition (i) of Definition 1. It immediately implies
j[M(jω) − M(jω)∗] ≥ 0 since δm ≥ 0. Then we have
j[N(jω)−N(jω)∗] = j[M(jω)−M(jω)∗] ≥ 0 for all ω ∈
(0,∞) where s = jω is not a pole of either N(s) or M(s) as
R2 = R>2 ≥ 0 via assumption. This inequality condition will
eventually imply j[N(jω)−N(jω)∗]−δn ωN̄(jω)∗N̄(jω) ≥
0 as we can always find a sufficiently small δn ≥ 0.

It can be readily asserted that s = jω0 with ω0 > 0 is
a pole of M(s) = N(s) + R2/s

2 if and only if s = jω0

is a pole of N(s). Therefore, the residue matrix of M(s)
at s = jω0 is lim

s→jω0

(s − jω0)jM(s) ≥ 0 via condition

(ii) of Definition 1. Then, the residue matrix of N(s) at the
same complex pole is given by lim

s→jω0

(s − jω0)jN(s) =

lim
s→jω0

(s − jω0)jM(s) ≥ 0. Also, if s = 0 is a pole of

N(s), then lim
s→0

skN(s) = 0 for all integer k ≥ 2 due to the
construction of Σ(s) having no poles at the origin.

Hence, we can conclude that N(s) is ONI with a δn ≥ 0
via Definition 1 under the assumption R2 = R>2 ≥ 0.

(⇐) M(s) = N(s) +R2/s
2 is ONI via Lemma 3 of [13]

because both N(s) and R2/s
2 with R2 = R>2 ≥ 0 are ONI.

Hence the proof is done. �
Now, we will derive an ONI lemma that gives an LMI-

based state-space characterisation for the full class of ONI
systems allowing poles on the jω axis including the origin.
This lemma can be regarded as an extension and unification
of the NI and OSNI lemmas reported in the earlier literature
[1], [4], [12]–[14], [17], [21].

Lemma 4: (ONI lemma) Consider an LTI system Σ
as defined in (1) with a minimal state-space realisation[
A1 B1

C1 D1

]
with det(A1) 6= 0. Then, M(s) , Σ(s) +

R1/s+R2/s
2 is ONI if and only if D1 = D>1 , R2 = R>2 ≥ 0

and there exist a matrix Y = Y > > 0 and a δ such that[
A1Y + Y A>1 + δ(C1A1Y )>(C1A1Y ) B1 +A1Y C

>
1

(B1 +A1Y C
>
1 )> −(R1 +R>1 )

]
≤ 0. (6)
Proof. Define N(s) , Σ(s) + R1/s. According to

Lemma 3, N(s) is ONI with a δn ≥ 0 when M(s) is ONI
with a δm ≥ 0. δm and δn may not be equal. We choose
a δ = min{δm, δn}. Then, the following statements are
equivalent.

M(s) is ONI with δ ≥ 0
⇔ N(s) is ONI with δ ≥ 0 and R2 = R>2 ≥ 0 via

Lemma 3
⇔ [N(s) − D1] is ONI with δ ≥ 0, R2 = R>2 ≥ 0 and

D1 = D>1 (via part I of [21, Lemma 7])
⇔ s[N(s) −D1] = C1A1(sI − A1)−1B1 + C1B1 + R1

is Output Passive with a δ ≥ 0 via Lemma 1 since[
A1 B1

C1A1 C1B1 +R1

]
is minimal due to det(A1) 6=

0, R2 = R>2 ≥ 0 and D1 = D>1
⇔ R2 = R>2 ≥ 0, D1 = D>1 and there exist matrices

P = P> > 0, L, W and a real scalar δ ≥ 0 such that
PA1 +A>1 P + δA>1 C

>
1 C1A1 = −L>L

PB1 −A>1 C>1 + δA>1 C
>
1 C1B1 = −L>W and

C1B1 +B>1 C
>
1 − δB>1 C>1 C1B1 +R1 +R>1 = W>W

⇔ R2 = R>2 ≥ 0, D1 = D>1 and there exist matrices
P = P> > 0, L, W and a real scalar δ ≥ 0 such that
A1P

−1 + P−1A>1 = −P−1L>LP−1
B1 = P−1(A>1 C

>
1 − L>W ) and

C1B1 +B>1 C
>
1 +R1 +R>1 = W>W

⇔ R2 = R>2 ≥ 0, D1 = D>1 and there exist matrices
P = P> > 0, L, W and a real scalar δ ≥ 0 such that
A1P

−1 + P−1A>1 + P−1(δA>1 C
>
1 C1A1)P−1 =

−P−1L>LP−1
B1 = P−1(A>1 C

>
1 − δA>1 C>1 C1B1 − L>W ) and

R1 + R>1 = (W + LP−1C>1 )>(W + LP−1C>1 ) +
(C1B1 +C1A1P

−1C>1 )>(δI)(C1A1P
−1C>1 ) [via the

completion of squares]
⇔ R2 = R>2 ≥ 0, D1 = D>1 and there exist matrices

P = P> > 0, L, W and a real scalar δ ≥ 0 such that
A1P

−1 + P−1A>1 + P−1(δA>1 C
>
1 C1A1)P−1 =

−P−1L>LP−1
B1 + A1P

−1C>1 = −δP−1A>1 C>1 (C1B1 +
C1A1P

−1C>1 ) and
R1 + R>1 = (W + LP−1C>1 )>(W + LP−1C>1 ) +
(C1B1 +C1A1P

−1C>1 )>(δI)(C1B1 +C1A1P
−1C>1 )

[via the completion of squares]
⇔ R2 = R>2 ≥ 0, D1 = D>1 and there exist matrices

P = P> > 0, L, W and a real scalar δ ≥ 0 such that
A1P

−1 + P−1A>1 + P−1(δA>1 C
>
1 C1A1)P−1 =

−P−1L>LP−1
B1 +A1P

−1C>1 = 0 and
R1 + R>1 = (W + LP−1C>1 )>(W + LP−1C>1 ) and
(C1B1 + C1A1P

−1C>1 ) = 0
⇔ R2 = R>2 ≥ 0, D1 = D>1 and there exist matrices

P = P> > 0, L, W and a real scalar δ ≥ 0 such that
A1P

−1 + P−1A>1 + P−1(δA>1 C
>
1 C1A1)P−1 =
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−P−1L>LP−1
B1 + A1P

−1C>1 = P−1L>W + P−1L>LP−1C>

[since P−1L>W = P−1L>(−LP−1C>)] and
R1 + R>1 = (W + LP−1C>1 )>(W + LP−1C>1 ) and
(C1B1 + C1A1P

−1C>1 ) = 0
⇔ R2 = R>2 ≥ 0, D1 = D>1 and there exist matrices

P = P> > 0, L, W and a real scalar δ ≥ 0 such that
A1P

−1 + P−1A>1 +

δ (C1A1P
−1)>(C1A1P

−1)
(B1 +A1P

−1C>1 )

(B1 +A1P
−1C>1 )> −(R1 +R>1 )


= −

[
P−1L>

W> + C1P
−1L>

] [
LP−1 W + LP−1C>1

]
⇔ R2 = R>2 ≥ 0, D1 = D>1 and there exist a Y ,

P−1 > 0 and δ ≥ 0 such that
A1Y + Y A>1 +

δ (C1A1Y )>(C1A1Y )
(B1 +A1Y C

>
1 )

(B1 +A1Y C
>
1 )> −(R1 +R>1 )

 ≤ 0.

This completes the proof. �
The following example illustrates the above lemma.
Example 1: Consider the transfer function M(s) =

(s2 + s+ 1)/(s3 + s) decomposed as Σ(s)+R1/s+R2/s
2.

Here, R1 = 1, R2 = 0, A1 =

[
0 1
−1 0

]
, B1 =

[
0
1

]
,

C1 =
[

1 0
]

and D1 = 0. It is easy to verify that
the realisation is minimal and det(A1) 6= 0. Then, via
Lemma 4, we can see that M(s) is ONI with a δ ≥ 0
because D1 = D>1 = 0, R2 = R>2 = 0 ≥ 0 and there
exists a Y = Y > > 0 that satisfies the LMI given in (6).
This can also be confirmed from Definition 1 that, since
M(s) has no poles in the open right-half plane, j[M(jω)−
M(jω)∗] − δ ωM̄(jω)∗M̄(jω) ≥ 0 ∀ω ∈ (0,∞)\{1}, the

residue matrix K0 = lim
s→j1

j(s− j1)M(s) =
1

2
= K>0 > 0

and lim
s→0

skM(s) = 0 for all integer k ≥ 2.
If Σ is a static system, Lemma 4 cannot be applied

because
[
A1 B1

C1 D1

]
is not minimal. To overcome this

minor limitation, we propose the following statement to
directly check the ONI property of such systems.

Lemma 5: The transfer function matrix D+R1/s+R2/s
2

is ONI if and only if D = D>, R2 = R>2 ≥ 0 and R1 +
R>1 ≥ 0.

Proof. From Definition 1, conditions (ii) is trivially ful-
filled. Condition (iii) therein is equivalent to R2 = R>2 ≥ 0
and that condition (i) is hence equivalent to j[D − D>] +
1
ω [R1 + R>1 ] ≥ 0 ∀ω ∈ (0,∞). This in turn is equivalent
to D = D> and R1 + R>1 ≥ 0 via a limiting argument as
ω →∞. �

The following example is used to illustrate the result given
in Lemma 5.

Example 2: Consider the transfer function M(s) = (s +
1)/s2. In this case, D = 0, R1 = 1 and R2 = 1. Then via
Lemma 5, M(s) is ONI with δ = 0 [or simply NI] since

D = D> = 0, R2 = R>2 = 1 ≥ 0 and R1 + R>1 = 2 ≥ 0.
This can also be confirmed from Definition 1 as M(s) has no
poles in the open right-half plane, nor on the jω axis for any
ω ∈ (0,∞), j[M(jω) −M(jω)∗] − δ ωM̄(jω)∗M̄(jω) =
2
ω ≥ 0 ∀ω ∈ (0,∞), lim

s→0
skM(s) = 0 ∀k ≥ 3 and

lim
s→0

s2M(s) = 1 ≥ 0.

Under the suppositions M(s) ∈ RH m×m
∞ and [M(s) −

M∼(s)] has full normal rank, Lemma 4 reduces to the OSNI
lemma [given below as Corollary 1] and re-establishes [12,
Lemma 5] and [17, Lemma 16].

Corollary 1: [12], [17] Consider an LTI system M
as defined in (1) with a minimal state-space realisation[
A B
C D

]
with A Hurwitz, D = D> and [M(s)−M∼(s)]

has full normal rank. Then, M is OSNI with a level of
strictness δ > 0 if and only if there exists a real matrix
Y = Y > > 0 such that

AY +Y A>+ δ (CAY )>(CAY ) ≤ 0 and B+AY C> = 0.
(7)

Proof. The proof is a straightforward specialisation of the
proof of Lemma 4 under the suppositions mentioned in the
statement above. �

It is easy to check that Lemma 4 specialises to [13,
Lemma 7], given in Corollary 2, when M(s) is an NI system
without poles at the origin.

Corollary 2: [13] Consider an LTI system M as defined

in (1) with a minimal state-space realisation
[
A B
C D

]
with

det(A) 6= 0 and D = D>. Then, M is an NI system without
poles at the origin if and only if there exists a matrix Y =
Y > > 0 such that AY + Y A> ≤ 0 and B = −AY C>.

Proof. The proof is a straightforward specialisation of the
proof of Lemma 4 under the setting δ = 0, R1 = 0 and
R2 = 0. �

Furthermore, when restricted to asymptotically stable NI
systems, Lemma 4 resembles [1, Lemma 5].

Remark 1: The article [22] derived an NI lemma de-
pending on a minimal state-space realisation of the system
M(s) without decomposing it into M(s) , Σ(s) +R1/s+
R2/s

2 whereas Lemma 4 decomposes it into three parts
as already explained. This decomposition yields possibly
smaller dimensions of the matrices A1, B1 and C1. Smaller
dimensions can be beneficial for the computational aspects,
especially for higher order and complex systems (e.g. flexible
structures, distributed-parameter systems). Most importantly,
Lemma 4 imposes only the relevant structural properties on
the constituent parts of M(s) so that the lemma can capture
the earlier results when the earlier assumptions are imposed.

Remark 2: An ONI system M(s) , Σ(s)+R1/s+R2/s
2

does not necessarily imply that Σ(s) is ONI without poles
at the origin via Lemma 4. This is because any shortage of
ONIness in Σ(s) can be compensated by an excess ONIness
of R1/s. For example, M(s) = − 1

s+1 + 2
s is an ONI (or

simply an NI) transfer function via Definition 1, but Σ(s) =
− 1

s+1 is not ONI/NI. This crucial observation is also revealed
by (6) in Lemma 4, which contains the term (R1 + R>1 ) ≥
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0 in its (2,2) blocks. Whereas, the generalised NI lemma
LMI derived in [22] to capture the full class of NI systems
allowing poles at the origin had 0 in its (2,2) block.

IV. INTERNAL STABILITY OF ONI SYSTEMS

This section will develop a internal stability result for a
positive feedback interconnection (shown in Fig. 2) of an
ONI (or simply NI) system with possible poles on the jω axis
including the origin and an OSNI system. Before presenting
the main stability theorem, which is a major contribution of
this paper, we provide two essential pre-requisite technical
lemmas. These results build on a set of similar results derived
in [21] in the context of NI-SNI interconnections containing
poles at the origin.

Lemma 6 given below is the backbone for proving the in-
ternal stability of an ONI interconnection containing pole(s)
at the origin. It solely relies on Lemma 18 of [21] which
first exploited the classical ‘loop transformation’ technique
to transform an NI system with pole(s) at the origin into an
NI system without any pole at the origin. The lemma shows
that the internal stability of two ONI systems is equivalent to
the internal stability of the loop-transformed ONI systems.

Lemma 6: Suppose Σ(s) is an ONI system with possible
poles on the jω axis including the origin and Σc(s) is an
OSNI system. Construct a real matrix Υ < 0 such that
det[I − Σ(∞)Υ] 6= 0. Define Σ̂(s) , [I − Σ(s)Υ]−1Σ(s)
and Σ̂c , Σc(s)−Υ. Then,

i) det[I − Σ(∞)Σc(∞)] 6= 0 if and only if det[I −
Σ̂(∞)Σ̂c(∞)] 6= 0;

ii) The positive feedback interconnection of Σ(s) and
Σc(s) is internally stable if and only if the positive
feedback interconnection of Σ̂(s) and Σ̂c(s) is inter-
nally stable.

Proof. The proof builds on Lemma 18 of [21]. We
can readily show that [I − Σ̂(∞)Σ̂c(∞)] = I − [I −
Σ(∞)Υ]−1Σ(∞)[Σc(∞) − Υ] = [I − Σ(∞)Υ]−1[I −
Σ(∞)Σc(∞)]. Therefore, det[I − Σ(∞)Σc(∞)] 6= 0 ⇔
det[I − Σ̂(∞)Σ̂c(∞)] 6= 0 since det[I − Σ(∞)Υ] 6= 0 via
construction. This proves part (i).

Part (ii) can also be readily proved along the lines
of [21, Lemma 18] due to the relationship Σ̂(s)

[
I −

Σ̂c(s)Σ̂(s)
]−1

= Σ(s)
[
I − ΥΣ(s)

]−1[
I −

(
Σc(s) −

Υ
)
Σ(s)

[
I −ΥΣ(s)

]−1]−1
= Σ(s)

[
I −Σc(s)Σ(s)

]−1
. �

This lemma shows that a static loop transformation tech-
nique truly plays the trick to transform an ONI system with
pole(s) at the origin to an ONI system without any pole at
the origin and it builds on Lemma 20 of [21].

Lemma 7: Suppose Σ(s) is an ONI system with possible
poles on the jω axis including the origin and Σc(s) is an
OSNI system. Construct a real matrix Υ < 0 such that
det[I −Σ(∞)Υ] 6= 0. Then,

i) [I − Σ(s)Υ]−1 does not have any poles in the open
RHP and at the origin;

ii) Σ̂(s) , [I −Σ(s)Υ]−1Σ(s) is an ONI system without
any pole at the origin.

Proof. This proof readily follows from Lemma 20 of [21].
�

We will now state the main stability theorem for an
interconnection of ONI and OSNI systems, Σ(s) and Σc(s)
respectively, where Σ(s) is allowed to contain pole(s) at the
origin. Note Σc(s) ∈ RH m×m

∞ . As OSNI systems (say
Σc(s)) may contain transmission/blocking zeros [s = ±jωz ,
ωz ∈ (0,∞)] on the jω axis, det

[
Σc(jωz)−Σc(jωz)∗

]
= 0

may occur unlike the case of an SNI system. Therefore
the internal stability results of an NI-SNI interconnection
containing pole(s) at the origin proposed in [4] and [21]
cannot capture Theorem 2. Note also that the existing NI-
OSNI stability theorems (given in [12], [14], [16], [17]) have
not accounted for poles at the origin.

Theorem 2: Suppose Σ(s) is an ONI system with pos-
sible poles on the jω axis including the origin and Σc(s)
is an OSNI system. Construct a real matrix Υ < 0
such that [I − Σ(∞)Υ] > 0. Define Σ̂(s) , [I −
Σ(s)Υ]−1Σ(s) and Σ̂c , Σc(s) − Υ. Let Ω ,
{ω ∈ (0,∞) : s = jω is not a pole of Σ̂(s)} and let
j [Σc(jω0)−Σc(jω0)∗] > 0 ∀ω0 ∈ (0,∞)\Ω. Suppose
there exists no ω ∈ Ω such that det[Σ̂(jω) − Σ̂(jω)∗] = 0
and det[Σc(jω)−Σc(jω)∗] = 0. Then, the positive feedback
interconnection of Σ(s) and Σc(s) shown in Fig. 2 is
internally stable if and only if

det[I −Σ(∞)Σc(∞)] 6= 0, (8a)

λmax

[
[I −Σ(∞)Σc(∞)]−1(Σ(∞)Σc(0)− I)

]
< 0, (8b)

λmax

[
lim
s→0

[
(I −ΥΣ(∞))

[
I −Σc(s)Σ(∞)

]−1×[
Σc(s)Σ(s)− I

][
I −ΥΣ(s)

]−1]]
< 0. (8c)

Proof. We begin the proof on noting that Σc(s) and Σ̂c(s)
have the same set of poles and j[Σ̂(jω) − Σ̂(jω)∗] =
j[Σ(jω) − Σ(jω)∗] as Υ = Υ>. Also, since the choice of
the matrix Υ < 0 lies with us, the first two assumptions are
not overly restrictive. This proof primarily relies on the trick
that internal stability of Σ(s) and Σc(s) is equivalent to that
of Σ̂(s) and Σ̂c(s) for an appropriate choice of Υ < 0, as
established in Lemma 6. Now,

The positive feedback interconnection of Σ̂(s) and
Σ̂c(s) is internally stable

⇔ det[I − Σ̂(∞)Σ̂c(∞)] 6= 0 [via part (i) of Lemma 6],
λmax

[[
I − Σ̂(∞)Σ̂c(∞)

]−1(
Σ̂(∞)Σ̂c(0) − I

)]
< 0

and
λmax

[[
I − Σ̂c(0)Σ̂(∞)

]−1(
Σ̂c(0)Σ̂(0) − I

)]
< 0

[since Σ̂(s) is an ONI system without poles at the
origin via Lemma 7, Σ̂c(s) is an OSNI system and
then direct application of Theorem 5 of [17]]

⇔ det[I − Σ̂(∞)Σ̂c(∞)] 6= 0, (8b) and (8c). [The
equivalence can be readily establish by following the
lines of algebraic manipulation shown in Theorem 24
of [21] upon expanding the terms Σ̂c(0), Σ̂c(∞) and
Σ̂(∞)].

This completes the proof. �
The first corollary is an immediate consequence of The-

orem 2 which offers a significantly simpler checking condi-
tion, compared to (8a)–(8c), if Σ(s) is strictly proper.

Corollary 3: Suppose Σ(s) is a strictly proper ONI sys-
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tem with possible poles on the jω axis including the origin
and Σc(s) is an OSNI system. Construct a real matrix Υ < 0
such that [I − Σ(∞)Υ] > 0. Under the assumptions of
Theorem 2, the positive feedback interconnection of Σ(s)
and Σc(s) shown in Fig. 2 is internally stable if and only if

λmax

[
lim
s→0

[[
ΣcΣ(s)(s)− I

][
I −ΥΣ(s)

]−1]]
< 0. (9)

Proof. The proof is a direct specialisation of the proof of
Theorem 2 subject to the extra assumption Σ(∞) = 0. �

This corollary gives an elegant stability criterion when
the ONI system Σ(s) does necessarily contain pole(s) at
the origin in all directions (SISO examples: 1

s , 1
s2 ). In such

cases, the final expression is free from the Υ matrix and it
depends only on the DC gain of the OSNI system in the
interconnection. This result may find potential applications
in developing a cooperative control scheme for multi-agent
systems having single/double integrator dynamics.

Corollary 4: Suppose Σ(s) is a strictly proper ONI sys-
tem with poles (either single or double) at the origin and
Σc(s) is an OSNI system. Construct a real matrix Υ < 0
such that [I − Σ(∞)Υ] > 0. Let all the assumptions of
Theorem 2 be true and in addition, one of the following
conditions holds:

i) det[lim
s→0

s2Σ(s)] 6= 0;

ii) lim
s→0

s2Σ(s) = 0 and det[lim
s→0

sΣ(s)] 6= 0.

Then, the positive feedback interconnection of Σ(s) and
Σc(s) shown in Fig. 2 is internally stable if and only if
Σc(0) < 0.

Proof. The proof requires a Laurent Series expansion of
the transfer function Σ(s) following the condition (i) or (ii)
and then obtaining the limit via simplification. �

V. CONCLUSION

This paper has brought in a new and unified state-space
characterisation for the full class of LTI Output Negative
Imaginary (ONI) systems that accepts poles on the jω axis
even at the origin. This result captures the existing state-
space characterisations for NI, ONI and OSNI systems. It
also extends the generalised NI lemma, in [22], for handling
NI systems with poles at the origin. This approach decom-
poses a transfer function into three parts to separate out the
residue and quadratic residue at the pole(s) at origin. The
paper also derives an internal stability result for a positive
feedback interconnection of two ONI systems where one of
the systems may contain up to two poles at the origin. This
result is possibly the first one that deals with the internal
stability of ONI systems allowing poles at the origin and it
covers the existing NI-OSNI stability results as special cases.
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