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Abstract— We consider fully asynchronous decentralized op-
timization over a directed graph. While various algorithms
have been proposed, real-world applications require relaxing
the assumption and considering communication networks with
asynchronous and heterogeneous nodes. To meet these chal-
lenges, we propose an efficient and robust Newton tracking
mechanism for fully asynchronous optimization. Our proposed
mechanism can be adapted to different asynchronous first-order
methods as required by the practical context. Through the
theoretical analysis we demonstrate the R-linear rate of our
method and derive an explicit expression of decaying factor
under local conditions. Furthermore, numerical comparison
with existing algorithms support the efficiency and robustness
of our method.

I. INTRODUCTION

In this paper, we consider a fully asynchronous decen-
tralized optimization problem, where n agents cooperate to
minimize the average of local functions

x∗ = arg min
x∈Rd

F (x) :=
1

n

n∑
i=1

fi(x), (1)

where x ∈ Rd is the decision variable and fi : Rd → R is
the loss function privately owned by node i. The optimiza-
tion problem (1) has applications in various fields, such as
deep learning [1], sensor networking [2], statistical learning
[3], and optimal transport [4]. To leverage the benefits of
decentralized storage of data and parallel computing power
of nodes, decentralized algorithms for solving problem (1)
have been extensively studied, especially for the design of
synchronous algorithms, such as DGD [5], EXTRA [6],
gradient tracking [7] based on undirected graphs, and Push-
Sum [8] and Push-Pull [9] based on directed graphs.

However, due to the heterogeneity of data and systems, and
the impact of uncontrollable factors such as communication
delays or errors, it is essential to design asynchronous algo-
rithms. Asynchronous algorithms can reduce waiting time,
alleviate communication costs, and make the algorithm more
fault-tolerant. This paper considers the fully asynchronous
scenario: agents can use local and neighbor information (pos-
sibly stale) for local computation at any time and send the
results to neighbors without any synchronous coordination
and scheduling. The difference between synchronous and our
fully asynchronous settings is depicted in Fig. 1. Specifically,
in the synchronous setting, all nodes perform computation
and communication at the same time per iteration, while
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Fig. 1. Comparison of Synchronous and Asynchronous Setting.

in the fully asynchronous setting, nodes can start at any
time. We can observe that asynchronous algorithms are more
efficient, as they can perform more iterations within the same
time period.

Asynchronous Decentralized Methods. In recent years,
there has been a noticeable shift in research focus towards
asynchronous decentralized optimization methods. Some of
these methods utilize random activation mechanisms that
satisfy specific distributions, where a randomly selected
group of agents are activated per iteration to perform com-
putation and communicate with their neighbors [10]–[12].
Some works propose asynchronous algorithms that are robust
to communication delays and investigate the effect of delay
on convergence [13], [14]. However, these algorithms still
require some degree of coordination among nodes and are not
fully asynchronous. Several algorithms have been developed
based on a fully asynchronous model [15]–[18], where agents
can use local and neighbor information (possibly delayed)
for local computation at any time and send the results to
neighbors without any form of coordination or centralized
scheduling. The asynchronous Gradient-Push (AGP) method
proposed in [15] uses the buffer mechanism to store delayed
information and is proven to converge to a neighborhood of
the optimal solution. However, as shown in [18], AGP cannot
converge precisely due to the uneven update frequency of
each node. To tackle this issue, [18] introduces an auxiliary
variable to adjust the update frequency of each node and
proposes a subgradient-type method with exact convergence.
However, the decaying stepsize rule makes convergence rate
sub-linear. To improve the convergence rate, [16] proposes an
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asynchronous algorithm over a directed network, where each
node estimates the global gradient using the idea of gradient
tracking [19]. Inspired by Push-Sum [20], the method in
[16] gets a linear convergence approaching to the optimal
point. The APPG method proposed in [17] is based on
the Push-Pull algorithm over a directed network. It uses
an augmented graph to model the communication of the
asynchronous algorithm and shows that APPG converges
to the optimal solution at a linear rate. Apart from first-
order methods, some works study second-order methods that
use curvature information to accelerate convergence. The
work [21] adapts an approximate second-order information
scheme under a partial asynchronous setting and can handle
uncoordinated activation and packet loss. However, the work
[21] requires that only one agent wakes up at each itera-
tion, which requires a global clock. [12], [22] studied the
asynchronous decentralized second-order algorithm, while
they assume the activation of the node follows Poisson
Process, this assumption make convergence analysis easier,
but there is a strong dependence of the delays on the
activation index which often contrasts the case in reality.
To the best of our knowledge, there is currently no known
decentralized second-order algorithm specifically designed
for a fully asynchronous setting.

A. Major Contribution

In this paper, we propose an efficient and robust asyn-
chronous newton tracking mechanism for fully asynchronous
decentralized optimization. The main contributions are sum-
marized as follows:
• We propose a novel newton-tracking mechanism for

fully asynchronous optimization, which can be easily
adapted in existing asynchronous first-order algorithms.
Our mechanism enhances the performance and robust-
ness of existing asynchronous first-order algorithms by
incorporating global second-order information.

• Through our theoretical analysis, we have clearly shown
that our algorithm enjoys a linear convergence rate
and derived the explicit expression for decaying factor
that surpasses that of existing asynchronous first-order
algorithms under local conditions.

• Our numerical comparisons have further demonstrated
the considerable improvements in efficiency and ro-
bustness of our mechanism when compared to both
asynchronous first-order algorithms and synchronous
second-order algorithms.

B. Notation

We use k to denote the index of iteration and t(k) to
denote the time of k-th iteration. We use ∥ · ∥ to denote
the Euclidean norm of a vector or the largest singular
value of a matrix, ∥ · ∥F to denote the Frobenius norm.
We use [n] to denote the numbers from 1 to n. For the
aggregated variable, we define x = [x1; . . . ;xn] ∈ Rnd,
∇f(xk) = [∇f1(xk1); . . . ;∇fn(xkn)], Hk = [Hk

1 ; . . . ;H
k
n]

other aggregated variables are defined similarly. For the
average variable, the average decision variable over all nodes

at the iteration k is defined as x̄k = 1
n

∑n
i=1 x

k
i , ∇f(xk) =

1
n

∑n
i=1 ∇fi(xki ) ∈ Rd, ∇F (x̄k) = 1

n∇fi(x̄
k) ∈ Rd, H̄k =

1
n

∑n
i=1H

k
i , other average variables are defined similarly.

Given a buffer B, avg (B) and sum (B) return the average
and return the sum of variables in the buffer, respectively.

C. Organization

The remaining sections of this document are structured in
the following manner. We provide the problem setting and
proposed asynchronous newton tracking mechanism along
with its implementations in Section II. We establish the
convergence analysis in Section III and present the numeric
examples in Section IV. Section V serves as the concluding
part of the paper.

II. PROBLEM SETTING AND ALGORITHM DEVELOPMENT

In this section, we give a detailed description of the prob-
lem setting, then we develop a newton tracking mechanism
for asynchronous decentralized optimization and adapt the
mechanism over existing asynchronous first-order methods.

A. Problem Setting

We consider a directed graph G = (V, E), where V =
{1, . . . , n} is the set of n nodes with |V| = n and E is
the set of all edges. If (i, j) ∈ E , it indicates that i can
send message to j. For a node i, we defined in-neighbors
which send information to node i as N i

in = {j | (j, i) ∈ E},
and out-neighbors which receive information from node i as
N i

out = {j | (i, j) ∈ E . We give the general assumptions for
decentralized optimization [9].

Assumption 2.1: The communication network G is
strongly connected.

Then we give some assumptions on objective functions.
Assumption 2.2: The entire objective function F is µ−

strongly convex for some constant µ > 0, i.e.,

∇2F (x) ⪰ µId,∀x ∈ Rd, (2)

where µ is the strong convexity parameter.
Assumption 2.3: Each fi is twice-differentiable, and both

the gradient and Hessian are Lipschitz continuous, i.e.,

∥∇fi(x)−∇fi(y)∥ ≤ L1∥x− y∥,∀x, y ∈ Rd, (3)

and

∥∇2fi(x)−∇2fi(y)∥ ≤ L2∥x− y∥,∀x, y ∈ Rd, (4)

where L1 ≥ 0 and L2 ≥ 0 are the Lipschitz constants of the
local gradient and local Hessian, respectively.
Finally we give a common assumption on transmission
delays.

Assumption 2.4: For any (i, j) ∈ E , the transmission
delay from any two nodes is bounded by a constant D satisfy
0 < D <∞.
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B. Proposed Asynchronous Newton Tracking Mechanism

To model the process of sending messages between nodes
in the network, we introduce an induced matrix W ∈ Rn×n
with entries wij . The matrix W ∈ Rn×n is non-negative
where wji > 0 if and only if node i can send information to
node j, and the value of wji represents the weight assigned
by node i to the information sent to node j. To estimate the
global Hessian matrix, one common method is to use the
dynamic average consensus method (DAC) [19], [23]. We
first present DAC method under synchronization, showing
clearly that this synchronous method cannot be directly
applied to the asynchronous case. Then we propose our fully
asynchronous Newton tracking mechanism. To this end, the
synchronous DAC method is

Hk+1
i =Hk

i −γ
∑
j∈N i

in

wij
(
Hk
i−Hk

j

)
+∇2fi

(
xk+1
i

)
−∇2fi

(
xki
)
,

(5)
where Hk

i hold on node i is the estimation of the global
Hessian matrix at time step k. Under synchronization, to
estimate the global Hessian, we require that W is column
stochastic, i.e.,

∑n
i=1 wij = 1,∀j ∈ [n] [9], [24]. With this

condition, by taking the average of both sides of (5) over all
the nodes, we have

1

n

n∑
i=1

Hk
i =

1

n

n∑
i=1

∇2fi(x
k
i ), ∀k, (6)

where we use the fact that W is column stochastic and the
initialization H0

i = ∇2fi(x
0
i ), ∀i ∈ [n]. The property (6)

is very important for each node to successfully track the
global Hessian. However, in the asynchronous setting, node
i may fail to receive Hk

j from node j at time step k due
to the uncoordinated activations and staled information. This
causes the property (6) to no longer hold, thus affecting the
performance of the algorithm.

To tackle this issue, we use an augmented graph to store
the delayed information from the neighbors before it is used
[25], [26]. An example of an augmented graph is given in
Fig.2, the left of the Fig.2 is the original graph including two
nodes i and j. On the right is the augmented graph, where
node j sends H̃k

j to node i at some time t(k) and node i uses
it at some time t(k + 3). Two matrices are corresponding
induced matrices W and W̃ of the original graph and the
augmented graph, respectively. Let n̂ = n(D + 1) be the
number of nodes in the augmented graph, H̃k

i be the Hessian
information on node i ∈ [n̂] at step k, and W̃ ∈ Rn̂×n̂ be the
induced matrix of the augmented graph. It has been shown
that W̃ ∈ Rn̂×n̂ is column stochastic [17]. Thus, for the
augmented graph we have

1

n̂

n̂∑
i=1

H̃k
i =

1

n

n∑
i=1

∇2f(xki ). (7)

This means that we still have the key property (7) in the
asynchronous setting similar to (6) in the synchronous setting
through the augmented graph. Note that the mixing of the
Hessian information on node i, weighted by the i-th row

1 0.5
0 0.5

1 0 1 0
0 0.5 0 0
0 0 0 1
0 0.5 0 0

Fig. 2. Augmented graph and induced matrix

of the induced matrix in the augmented graph, is equivalent
to introducing a buffer to store 1

|N j
out|
Hj and summing over

the Hessian information in the buffer. For simplicity, we use
a buffer to implement our asynchronous Newton tracking
mechanism, as shown in Algorithm 1.

Algorithm 1 Proposed Asynchronous Newton Tracking
Mechanism on node i

Initialize: γ > 0. H0
i = ∇2fi(x

0
i ). Create local buffers

Hi. Broadcast H̃0
i :=

H0
i

|N i
out|

to out-neighbors.
Repeat

Keep receiving H̃j from j ∈ N i
in and add it to the local

buffer Hi, until node i is activated.
if node i is activated then

Hk+1
i =(1−γ)Hk

i+γsum(Hi)+∇2fi(x
k+1
i )−∇2fi(x

k
i )

Empty local buffer Hi and broadcast H̃k+1
i =

Hk+1
i

|N i
out|

to its out-neighbors.
end if
Output Hk+1

i

C. Implementations of Proposed Asynchronous Newton
Tracking Mechanism

In this section, we combine the proposed mechanism with
two existing asynchronous first-order algorithms, APPG [17]
and ASY-SONATA [16], resulting in two asynchronous New-
ton algorithms which converge faster than the original APPG
and SONATA. After that, we provide the communication-
efficient implementation of the proposed Mechanism, which
uses compression to avoid sending full matrices. Note that
the existence of Hessian approximation in the algorithms
makes convergence analysis challenging, and the analysis of
APPG and SONATA is no longer applicable.

1) APPG with Newton Tracking: The first algorithm
is based on APPG [17], The first algorithm is based on
APPG, which is an asynchronous robust algorithm developed
from the push-pull algorithm [9]. APPG employs the DAC
method to track the global gradient and use a buffer to store
unused information that has been sent to reduce the impact
of asynchrony on convergence. After each node obtains
an approximation of the global gradient, we leverage our
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Algorithm 2 APPG with Newton Tracking
Initialize: α > 0, M > 0, x0i , d0i = y0i = ∇fi(x0i ), H0

i =
∇2fi(x

0
i ). Create local buffers Xi,Yi,Hi. Broadcast x̃0i :=

x0i , ỹ0i :=
y0i

|N i
out|

, H̃0
i :=

H0
i

|N i
out|

to out-neighbors
Repeat

Keep receiving x̃j , ỹj , H̃j from j ∈ N i
in and add them

to the local buffer Xi,Yi,Hi, respectively.
if node i is activated then

xk+1
i = avg(Xi)− αdki
yk+1
i = sum(Yi) +∇fi(xk+1

i )−∇fi(xki )
Apply algorithm 1 to get Hk+1

i

dk+1
i = (Hk+1

i +MId)
−1yk+1

i

Empty buffer and broadcast x̃k+1
i = xk+1

i , ỹk+1
i =

yk+1
i

|N i
out|

, H̃k+1
i =

Hk+1
i

|N i
out|

to out-neighbors

end if
until stopping criterion

proposed mechanism to generate an approximation of the
global Hessian, allowing each node to approximate the global
Newton direction. This direction, with its inclusion of cur-
vature information, is capable of accelerating convergence.
The resulting algorithm is summarized in Algorithm 2.

2) ASY-SONATA with Newton Tracking: We next
combine the proposed asynchronous mechanism with ASY-
SONATA [16] which presents a method for robustly es-
timating the global gradient asynchronously. In contrast
to APPG that is developed from the push-pull algorithm,
ASY-SANATA is based on the push-sum algorithm [6]. By
integrating our Newton tracking mechanism, we enable each
node to generate an approximation of the global Newton
direction and get a second-order version of ASY-SONATA,
as outlined in Algorithm 3.

Algorithm 3 Asy-SONATA with Newton Tracking
Initialize: α > 0, M > 0, x0i , d0i = y0i = ∇fi(x0i ),
ρ0i = 0, H0

i = ∇2fi(x
0
i ). Create local buffers Xi, Hi, ρ̃i.

Broadcast x̃0i := x0i , ρ0i , H̃0
i :=

H0
i

|N i
out|

to out-neighbors
Repeat
Keep receiving x̃j , ρj , H̃j from j ∈ N i

in, replace buffer
variables x̃ij with x̃j , add H̃j to Hi.
if node i is activated then

xk+1
i = xki − αdki
xk+1
i = 1

|N i
in|
xk+1
i +

∑
j∈N i

in

1
|N i

in|
x̃ij

ϵk+1 = ∇f(xk+1
i ))−∇f(xki ))

yk+1
i = 1

|N i
out|

(yki +
∑
j∈N i

in
(ρij − ρ̃ij) + ϵk+1

ρk+1
i = ρki + yk+1

i

replace buffer variables ρ̃ij with ρj
Apply algorithm 1 to get Hk+1

i

dk+1
i = (Hk+1

i +MId)
−1yk+1

i

Empty Hi and broadcast xk+1
i , ρk+1

i , H̃k+1
i :=

Hk+1
i

|N i
out|

to out-neighbors

end if
until stopping criterion

III. CONVERGENCE ANALYSIS

In this section, we provide a unified analysis for Algorithm
2 and Algorithm 3. For the sake of clarity, we provide the
compact form over the augmented graph for both algorithms.

x̃k+1 = Ãk(x̃k − α(H̃k +MI)−1ỹk),

ỹk+1 = B̃kỹk +∇(k + 1)−∇(k),
(8)

where

x̃k = [xk;xk(1); · · · ;xk(D)] ∈ Rn̂d

ỹk = [yk; yk(1); · · · ; yk(D)] ∈ Rn̂d

H̃k = [Hk;Hk(1); · · · ;Hk(D)] ∈ Rn̂d×d

∇(k) = [∇f(x̃k);0(n̂−n)d],

and Ãk is a row-stochastic matrix and B̃k is a column-
stochastic matrix which are already defined in [17]. It is
worth mentioning that Ãk and B̃k are time-varying matrices
depending on the way of delay in each timestamp. Through
the proof, we assume d = 1 (scale variables), which is quite
standard in asynchronous optimization, see [16], [17].

Inspired by work [16], we provided the convergence anal-
ysis for (8) with Theorem 3.2 below under local condition,
which establishes linear convergence for our mechanism. We
leave global convergence analysis for further discussions.

Assumption 3.1: For local convergence analysis, we as-
sume each node is close to optimal point x∗. Specifically,
we have (9) for k ≥ N1.

∥Hk
i −H∗∥F ≤ r, ∀i ∈ [n], (9)

where H∗ is the hessian matrix of the optimal point x∗.
Theorem 3.2: Let x∗ denote the unique optimal solution

of (1) and
{(

xki
)n
i=1

}
k

be the sequence generated by (8).
With prior assumptions hold, there exists a constant ᾱ < 1
such that when α ≤ ᾱ, the asynchronous algorithms holds∥∥xk − 1n ⊗ x⋆

∥∥ = O
(
λk
)

(10)

where λ ∈ (0, 1) is given by (20).
Remark 3.3: By properly choosing the stepsize, we can

show that our decay factor λ is better than the factor of first-
order methods derived in [16]. It indicates that our algorithm
enjoys a sharper local linear convergence rate.

Proof: Build upon on prior idea in [16], we take the
advantage of the Hessian approximation’s curvature infor-
mation to further bound the error quantities. Specifically,
we utilize the locally quadratic convergence rate of the
centralized Newton’s method to bound the optimization error.

A. Step I

We adapt a unified model to study the dynamics of
the consensus and optimization errors of the asynchronous
framework, which consists in pulling out the tracking update
and treating the variables term −α(H̃k +MI)−1ỹk as an
exogenous perturbation δk. Our framework has the following
scheme in compact form as

x̃k+1 = Ãk(x̃k + δk), (11)
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Applying (11) recursively, we have

x̃k+1 = Ãk:0x̃0 +

k∑
l=0

Ãk:lδl. (12)

where Ãk:0 ≜ ÃkÃk−1 . . . Ã0. Based on Proposition 18 in
[16], we have

∥x̃k+1 − 1xk+1
ψ ∥ ≤ C2ρ

k∥x̃0 − 1x0ψ∥+ C2

k∑
l=0

ρk−l|δl|,

(13)
where xk+1

ψ satisfies xk+1
ψ = xkψ + ψki δ

k for a sequence of
stochastic vectors {ψk} and ρ ∈ (0, 1), C2 > 0 are given in
[16, Lemma 17].

B. Step II

In this subsection, we focus on consensus agreement,
newton direction tracking error and optimization error for
our framework, the consensus error and optimization error
at iteration k are defined as

Ekc ≜ ∥x̃k − 1xkψ|, Eko ≜ |xkψ − x∗|.

Similar to the definition of Gradient Tracking Error in [16],
we give the gradient tracking error and newton direction
tracking error at iteration k along with the magnitude of the
tracking variables are defined as

Ekt ≜
∣∣yki − ξk−1

i ḡk
∣∣ , Eky ≜

∣∣yki ∣∣ , ḡk ≜
1

n

n∑
i=1

∇fi
(
xki
)

Ekd ≜ |dki |, Ekdt ≜ |dki − ξk−1
i d̄k|,

where d̄k = 1
n

∑n
i=1(∇2fi(xi))

−1∇fi(xi), {ξk} is the
sequence of stochastic vector introduced in [16, Lemma 15].
Next, we build the connection between these error quantities.

Proposition 3.4: The error quantities satisfy: for all k ∈
N0, there exists some positive constants C0, C2, such that

Ek+1
c ≤ C2ρE

0
c + C2

k∑
l=0

ρk−lαlEld (14)

Ek+1
t ≤ C0ρ

k∥g0∥+ 3C0L1

k∑
l=0

ρk−l(Elc + αlEld) (15)

Ekd ≤ 1

M1
Ekt +

L1

µ
√
n
Ekc + Eko (16)

Ekdt ≤
1

M1
Ekt (17)

Ek+1
o ≤

k∑
l=0

(
k∏

t=l+1

(
1−η2α+η2αδt

))( L1

µ
√
n
Elc+E

l
dt

)
αl

+

k∏
t=0

(
1− η2α+ η2αδt

)
E0

o

(18)

C. Step III

Based on [16, Theorem 23] and Proposition 3.4, we
can build the linear dynamics system as (21), where
|Ed|λ,N , |Ec|λ,N , |Et|λ,N , |Eo|λ,N are defined based on
[16, Lemma 21]. By [16, Theorem 23], if ρ(K) < 1, the
algorithm vanish with linear convergence rate. According to
Lemma 24 in [16], ρ(K) < 1 if and only if pK(1) > 0. The
characteristic polynomial of K is

x4−b1C2x
2α+b1C2xα

2(λ−L(α))
(λ−ρ)(λ−L(α))

−b2C2xα+b2x
2α(λ−ρ)

M1(λ−ρ)2

− b2C2α
2

M1(λ− ρ)2(λ− L(α))
− b2xα

2

M1(λ− ρ)(λ− L(α))
(19)

Consider the the continuity of equation (19) and pK(1) > 0,
let x = 1, λ = 1, we obtain ᾱ1 = 1

J1
, where

J1=
b1C2M1(1−ρ)+b2C2+b2(1−ρ)

M1(1− ρ)2
+

b1C2

(1− ρ)(η2 − η2δ)

+
b2C2

M1(1− ρ)2(η2 − η2δ)
+

b2
M1(1− ρ)(η2 − η2δ)

For term b1C2

(1−ρ)η2(1−δ) ≥ b1C2 ≥ L1

µ
√
n
2
√
(D + 2)n =

L1

µ 2
√
D + 2 > 1, it’s easy to check other terms are all

positive, so we have α1 < 1. Therefore, when 0 < α < ᾱ1,
we have

Ekc = O(λk), Ekd = O(λk), Ekt = O(λk), Eko = O(λk)

with λ ∈ (0, 1) given by

λ=max(ρ+

√
(b1C2+

b2C2

M1
+

b2
M1

)(1 +
1

ϵ
)α, 1−α(η2−η2δ−ϵ)),

(20)
where δ > 0 is arbitrary small, ϵ > 0 is properly chosen.

IV. NUMERICAL EXPERIMENTS

In this section, we numerically test our theoretical find-
ings and compare with existing asynchronous methods and
synchronous newton tracking method in the decentralized
case over two classes of problems. The network is generated
randomly, firstly generate a cycle graph which guarantee
strong connected of the graph, then given specific number
of out-neighbors Nout ≤ n, we add edges randomly. The
optimal point of the problem x∗ will be precomputed by
centralized newton method.

The asynchronous model we adapt to test iteration perfor-
mance is common in asynchronous optimization, see [16],
[27]. In fully asynchronous setting, a virtual global clock
that different from [20] which need real global clock for
coordination is usually assumed to record the whole iteration
of the network, no matter which node complete a update,
k would increase one. The agents follow the generated
activation list and transmit information to their out-neighbors
immediately after complete their own local update. The
information from node i will not be available to j after
the virtual global iteration k + T kij . Transmitted delay T kij
is modeled by (integer) traveling time which is sampled
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
|Ed|λ,N

|Ec|λ,N

|Et|λ,N

|Eo|λ,N

 ≼


0 b1

1
M1

1
C2α
λ−ρ 0 0 0
b2α
λ−ρ

b2
λ−ρ 0 0

0 b1α
λ−L(α)

α
M1(λ−L(α)) 0


︸ ︷︷ ︸

≜K


|Ed|λ,N

|Ec|λ,N

|Et|λ,N

|Eo|λ,N

+ c, (21)

where b1 ≜ L1

µ
√
n
, b2 ≜ 3C0L1,L(α) = 1− η2α+ η2αδ.

(a) MaxDelay = 10 (b) MaxDelay = 40

Fig. 3. Iteration Performance for Least Square

uniformly from the interval [0, Dmax
i ], where Dmax

i is the
maximum delay. We implement this asynchronous model in
MATLAB on a Windows workstation with 2.20GHz 12-core
Intel i7-8700 CPU. For experiments associated with wall-
clock time, we adapt the Message Passing Interface (MPI)
which already packed in Python as mpi4py [28] to simulate
a network with multiple connected nodes [15], [18], which
is implemented in 12-core Ubuntu 20.04.

A. Least Square

Least Square is an typical instance of (1), where fi =
∥Aixi − bi∥2, Ai is the feature matrix and bi is the label
vector privately known by the agent i. The whole data A and
b are randomly generated from standard Guassian distribution
and normalize it by its spectral norm, then we partition it into
n parts privately stored in local agents.

1) Comparison with Asynchronous First Order Methods:
We compare the asynchronous newton tracking mechanism
Algorithm 2 and Algorithm 3 with all existing asynchronous
methods for iteration performance. Figure 3(a) and 3(b) show
the iteration performance for 30 agents with 8 out neighbors
in the asynchronous model, where MaxTravelTime is 10
and 40 respectively. We manually adjust the step-size in
order to get best performance of each algorithm. From
figure we observe that methods belong to the same kind
mechanism share the similar feature, and our mechanism
efficiently accelerate the asynchronous first-order algorithms.
Additionally, in more asynchronous scenarios, we observe
that these first order algorithms especially APPG suffers a
lot if the network become more asynchronous, while our
mechanism are more robust.

2) Comparison with Synchronous Newton Tracking: We
compare the robustness of our mechanism with synchronous
newton tracking from two perspectives, link failure and
transmission delay. Synchronous newton tracking adapts
synchronous peer to peer communication in mpi4py, while

(a) Robustness For Delay (b) Robustness For Link Failure

Fig. 4. Wall-Clock Time Performance for Least Square

asynchronous method uses asynchronous peer to peer com-
munication which needs Attach buffer() initially. Fig 4(a)
shows the running time performance for 10 agents with
different link failure probability 0.01(1+ i

4 ). Fig 4(b) shows
the running time performance for 10 agents with different
delays delayi = 0.05 ∗ (1 + i

5 ), while each node keeps 100
observations, the dimension of features is 20. In addition,
the iterations of asynchronous algorithms for agents range
from 177 to 472 and the iterations of synchronous ones runs
about 221 iterations. Results show our asynchronous newton
tracking methods is more robust to the link failure, delay,
and heterogeneous nodes, especially the slow nodes.

B. Logistic Regression

To further confirm the efficiency of the proposed mecha-
nism, we solved the Two-Class logistic regression problem
as follows.

x∗ = argmin
x∈Rd

ρ

2
∥x∥2+

n∑
i=1

mi∑
j=1

ln
(
1 + exp

(
−
(
oTijx

)
pij
))
,

where each node i privately owns mi training samples
(oij ,pij) ∈ Rd×{−1,+1} , j = 1, . . . ,m. The elements of
oij are randomly generated following the standard Gaussian
distribution and those of pij are generated following the
uniform distribution on {−1, 1}, ρ

2∥x∥
2 is a regularization

term to avoid over-fitting. The network setting is the same
as ridge regression, figure 5(a), and figure 5(b) collaborate
the results in the least square. In asynchronous iteration
performance comparison, we tested iteration performance
over synthetic data, and for wall-clock time comparison with
synchronous newton tracking, we tested it over real dataset,
Covtype. Each agent keeps 1000 observations with different
delays delayi = 0.1 ∗ (1 + i

5 ), the dimension of Covtype is
54.
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(a) MaxDelay = 40 (b) Robustness For Link Failure

Fig. 5. Numeric Experiments For Logistic Regression

V. CONCLUSIONS

In this paper, we have proposed a novel asynchronous
newton tracking mechanism, which explicit second-order
information under the fully asynchronous setting. Theoretical
and empirical results demonstrate the efficiency and robust-
ness of our mechanism compared with existing asynchronous
methods. We leave several interesting directions for future
work. In theoretical part, local condition is assumed, while
it is possible to relax this condition and get a global conver-
gence analysis. The other interesting direction is to introduce
multi-consensus mechanism for our asynchronous newton
tracking, there lies interesting balance between computation
and communication for the fully asynchronous decentralized
optimization.
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