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Abstract— In this article, we propose a data-driven solution to
the output containment control problem of multiagent systems
characterized by heterogeneous and unknown dynamics. The
proposed data-driven scheme is hierarchical, which includes a
network layer and a physical layer, bypassing the traditional
modeling exercise and eliminating the need for explicit state-
space models. In the network layer, a fully distributed observer
without knowing the dynamics of leaders is designed to generate
a containment trajectory. A data-driven approach based on data
sampled from an auxiliary system is developed to overcome
the dependence on the explicit state-space models for design
of control gains. This paves the way for deriving a data-
driven solution to the regulator equation, which is derived by
employing the data informativity condition and relevant data
in the physical layer. The results demonstrate that the closed-
loop system is asymptotically stable, and the regulated output
containment converges to zero. Compared to generic model-
based hierarchical schemes, the assumptions that the system
matrices are completely known and homogeneous on system
dynamics can be relaxed.

I. INTRODUCTION

In recent years, there has been a booming interest in
multiagent systems (MAS) across various disciplines, includ-
ing computer science, social science, control engineering,
and software engineering [1], with a variety of applications
ranging from sensor networks to unmanned aerial vehicles
[2]. Due to the pervasiveness of uncertainty in practical
MAS, the output containment control problem has been ex-
tensively investigated to drive each follower into the convex
hull spanned by the multiple leaders [3]. Recently, fruitful
results have been achieved in this vein, for example, the
finite-time approach [4], adaptive sliding-mode protocols [5],
and observer-based protocols [6]. The same problem was
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investigated for nonlinear MAS such as rigid body attitude
systems [7], Lagrange systems [8], and uncertain nonlinear
MAS [9].

The increasing complexity of engineering systems makes
the MAS more vulnerable to homogeneous cases, where
all the agents have identical dynamics. In a broad class of
practical applications, however, individual systems can be
heterogeneous in that the dynamics and even state-space
dimensions are different. Therefore, the containment control
of heterogeneous systems is more worthy of study. For
example, Haghshenas et al. [10] studied the containment
control of heterogeneous MAS in a cooperative output
regulation scheme using a state-feedback protocol. Chu et
al. [11] investigated the adaptive containment control of
heterogeneous MAS using state feedback and output feed-
back protocols. A distributed containment control policy was
designed in [12] for autonomous agents under fixed and
switching communication topologies with static and dynamic
leaders.

However, a critical limitation of these control protocols
is that they require a precise model of the system being
controlled, which can be costly and time-consuming. This
has stimulated the development of data-driven control meth-
ods, which aim to learn the control policy directly from data
without the need for a mathematical model of the plant.
Various methods have been presented to solve data-driven
control problems, including model-free adaptive control [13],
reinforcement learning [14], and behavioral systems theory
[15]–[18], the last of which does not rely on parameter
identification and has rigorous stability analysis and thereby
offers a new route towards addressing widespread black-box
systems. Motivated by this, data-driven solutions to leader-
follower consensus and event-triggered consensus in MAS
have been developed recently [19], [20]. Nonetheless, data-
driven output containment control of heterogeneous MAS
has not been investigated yet.

In this paper, we propose a data-driven solution to the
output containment control problem of MAS, by drawing
ideas from recent advances in data-driven regulatory control
[21]. The problem is investigated under unknown discrete-
time agent dynamics, which does not require prior knowledge
of the model information, and also takes into account the
heterogeneity that the leaders and followers have different
dynamics. Our data-driven scheme is hierarchical, which
includes a network layer and a physical layer. As compared
to the generic model-based hierarchical scheme [4]–[7], our
data-driven scheme exhibits the following characteristics:
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• In the network layer, as compared to the model-based
observers [10]–[12], a fully distributed observer without
knowing the dynamics of leaders is designed to gen-
erate a containment trajectory, by only using sampled
data from an auxiliary system. This overcomes the
dependence on explicit state-space models for design
of control gains. More importantly, the observer error
system is proved to be asymptotically stable.

• In the physical layer, as compared to model-based
approaches [22]–[25], the assumptions of completely
known system matrices are homogeneous system dy-
namics are relaxed. A data-driven solution to the reg-
ulator equation is derived by employing the data in-
formativity condition and relevant data. Based on this,
we prove that the state of the resulting closed-loop
system is asymptotically stable, and the regulated output
converges to zero.

The rest of this article unfolds as follows. In Sec. II, we
introduce the graph theory, system description, and control
objective. The design of the observer and containment con-
troller is given in Sec. III. A simulation example is given in
Sec. IV, followed by final conclusions.

Notation: The Euclidean norm and Kronecker product are
denoted by ∥·∥ and ⊗, respectively. The positive-definiteness
(negative-definiteness) of a matrix P is indicated by P ≻ 0
(P ≺ 0). A block diagonal matrix with Q1, Q2, · · · , Qn on
its principal diagonal is denoted by diag{Q1, Q2, · · · , Qn}.
λmin(Q) and λmax(Q) denote the minimum and maximum
eigenvalue of Q, respectively. The identity matrix and the
column vector with all ones are denoted by I and 1,
respectively. The superscript “⊤” denotes matrix transpose.
The convex hull of a set S is denoted as Co(S). The distance
from x to a set S is defined as dist(x, S) = infy∈S∥x− y∥.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Graph Theory

This paper considers a digraph G , which includes m
leaders and n followers. K = {n+1, n+2, · · · , n+m} and
F = {1, 2, · · · , n} denote the sets of leaders and followers,
respectively. Gf = (V ,E ,A ) indicates the interactions
among the followers, where V = {v1, v2, · · · , vn}, E ⊂ V ×
V , and A = [aij ] ∈ Rn×n. (vj , vi) indicates the information
flow from node j to node i. aij ̸= 0 if (vj , vi) ∈ E , otherwise
aij = 0. Ni = {j | (vj , vi) ∈ E } represents the neighbours
of agent i. The directed path from agent i to agent j is
described by {(vi, vk) , (vk, vl) , · · · , (vm, vj)}. The diagonal
matrix Gk = diag

{
gki
}
∈ Rn×n, i ∈ F , k ∈ K indicates

the pinning gains. gki ̸= 0 if there is a link from the
k-th leader to the i-th follower, otherwise gki = 0. The
degree matrix is denoted by D = diag

{∑
j∈Ni

aij

}
and

the Laplacian matrix is L = D − A .
Assumption 1 (Network topology): The communication

network topology composed of all leaders and followers is
undirected and each leader has a path to all the followers.

Assumption 1 is a necessary condition for undirected
graph’s networks connectivity. Otherwise, there exists at least

one follower that has no path to each leader. Then the
containment control is not obtainable. Assumption 1 is also
used in the existing containment control results.

Lemma 1 ( [26]): Let Φk = 1
mL + Gk. Under Assump-

tion 1, Φk and
∑n+m

k=n+1 Φk are positive-definite.

B. System Description

Consider the following heterogeneous MAS in which the
dynamics of the follower and the leader are described by{

xi(t+ 1) = Aixi(t) +Biui(t),

yi(t) = Cixi(t),
(1)

and {
x0k(t+ 1) = A0x0k(t),

y0k(t) = C0x0k(t),
(2)

where xi(t) ∈ Rni and x0k(t) ∈ Rq are the states. ui(t) ∈
Rmi is the input. yi(t) ∈ Rp and y0k(t) ∈ Rp are the outputs.
All matrices, i.e. Ai ∈ Rni×ni , Bi ∈ Rni×mi , Ci ∈ Rpi×ni ,
A0 ∈ Rq×q , and C0 ∈ Rp×q are assumed to be unknown.
Besides, (Ai, Bi) is stabilizable, (Ai, Ci) is detectable, and
the following assumptions are made throughout.

Assumption 2: The leader dynamics A0 has all its poles
within the unit circle and non-repeated.

Assumption 3: The output regulation equation{
ΠiA0 = AiΠi +BiΓi,
CiΠi − C0 = 0

(3)

admits a solution pair (Πi,Γi).

C. Control Objective

This work is oriented towards a data-driven hierarchical
scheme of the MAS described by (1) and (2) with heteroge-
neous and unknown dynamics, such that:

• The state of the resultant closed-loop system is asymp-
totically stable.

• The outputs of each follower move asymptotically into
the dynamic convex hull spanned by the outputs of
leaders, i.e.

lim
t→∞

dist
(
yi(t),Co

(
YK (t)

))
= 0. (4)

Such a containment control problem has been extensively
studied in a model-based scheme [4]–[7], which requires
a complete knowledge of state-space representations for
control design. However, in cases of MAS or large-scale
systems where model parameters are entirely unknown,
generic model-based solutions may become inapplicable.
Consequently, a completely data-driven control design is
practically appealing. To this end, define the local neigh-
borhood output containment error of the i-th follower as:

ei(t) =

n∑
j=1

aij
(
yj(t)− yi(t)

)
+

n+m∑
k=n+1

gki
(
y0k(t)− yi(t)

)
.
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Letting e(t) =
[
e⊤1 (t), · · · , e⊤n (t)

]⊤
, the global output con-

tainment error can be written as:

e(t) =

n+m∑
k=n+1

(
Φk ⊗ Iq

)(
ȳ0k(t)− y(t)

)
, (5)

where y(t) =
[
y⊤1 (t), · · · , y⊤n (t)

]⊤
, ȳ0k(t) = 1n ⊗ y0k(t).

Based on (5) and [27], the output containment control
objective is said to be achieved if lim

t→∞
e(t) = 0.

III. MAIN RESULTS

As a major contribution, a data-driven scheme is put
forward to address the output containment control problem.
The proposed scheme is hierarchical involving a network
layer and a physical layer.

A. Network Layer: Design of Distributed Observer

The following fully distributed observer is considered,
which is motivated by [28]:

x̂i(t+ 1) = A0x̂i(t) + vi(t), (6)

where x̂i(t) ∈ Rni is used to estimate x0k(t) in agent i.
vi denotes the fully distributed virtual cooperative control
protocol, which is designed as:

vi(t) = αzi(t), (7)

where α > 0 is a constant respresenting the coupling gain
among neighboring agents. zi(t) is the local form of the
observer state containment error, which is denoted as:

zi(t) =

n∑
j=1

aij
(
x̂j(t)− x̂i(t)

)
+

n+m∑
k=n+1

gki
(
x0k(t)− x̂i(t)

)
.

Letting z(t) =
[
z⊤1 (t), z⊤2 (t), · · · , z⊤n (t)

]⊤
and according

to the property of Kronecker product, the dynamics of the
observer state containment error can be written as:

z(t) = x̂(t)−

(
n+m∑
r=n+1

(Φr ⊗ Iq)

)−1 n+m∑
k=n+1

(Gk ⊗ Iq) x̄0k(t),

(8)
where x̂(t) =

[
x̂⊤
1 (t), x̂

⊤
2 (t), · · · , x̂⊤

n (t)
]⊤

and x̄0k(t) =
1n⊗x0k(t). According to (8), the observer state containment
error dynamics equation is obtained as:

z(t+ 1) =

(
In ⊗A0 − α

n+m∑
k=n+1

(Φk ⊗ Iq)

)
z(t). (9)

When A0 is unknown, it is challenging to ensure the
asymptotic stability of the observer state containment error
system (9) in a data-driven fashion through the design of
α. To bypass the dependence of exactly knowing A0, it is
assumed that the following auxiliary dynamics enables to
encode information of A0 within sampled data:

x̃i(t+ 1) = A0x̃i(t) + γiũi(t), (10)

where x̃i(t) ∈ Rq and ũi(t) ∈ Rq are the state and input of
auxiliary dynamics, respectively. The data matrices generated
by (10) is used to encode useful information about A0. γi

is the input gain of auxiliary dynamics to be designed. We
define the following data matrices:

X̃i =
[
x̃i(0) x̃i(1) · · · x̃i(L)

]
,

X̃i+ =
[
x̃i(1) x̃i(2) · · · x̃i(L)

]
,

X̃i− =
[
x̃i(0) x̃i(1) · · · x̃i(L− 1)

]
,

Ũi =
[
ũi(0) ũi(1) · · · ũi(L− 1)

]
,

(11)

where L is the length of data sequence. In the following, we
give the rank condition on the data informativity.

Definition 1: The dataset (Ũi, X̃i) is said to be informa-

tive if the stacked matrix
[
Ũi

X̃i

]
has full row rank.

Remark 1: Considering the unknown matrix A0, it is
crucial to fulfill the rank condition so that data matrices (11)
maintain linear independence, which is vital for deriving an
exact data-driven representation. Therefore, it is meaningful
to design auxiliary dynamics (10).

Definition 2: The dataset (Ũi, X̃i) is said to be infor-
mative for stabilization by state feedback if there exists a
controller ũi = K̃ix̃i for all (A0, γiI) ∈ ΣD̃, where

ΣD̃ :=

{
(A0, γiI)

∣∣∣Xi+ =
[
γiI A0

] [ Ũi

X̃i−

]}
.

Lemma 2: The dataset (Ũi, X̃i) is informative for stabi-
lization of the auxiliary system (10) by a controller ũi =
K̃ix̃i with state feedback K̃i = ŨiQ̃iP̃

−1
i if there exist

P̃i ≻ 0 and Q̃i such that[
P̃i X̃i+Q̃i

Q̃⊤
i X̃

⊤
i+ P̃i

]
≻ 0, X̃i−Q̃i = P̃i. (12)

Moreover, there exists W̃i ≻ 0 such that[
−P̃i A0 + γiK̃i

(A0 + γiK̃i)
⊤ −P̃−1

i

]
≺ −W̃i. (13)

Proof: For any given K̃i, A0 + γiK̃i is Schur stable if
there exists a matrix P̃i ≻ 0 such that

(A0 + γiK̃i)P̃i(A0 + γiK̃i)
⊤ − P̃i ≺ 0. (14)

By the Rouché–Capelli theorem, there exists G̃i such that[
K̃i

I

]
=

[
Ũi

X̃i−

]
G̃i (15)

holds. It then follows from (15) that

A0 + γiK̃i =
[
γiI A0

] [ Ũi

X̃i−

]
G̃i = X̃i+G̃i. (16)

Substituting (16) into (14) yields

(X̃i+G̃i)P̃i(X̃i+G̃i)
⊤ − P̃i ≺ 0. (17)

Letting Q̃i = G̃iP̃i, (17) is equivalent to P̃i −
X̃i+Q̃iP̃

−1
i (X̃i+Q̃i)

⊤ ≻ 0. Using Schur complement argu-
ment, we can obtain the first part of (12). Note that in (15),
one can regard G̃i as a decision variable, which satisfies
X̃i−G̃i = I and K̃i = ŨiG̃i. By exploiting P̃i = X̃i−Q̃i,
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seeking stability is equivalent to finding a matrix Q̃i such
that

X̃i−Q̃i − X̃i+Q̃i(X̃i−Q̃i)
−1(X̃i+Q̃i)

⊤ ≻ 0, (18)

with the choice K̃i = ŨiQ̃iP̃
−1
i = ŨiQ̃i(X̃i−Q̃i)

−1. Then,
it can be concluded that A0+γiK̃i is Schur stable as P̃i ≻ 0.

Multiplying (18) by the reversible matrix
[
I 0

0 P̃−1
i

]
on its

left and right sides, respectively, yields[
I 0

0 P̃−1
i

] [
P̃i X̃i+Q̃i

Q̃⊤
i X̃

⊤
i+ P̃i

] [
I 0

0 P̃−1
i

]
≻ 0.

(19)
Substituting A0 + γiK̃i = X̃i+G̃i and Q̃i = G̃iP̃i into (19)
eventually yields (13).

In view of Lemma 2, we arrive at the following theorem
in the network layer.

Theorem 1: Consider the MAS described by (1) and (6).
Suppose that Assumptions 1-3 hold. The dataset (Ũi, X̃i) is
informative for the asymptotical stability of both the auxiliary
system (10) and the observer state containment error system
(9), if there exist α, P̃i ≻ 0, Q̃i, K̃i, W̃i ≻ 0 satisfying
conditions in Lemma 2 and[

αλ2
max(Φ̃)I −γiK̃i

−γiK̃
⊤
i αI

]
≺ W̃i. (20)

Proof: From Lemma 2, ũi = K̃ix̃i stabilizes the
auxiliary system (10) if (12) holds. Defining Ã = I ⊗ A0

and Φ̃ =
∑n+m

k=n+1 (Φk ⊗ Iq), then As = Ã − αΦ̃ is Schur
stable if there exists P̃ = I⊗ P̃i such that A⊤

s P̃As− P̃ ≺ 0.
Invoking the Schur complement lemma, we have[

−P̃ (Ã− αΦ̃)P̃

P̃ (Ã− αΦ̃)⊤ −P̃−1

]
≺ 0,

which is equivalent to[
−P̃ Ã− αΦ̃

(Ã− αΦ̃)⊤ −P̃−1

]
≺ 0,

if and only if[
−P̃ Ã

Ã⊤ −P̃−1

]
≺
[

0 αΦ̃

αΦ̃⊤ 0

]
. (21)

Note that the following relation always holds:[
−αλ2

max(Φ̃)I 0
0 −αI

]
≺
[

0 αΦ̃

αΦ̃⊤ 0

]
.

Then (21) holds if[
−P̃ + αλ2

max(Φ̃)I Ã

Ã⊤ −P̃−1 + αI

]
≺ 0,

which is equivalent to[
−P̃i + αλ2

max(Φ̃)I A0

A⊤
0 −P̃−1

i + αI

]
≺ 0, ∀i ∈ V . (22)

Combining (13) and (22) yields (20), which completes the
proof.

B. Physical Layer: Distributed Data-Driven Feedback Con-
trol Protocol Design

1) Solution to Regulator Equations: In the physical layer,
defining si(t) = xi(t)−Πix̂i(t), one obtains

si(t+ 1) =xi(t+ 1)−Πix̂i(t+ 1)

=Aisi(t)−BiΓix̂i(t) +Biui −Πiαzi(t).
(23)

According to the distributed observer (6), we can design the
following distributed feedback control protocol:

ui(t) =K1ixi(t) +K2ix̂i(t)

=K1i

(
xi(t)−Πix̂i(t)

)
+ (K1iΠi +K2i)x̂i(t),

(24)

where K1i and K2i are feedback gain matrices to be de-
signed. Πi and Γi are the solutions to output regulator equa-
tion (3). Letting K1iΠi+K2i = Γi, ûi(t) = ui(t)−Γix̂i(t),
and substituting (24) into (23), one obtains:

si(t+ 1) = (Ai +BiK1i)si(t)−Πiαzi(t), (25)

where the coupling gain α and zi(t) are defined in (7).
Theorem 1 indicates that lim

t→∞
∥z(t)∥ = 0. With this result

at hand, we proceed to the problem of identifying a gain
matrix K1i for follower i that ensures the Schur stability of
Ai +BiK1i.

The objective is to design the distributed feed-
back control protocol (24) in a model-agnostic way.
Specifically, akin to (11), we construct data matrices
{Xi, Xi+, Xi−, Si, Si+, Si−} using xi(t) and si(t), and
{Ui, Ûi} using ui(t). Before proceeding, the first step is
to solve the regulator equations (3), and the following
informativity condition is given.

Definition 3: The dataset (Ui, Xi) is said to be informa-
tive for output regulation if there exists a controller (24) for
all (Ai, Bi, Ci) ∈ ΣD, where ΣD :=

{
(A,B,C)

∣∣Xi+ =
AXi− +BUi, Yi = CXi−

}
.

Lemma 3 ( [21]): The dataset (Ui, Xi) is informative for
output regulation if the following conditions hold.

• Xi− has full row rank and there exists a right inverse
X†

i− of Xi− such that Xi+X
†
i− is stable.

• The following linear equations have a solution Wi:{
Xi−WiX̃i+V1 −Xi+Wi = 0,

Πi = Xi−Wi, Γi = UiWi.
(26)

2) Solvability of the Problem: Now, we apply the tech-
niques developed above to solve the output containment
control problem by a distributed dynamic state feedback
control law having the form (24). More precisely, K1i is
the controller gain if and only if Ai + BiK1i is Schur
stable. The following set is given based on matrix K1i:
Σ := {(Ai, Bi)|Ai +BiK1i is Schur stable}.

Definition 4: The dataset (Ûi, Si) is said to be informative
for stabilization of the compensate error system (25) by the
distributed dynamic state feedback if there exists a control
gain K1i such that Ai + BiK1i is Schur stable for all
(Ai, Bi) ∈ Σ.

Lemma 4: The dataset (Ûi, Si) is informative for sta-
bilization of the compensate error system (25) by the
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distributed dynamic state feedback, if there exist K1i =
ÛiQiP

−1
i and Qi with (27)[
Pi Si+Qi

Q⊤
i S

⊤
i+ Pi

]
≻ 0, Si−Qi = Pi, Pi ≻ 0, (27)

such that Ai +BiK1i is Schur stable.
Proof: For any given K1i, the Ai + BiK1i is Schur

stable, if there exists a matrix Pi ≻ 0 such that

(Ai +BiK1i)Pi(Ai +BiK1i)
⊤ − Pi ≺ 0. (28)

By the Rouché–Capelli theorem, there exists Gi satisfying[
K1i

I

]
=

[
Ûi

Si−

]
Gi, (29)

which implies that

Ai +BiK1i =
[
Bi Ai

] [ Ûi

Si−

]
Gi = Si+Gi. (30)

Substituting (30) into (28) yields

(Si+Gi)Pi(Si+Gi)
⊤ − Pi ≺ 0. (31)

Defining Qi = GiPi, (31) amounts to Pi −
Si+QiP

−1
i (Si+Qi)

⊤ ≻ 0. Using Schur complement
arguments, we obtain the first part of (27). Note that in (29),
one can regard Gi as a decision variable, which satisfies
Si−Gi = I and K1i = ÛiGi. Using Pi = Si−Qi, seeking
stability is equivalent to finding a matrix Qi such that
Si−Qi − Si+Qi(Si−Qi)

−1(Si+Qi)
⊤ ≻ 0 with the choice

K1i = ÛiQiP
−1
i = ÛiQi(Si−Qi)

−1. Then, Ai + BiK1i is
Schur stable.

Building upon above results, we present our distributed
data-driven output containment solution for unknown hetero-
geneous MAS (1)-(2) in Algorithm 1, together with stability
guarantees.

Theorem 2: Consider the heterogeneous MAS described
by (1) and (2). Suppose that Assumptions 1-3 hold. Denoting
Πi and Γi are the solutions to the regulator equation (3). The
output containment control problem is addressed under the
distributed data-driven feedback protocol (24) and (6) for
any initial state and all i ∈ {1, 2, · · · , n} such that:

• The error of state of the resultant closed-loop system is
asymptotically stable.

• The outputs of each follower move into the dynamic
convex hull spanned by the outputs of leaders, that is

lim
t→∞

dist
(
yi(t),Co

(
YK (t)

))
= 0.

Proof: Letting ỹ(t) = ȳ0k(t) − y(t), C̄ =
diag{C1, C2, · · · , Cn}, Π̄ = diag{Π1,Π2, · · · ,Πn}, then
we have

ỹ(t) = C̄x(t)− C0x̄0k(t)

= −
[
C̄
(
x(t)− Π̄x̂(t)

)
− C0x̄0k(t) + C̄Π̄x̂(t)

]
= − C̄s(t)− C̄Π̄

(
x̂(t)− x̄0k(t)

)
,

(32)

where s(t) =
[
s⊤1 (t), s

⊤
2 (t), · · · , s⊤n (t)

]⊤
. According to

Φk = 1
mL + Gk, we have

x̂(t)− x̄0k(t)

=x̂(t)−

(
n+m∑
r=n+1

(Φr ⊗ Iq)

)−1 n+m∑
k=n+1

(Φk ⊗ Iq) x̄0k(t)

=x̂(t)−

(
n+m∑
r=n+1

(Φr ⊗ Iq)

)−1 n+m∑
k=n+1

(Gk ⊗ Iq) x̄0k(t)

=z(t).
(33)

By means of (32) and (33), the output containment error e(t)
in (5) can be expressed as:

e(t) = −
n+m∑

k=n+1

(Φk ⊗ Iq)
[
C̄s(t) + C̄Π̄z(t)

]
. (34)

Theorem 1 implies that lim
t→∞

∥z(t)∥ = 0 when the coupling
weight α satisfies the condition (20). Furthermore, according
to Lemma 4, lim

t→∞
∥s(t)∥ = 0 when the controller gain

matrix K1i = ÛiQiP
−1
i , and Qi satisfies the condition (27).

Recall that
∑n+m

k=n+1 Φk is a positive-definite in Lemma 1.
Therefore, lim

t→∞
e(t) = 0 is guaranteed by (34). This ensures

the outputs of all followers to move into the convex hull
formed by leaders under the proposed distributed data-driven
feedback protocol (24) and (6) for any initial state and all
i ∈ {1, 2, · · · , n}.

Algorithm 1 Data-Driven Algorithm for Solving Output
Containment Control Problem

1: Given initial conditions xi(0), x0k(0).
2: Select a coupling weight α according to (20) such that

As is Schur stable.
3: Collect data matrix Ui.
4: Find a right inverse X†

i− of Xi− such that the matrix
Xi+X

†
i− is stable.

5: Find a solution Wi that satisfies the linear equation (26).
6: Define Πi = Xi−Wi, Γi = UiWi, K1i = ÛiQiP

−1
i ,

and K2i = Γi −K1iΠi.
7: Design the control input ui(t) = K1isi(t) + K2ix̂i(t)

based on the observer (6).

Remark 2: A salient feature of the proposed hierarchical
scheme lies in the ability to partially decouple the closed-
loop dynamics of heterogeneous agents through the observer
layer, thus obviating the need for a unified model-based
solution to the output regulation equation (3). A data-
driven solution is developed to design control gains of the
agents that are heterogeneous. This not only enhances design
flexibility but also is useful for improving network robustness.

IV. NUMERICAL EXAMPLE

Consider a heterogeneous MAS with six followers indexed
as 1-6 and four leaders indexed as 7-10. The undirected
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communication network topology is illustrated in Fig 1. The
system matrices are selected as:

A0 =

[
1 −3
1 −1

]
, C0 =

[
1 0
0 1

]
,

(Ai, Bi, Ci)

=


([

0.3 −2
0.1 −0.2

]
,

[
1.8 −0.8
0.9 1.6

]
,

[
−0.1 1.2
0.4 1.4

])
, i = 1, 2, 3,([

4 −1
3 −5

]
,

[
2 −6
1 7

]
,

[
−5 3
2 4

])
, i = 4, 5, 6.

Fig. 1. Communication topology of MAS.

The control design procedure is implemented using MAT-
LAB. We generate the data with random initial conditions
and by applying to each input channel a random input
sequence of length L = 10, which satisfies the persistence
excitation condition according to [17]. From (3), we obtain
the following solutions of the output regular equation:

Πi =

[
−2.25 1.93
0.64 0.16

]
, Γi =

[
0.98 1.53
0.16 −2.27

]
, i = 1, 2, 3,

Πi =

[
−0.15 0.11
0.07 0.19

]
, Γi =

[
0.56 0.08
0.07 0.01

]
, i = 4, 5, 6.

Then, by solving the linear inequalities (12) in Theorem
2, we obtain the stabilizing controller gains {K1i} by the
toolbox CVX in MATLAB:

K11 =

[
79.99 −156.38
214.27 −184.93

]
,K12 =

[
−137.20 345.71
116.13 −460.78

]
,

K13 =

[
−376.25 230.83
78.21 −76.75

]
,K14 =

[
−54.54 −13.70
57.12 −61.52

]
,

K15 =

[
−36.63 0.23
57.62 −60.03

]
,K16 =

[
−18.92 −44.34
81.13 −70.53

]
.

The outputs containment trajectories of all agents are given
in Fig. 2. The evolution of the output containment errors
and the observer errors are shown in Fig. 3 and Fig. 4,
respectively. At time instant 0s, all agent states are initialized
randomly. At time instant 0.2s, the system has achieved
containment control. After time instant 0.2s, the followers
returned to the convex hull under the proposed method (see
time instant 3s and 20s). The simulation results test and
verify the feasibility of our approaches, where the followers
move into the convex hull formed by leaders as illustrated
in the above figures.

(a) t = 0s

(b) t = 3s

(c) t = 20s

Fig. 2. The outputs containment trajectories of all agents. (a) t = 0s, (b)
t = 3s, (c) t = 20s.

Fig. 3. Evolution of the output containment errors ei1 and ei2, i =
1, 2, · · · , 6.
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Fig. 4. Evolution of the observer containment errors zi1 and zi2, i =
1, 2, · · · , 6.

V. CONCLUSION

A data-driven solution to the output containment control
problem of MAS with heterogeneous and unknown dynam-
ics was derived. Our data-driven scheme was hierarchical,
which includes a network layer and a physical layer, and
bypasses the traditional modeling exercise and eliminates
the need for explicit state-space models. To achieve the
output containment control objective, in the network layer,
we first designed control gains for an auxiliary system using
the input and state data and then established an observer
to generate a containment trajectory. In the physical layer,
we developed a distributed feedback control protocol based
on data-driven principles. The resulting closed-loop system
is proved to be asymptotically stable, and the regulated
output containment converges to zero. A numerical example
demonstrated the significantly improved performance of the
hierarchical approach.
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