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Abstract— The paper presents an extremum-seeking scheme
in which the dither is adaptively tuned to deal with non-convex
cost functions. The adaptation law decreases the dither when
local cost function trends are easily visible from output data.
Contrarily, when the cost function does not have a dominant
trend, the dither is increased to enrich the output data. This
adaptive scheme can give advantages in practical applications
when a conservatively large dither implies unnecessary high
energy to optimise a cost function corrupted by non-uniform
state-dependent disturbances. Numerical comparisons confirm
the superior performance of the proposed solution.

I. INTRODUCTION

Extremum Seeking (ES) represents a well-known tech-
nique [1] to solve optimisation problems in several sectors.

In the framework of optimisation via ES, the cost function
is unknown but for some high-level properties, such as the
existence of a minimiser (in the case of cost optimisation).
In this context, ES perturbs the optimisation variable by
injecting an exciting signal called dither. Then, the local
variations of the cost function are correlated with the injected
variation of the optimisation variable to retrieve the regional
cost function trend. With this information, ES moves the
optimisation variable toward the direction that decreases the
cost. It is intuitive that, for small-amplitude dithers, the local
cost function trend is close to the local cost function gradient,
thus making all the gradient-based decent methods applicable
to solve the optimisation problem.

In this paper, we focus on the minimisation of non-convex
cost functions via adaptive ES, i.e., through the adoption of
an adaptive dither. In this context, the following works are
worth mentioning.

Guay and his co-workers have contributed to this topic
since 2003 [2], [3], [4], [5], [6], [7], [8], [9], [10]. Li et al.
have proficiently implemented the adaptive ES proposed by
Guay et al. to solve photovoltaic cell optimisation problems
[11]. The main idea is to design a controller based on some
high-level knowledge of the system (both plant and cost func-
tion), described via a parametric model whose parameters are
unknown. Then, a learning law estimates these unknowns and
lets the ES scheme, which uses the parametric model, search
for the optimal input. All these algorithms are demonstrated
to work only for convex optimisation problems. Poveda et
al. proposed in [12] a hybrid ES, named NHESC, in which
the local gradient of the cost function is estimated via neural
networks. NHESC does not solve the optimisation of non-
convex costs because, relying on the concept of gradient
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estimation, it gets stuck in local minima. In 2018, Kebir et
al. proposed an adaptive-dither ES scheme to maximise the
output power of photovoltaic cells [13]. This paper adopts
a neural network that estimates the actual optimiser. Un-
fortunately, this algorithm assumes the disturbance, making
the cost function non-convex, measurable. For this reason,
it cannot be applied to solve our optimisation problem (in
which we only assume the disturbance is bounded). Suttner
investigated an ES algorithm with adaptive dither in [14]. In
the line of principle, since this algorithm tries to estimate the
local descent direction of h(x), one can only guarantee that
it eventually converges to a local minimum. Atta and Guay
proposed an adaptive-dither ES in [15]. In the context of
convex optimisation, this paper suggests reducing the dither
amplitude in the proximity of the minimiser. However, this
logic makes the ES algorithm stuck in local minima. Yuheng
et al. have recently proposed a dither amplitude adaptive law,
specialised for electrical inverters [16]. It is worth noting that
the ES scheme in [16] is different from ours because of the
correspondence of the optimisation variable with the dither
signal.

The paradigm of making the dither amplitude sufficiently
small to use gradient-based methods is inapplicable to con-
trast uncertainties making the cost function non-convex, such
as the effect of measurement noise affecting the reading of
the cost function. Indeed, intuitively, instead of decreasing,
one should increase the dither amplitude to make the cost
function ”trend” more evident. In this direction, we take
advantage of our previous results [17], which, adopting the
Fourier series to represent the cost function output, assess
the stability of ES with dither amplitudes not necessarily
small. Based on this new paradigm, we can increase and
decrease the dither amplitude when required to explore larger
or smaller areas of the cost function.

It is worth noting that in [17], we designed the dither as
a non-necessarily small constant parameter. Conversely, we
aim to make the dither adaptive with the current work.

Section II presents a formal definition of the optimisation
problem and reports the main assumptions adopted to de-
velop the proposed solution. Section III reports the results
of numerical tests. In detail, Section III is divided into two
subsections, the first dedicated to the investigation of the
adaptive ES proposed in this paper and the second focused
on comparisons with adaptive ES schemes already existing in
the literature. Finally, Section IV concludes this paper with
some final comments.

We denote the set of real and natural numbers greater then
0 with R and N. We use lowercase and calligraphic letters
to denote vectors and subspaces, i.e., x ∈ X ⊆ Rn, with
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n ∈ N.

II. PROBLEM FORMULATION AND PROPOSED
SOLUTION

The ES problem consists of optimising an unknown cost
function h : R → R satisfying the following two assump-
tions.

Assumption 1: The function h is smooth and there exists
x⋆ ∈ R such that

h(x)−h(x⋆) > 0 ∀x ∈ R : x ̸= x⋆. □
Assumption 2: There exist a locally Lipschitz and strictly

quasi-convex function m : R → R, a class-K∞ function
α(·), and a A ≥ 0 such that

1) |h(x)−m(x)| ≤ A for all x ∈ R
2) for all x1, x2 ∈ R : (x1 − x⋆)(x2 − x⋆) ≥ 0

|m(x2)−m(x1)| ≥ α(|x2−x1|). □
Roughly, Assumption 2 allows the cost function to be

non-convex but with bounded local variations. The problem
of semi-global extremum seeking can be formulated in the
following way.

Problem 1 (Optimisation): Let r > 0. Then, design a
system

ż =ϕ(z, y, t) z(0) = z0

x =ψ(z)

y =h(χ(z, t))

(1)

for some ϕ(·, ·, ·), χ(·, ·), and ψ(·) such that for all z0
satisfying |ψ(z0) − x⋆| ≤ r the resulting trajectories z(t)
are bounded. Moreover, there exists ϵ > 0 such that
lim supt→∞ |x(t)− x⋆| ≤ ϵ. □

Define b1(·) ∈ K∞ as

b1(δ) = 2

∫ 1/2

0

α(δ sin(2πt)) sin(2πt) dt (2a)

and
δ(A) := b−1

1 (A), (2b)

then, the solution to Problem 1 proposed in this paper is
named “Adaptive ES” (see Figure 1) and consists of (1) in
which z := (x, δ, b, σ, a), ψ(z) := x, χ(z, t) := x + δu(t),
and

ϕ(z, y, t) :=



−γ1γ2
ε(y, a)√
ϵ0 + σ/2

u(t)

γ1γ2

(
g(
√
b2/(ϵ0 + σ/2))− δ

)
γ1 (ε(y, a)u(t)− b)
γ1

(
ε2(y, a)− σ

)
γ1 ε(y, a)


,

with γ1, γ2, ϵ0 > 0, ε(y, a) := y−a, where u(t) := sin(2πt)
is the dither signal and z0 ∈ R×R+×R×R+×R. Moreover,
g(·) : [0, +∞) → R+ is a smooth non-increasing function
such that g(0) ≥ δ(A).

The remaining of this section provides an intuitive de-
scription of Adaptive ES. Quantities x and a represent the
optimisation variable and a low-pass version of the output
y(t). These two components are typical of standard ES

h(·) ȧ = . . . −1 +
a

σ̇ = . . .
ε

(
ϵ0 + (·)2

)−1/2

σ

ḃ = . . .δ̇ = . . .
b

σ

ẋ = . . . ×

+

×

u

δ

x

u

ε

Fig. 1. Adaptive ES consists of an extension of the classic ES algorithms
with the addition of b, σ, and δ dynamics.

schemes, as detailed in [18]. Conversely, b and σ are not
commonly found in classic ES schemes. Indeed, they are
proportional to the local trend of the cost function and the
variation around the local mean, respectively. To understand
these concepts, assume γ2 is sufficiently small such that x
and δ are quasi-constant with x ≈ x0 and δ ≈ δ0, define
the local trend as

∫ 1

0
dh(x)/dx|x0+δ0u(τ)

dτ , and let the
algorithm run. Then, on the one hand, lim inft→∞ ∥b(t)∥
is significant when the cost function has a strong local
trend and gets smaller when the local trend is closer to
zero. On the other hand, lim supt→∞ ∥σ(t)∥ is large when
the cost function shows non-negligible variations around the
mean

∫ 1

0
h(x0+ δ0u(τ)) dτ . Therefore, b2(t)/σ(t) is related

to the classic signal-to-noise ratio. Consequently, g(·), a
non-increasing function of b2(t)/σ(t), decreases the dither
amplitude δ when the signal-to-noise ratio is high and vice-
versa. With this strategy, Adaptive ES minimises the dither
amplitude when possible and assures the dither maximisation
to correctly estimate the cost trend in the case of local
minima.

Finally, while ε0 is positive to make the first two entries
of ϕ well-posed, parameters γ1 and γ2 are designed to
guarantee two time-scale separations. In more detail, γ1 is
used as an averaging parameter while γ2 separates fast and
slow dynamics of a singularly perturbed system as described
hereafter. Define v = col(x, δ) and w = col(b, σ, a), let

fv(v, w, t) :=

 −ε(h(χ(z, t)), a)√
ϵ0 + σ/2

u(t),

−δ + g(
√
b2/(ϵ0 + σ/2))

 , (3a)

fw(v, w, t) :=

 ε(h(χ(z, t)), a)u(t)− b
ε2(h(χ(z, t)), a)− σ
ε(h(χ(z, t)), a)

 , (3b)

with z = col(v, w), and rewrite (1) as

v̇ = γ1γ2 fv(v, w, t) v(0) = v0 (4a)
ẇ = γ1 fw(v, w, t) w(0) = w0 (4b)

in which v0 := col(x0, δ0) and w0 := col(b0, σ0, a0). The
averaged system of (4) is defined as (see Appendices for
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details)

v̇a = γ1γ2 fva(va, wa) va(0) = v0 (5a)
ẇa = γ1 fwa(va, wa) wa(0) = w0. (5b)

Let us define the Boundary Layer by forcing γ2 = 0 in (5)

v̇a =0 (6a)
ẇa = γ1fwa(va, wa). (6b)

Claim 1 (Boundary Layer): There exists µ(·) : R ×
R+ → R3 such that fwa(va, µ(va)) = 0 for any va ∈
R× R+.
Claim 1 is proved in Appendix IV-C. Now, we enforce wa =
µ(va) into (5) to define the Reduced System

v̇a = γ1γ2 fv(va, µ(va)). (7)

Intuitively, under the assumptions of asymptotic stability
of (6) and (7), we use standard singular perturbation ar-
guments to design γ⋆2 > 0 such that (5) is asymptotically
stable for any γ2 ∈ (0, γ⋆2 ). As a consequence, we use
standard averaging arguments to design γ⋆1 > 0 such that
the trajectories of (4) remain close to those of (5) for all
t ≥ 0. See [20] for details.

III. NUMERICAL TESTS

This section shows, through simulations, the behaviour of
Adaptive ES (1). The results presented in this section have
been obtained through MATLAB ode23 function with max-
imum integration step of size of 0.01. The design parameters
have been chosen as γ1 = γ2 = 0.3.

The following cost function has been designed, ad-hoc, to
clearly show how δ adapts during the optimisation process.
In detail, we adopted

d(x) = c1 sin(ω1x+ π/3) + c2 sin(ω2x+ π/4)− 1

h(x) = c2
x2√
1 + x2

− c3 cos(x) + c2d(x) sin
4(ω3x).

(8)

Roughly, the convex cost
x2√
1 + x2

is made non-convex by

cos(x) and d(x) with the latter representing a high-frequency
disturbance also modulated, in space, via sin4(ω3x). The cost
function h(x) evaluated for x ∈ [−10, 50], c1 = 1, c2 = 0.1,
c3 = 0.25, ω1 = 10, ω2 = 20, and ω3 = 0.3, is depicted in
Figure 2 and the unique global optimiser is x⋆ = 0.

First, we analyse h(x) by mapping b1(v) as in Figure 3.
The background of Figure 3 represents, through a warm-
colour scale, the magnitude of b1(v). In particular, the
brighter the colour, the more positive is b1(v). On the same
Figure, the solid white line denotes the set of v such that
b1(v) = 0. Therefore, for any x > 0, we have b1(v) > 0
for any δ > δm(x) := supδ>0{δ : b1(v) = 0}. From
Figure 3 we also deduce that δ ≈ 2.8 within the interval x ∈
[−10, 50]. The main goal of Adaptive ES is to automatically
lower δ(t) from δ to δm(x(t)).

As for the dither adaptation law, we adopted

g(s(t)) = δ (1− sat(s(t), 1))2

-10 0 10 20 30 40
-1

0

1

2

3

4

5

Fig. 2. Non-convex cost function exploited for simulation tests. The unique
global optimiser is x⋆ = 0.

Fig. 3. Function b1(v) evaluated for x ∈ [−10, 50] and δ ∈ [0, 3]. The
coloured background represents, via colour intensities, the values of b1(v).
In details, lighter colours represent positive values of b1(v) while darker
colours are associated with negative values of b1(v). A solid white line
shows the set of (v) such that b1(v) = 0. The black solid line represents
the path of v(t). (top) Overall path of v(t) for t/(2π) ∈ [0, 600]. (bottom)
Particulars highlighting the behaviour of Adaptive ES. The trajectory of v(t)
enters the set V0 from below only. Then, the trajectory moves backward in
x and exist V0 from the nearest right boundary.

in which δ = 3 (> δ), s(t) =
√
b2(t)/(ϵ0 + σ(t)/2) with

ϵ0 = eps begin the floating-point relative accuracy, and
where

sat(s, 1) :=

{
s s ≤ 1
1 otherwise.

To test the stability of Adaptive ES, we enforce un-
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Fig. 4. Left) behaviour of s(t). The signal s is high when h(x̄), with
x̄ ∈ x + [−δ, δ], clearly shows an increasing/decreasing trend. At the
opposite, s decreases when h(x̄) is highly corrupted by the disturbances
cos(x̄) and d(x̄) and therefore the increasing/decreasing trend is not clear.
Right) Detail for t/(2π) ∈ [0, 10].

favourable initial conditions by choosing x0 = 42.5, y0 =
h(x0), δ0 = 0.1, σ0 = 0, and b0 = −1. These initial
conditions make s(t) > 1 for all t/(2π) ∈ [0, τ ], see Figure
4, where τ := −1/(γ12π) ln(1e-3) ≈ 3.7 represents the
settling time of the Boundary Layer (6) to reach 99, 9%
of the asymptotic value. Consequently, g(s(t)) = 0, for all
t/(2π) ∈ [0, τ ] and δ(t) decreases starting from δ0, see
Figure 5. Then, since |b1(v)| ≪ 1 in the neighbourhood of
v0, we have ẋ(t) ≈ 0 for t/(2π) ∈ [0, τ ], see Figure 6.

For 3.7 ⪅ t/(2π) ⪅ 3.8, we see s(t) decreasing from 1
to ≈ 0.2 thus making δ(t) increasing. Consequently, x(t)
starts moving where the increase of x(t)− x⋆ is due to the
initial conditions, chose to have b1(v) < 0 for δ ≈ δ0. As
a consequence, v(t) moves left toward the set V0 := {v :
b1(v) = 0}. As v(t) approaches V0, b1(v(t)) decreases thus
making δ(t) increase while slowing down x(t). Therefore,
the path of v(t) becomes nearly vertical as depicted by the
solid black line in Figure 3.

At t/(2π) ≈ 8.1, we have b1(v(t)) > 0 because δ(t) >
δm(x(t)). From that time on, the optimisation error x(t)−x⋆
decreases while δ(t) is modulated accordingly with g(s(t)),
see again Figure 3.

Finally, x(t) asymptotically converges to a neighbourhood
of x⋆ around which b1(v(t)) ≈ 0. Therefore, δ(t) asymptoti-
cally converges to a neighbourhood of g(0) such that δ̇a ≈ 0.

A. Comparisons with the existing literature

This section compares Adaptive ES with some of the
already existing adaptation laws detailed in Section I.

The first work we compare with is [16]. We replaced the
adaptation law [[16], Eq. (9)] with our g(·). In detail, we
enforced

g(σ) =
J

2
√
σ + λ

with J = 0.3 and λ = 0.1 to get ∥g(σ(t))∥∞ = δ. This new
algorithm is named Algorithm 1 in what follows. Then, we
run simulations with the cost function and the same initial
conditions detailed in Section III, whose results are reported
in Figure 7. As anticipated in Section I, in the context of

0 200 400 600
0

0.5

1

1.5

2

2.5

3

0 5 10
0

0.5

1

1.5

2

Fig. 5. Left) behaviour of δ(t). The signal δ is low when h(x̄), with
x̄ ∈ x+[−δ, δ], clearly shows either an increasing or a decreasing trend. At
the opposite, δ increases when h(x̄) is highly corrupted by the disturbances
cos(x̄) and d(x̄) and therefore the increasing/decreasing trend is not clear.
Right) Detail for t/(2π) ∈ [0, 10].

0 200 400 600
-10

0

10

20

30

40

50

0 5 10
42.4

42.6

42.8

43
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43.8

Fig. 6. Left) behaviour of x(t)−x⋆. The optimisation error increases, but
remain bounded, within the initial time interval because of the unfavourable
initial conditions. Then, after the transient of the Boundary Layer, δ(t)
becomes sufficiently large to make x(t)−x⋆ decrease up to a neighbourhood
of the origin. Right) Detail for t/(2π) ∈ [0, 10].

non-convex optimisation, Algorithm 1 is not able to increase
δ when needed. Consequently, it remains stuck on V0 while
Adaptive ES asymptotically converges in a neighbourhood
of x⋆.

The second comparison is made with the algorithm
NHESC proposed in [12], hereafter recalled for completeness
with the fundamental quantities renamed to be compatible,
in meaning, with the notation used in this paper. In detail,
NHESC is specialised as in [[12], §VI.A] with

ẋ ∈ γ1γ2fx(x, ŵ)

˙̂w = δΓ
ϕ(x+ δu(t))(ϕ⊤(x+ δu(t))ŵ − h(x+ δu(t)))

(1 + ϕ⊤(x+ δu(t))ϕ(x+ δu(t)))
2 ,

x(0) = x0, ŵ(0) = ŵ0, Γ > 0,

fx(x, ŵ) =

 1 ∇J(x, ŵ) < 0
[−1, 1] ∇J(x, ŵ) = 0
−1 ∇J(x, ŵ) > 0

,

and ∇J(x, ŵ) :=
[
∂ϕ(x)

∂x

]⊤
ŵ. As for the basis functions,
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45.5

Adaptive ES

Algorithm 1

NHESC

Suttner

Atta

Suttner

Algorithm 1

Fig. 7. Comparison of Adaptive ES, Algorithm 1 inspired by [16], and
NHESC by [12]. Solid lines represents the trajectories of Adaptive ES,
dashed-dotted lines depicts those of Algorithm 1, dashed lines are those
of NHESC, dotted lines represents the trajectories of the algorithm by
Suttner, and the grey dash-dotted lines are those of algorithm by Atta. (left)
Particular of the path of v(t) for the three algorithms where Algorithm 1
and NHESC get stuck on V0 and on a local minima. Contrarily, Adaptive
ES keeps evolving and asymptotically reaches the minimiser. (right) Time-
behaviour of the optimisation variable generated via Adaptive ES, Algorithm
1, NHESC,, and algorithms proposed by Suttner and Atta. This confirms
that the algorithms considered in this comparison do not converge to the
right minimiser while Adaptive ES does.

we assumed the structure (8) known and took

ϕ(x) =


x2/

√
1 + x2

cos(x)
sin(ω1x+ π/3) sin4(ω3x)

sin(ω2x+ π/4) sin4(ω3x)− sin4(ω3x)


with ω1, ω2, and ω3 known. In this setup, we make the neural
network estimate the non-linear combinations of coefficients
c1, c2, and c3 appearing in (8). We imposed Γ = 500 in
agreement with [[12], §VI.A] and u(t) =

∑3
i=1 āi sin(ω̄it)+

b̄i cos(ω̄it) following the guidelines on [[12], §IV.B]. As
anticipated in Section I, despite δ(t) = δ for all t ≥ 0,
NHESC gets stuck into the first encountered local minimum,
see Figure 7.

The third algorithm we compare with is proposed by
Suttner in [[14], Eq.s (9)-(11)], hereafter reported,

ẋ = γ1γ2δ(x, z) sin(2πΩ+ 1/(z − h(x))) x(0) = x0

ż = − (z − h(x)) z(0) = h(x0) + 1

Ω̇ =1/((z − h(x))5) Ω(0) = 0,

with δ(x, z) :=
√
2π/((z−h(x))2). Despite [[14], Theorem

1] assessing the stability of this algorithm only for quadratic
h(x), we found the adaptation philosophy interesting also
for non-convex cost functions. When initialised at x0, this
algorithm increases x(t) accordingly with the local gradient.
Then, since ∂h(x)/∂x ≈ 0, we observe ẋ(t) ≈ 0 when
x(t) ≈ 43.5. Consequently, z(t) ≈ h(x(t)), thus making Ω
and δ suddenly increase to values so large that the estimated
local gradient is nearly zero (due to the symmetry of h(x)
around x⋆). Therefore, x(t) is not guaranteed to converge to
x⋆. In the simulations proposed in Figure 7, we stopped the
numerical integration when Ω(t) > 106.

As a fourth comparison, we selected the algorithm pre-
sented in [15] by Atta and Guay. This scheme adapts

the dither amplitude accordingly with the following logic,
customised for the case of static optimisation,

ẋ = kpσ(z) + kiη x(0) = x0

η̇ =σ(z) η(0) = 0

ȧ =λ(σ2(z)− a) a(0) = a0

ż =L(t)(y − C(t)z) z(0) = z0

δ = a2 + a0

where C(t) :=
[
1 δ sin(2πt)

]
, L(t) :=[

ℓ1 ℓ2 sin(2πt)
]⊤

, and σ(z) := tan−1 (2πz2) /ϵσ ,
with z2 being the second component of z. Roughly,
the PI-like ES scheme composed of x and η is forced
by σ, which is proportional to z2. Then, z2 represents
the estimation of the local gradient of h(x), which is
approximated via a Taylor polynomial truncated at the
first order as y(x) ≈ y0(x) + y1(x)δ sin(2πt), with y0(x)
and y1(x) unknown. Therefore, at x = x0, the estimation
of the local gradient makes x(t) increase to reach the
nearest local minima. While approaching this critical point,
z2(t) becomes smaller, thus decreasing both σ and a. The
result is that the algorithm converges to the nearest local
minima with a diminishing dither. The simulation reposted
in Figure 7 is obtained with kp = 0.1, ki = 10−4, λ = 0.1,
ℓ1 = 0.1, ℓ2 = 1, a0 = 5 · 10−3, ϵσ = 2, a0 =

√
0.1, and

z(0) =
[
0 0

]⊤
.

IV. CONCLUSIONS
This paper proposes an ES scheme with a dither adaptation

law, which, contrary to the current literature, can be used to
solve non-convex optimisation problems. In detail, adopting
the Fourier series to describe the ES, at the averaging, allows
the generation of meaningful information, as those embedded
into b and σ. The former represents the local trend of the cost
function. In contrast, the latter represents the noise level,
i.e., of how much the cost function varies in the considered
interval. Therefore, the ratio b2/σ is seen as a friend of the
classic signal-to-noise ratio. Furthermore, thanks to Adaptive
ES, the energy injected into the system for optimisation
is reduced, which could represent an essential feature for
practical applications. Future works will focus on proving
the proposed scheme’s stability, even with a non-unique
global minimiser, and on the extension to multidimensional
optimisation variables.
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APPENDIX

A. AVERAGING DEFINITION

Definition 1 (Averaging [19], §10.4): Given z ∈ Rn,
f(·, ·) : Rn × [0,∞) → Rn and f(·, t) ∈ C1, a small
parameter γ1 > 0 and the ordinary differential problem

ż = γ1f(z, t) z(0) = z0

in which f is assumed T -periodic in t, then, the associated
average system is defined as

ża = γ1fa(za) za(0) = z0

with

fa(xa) :=
1

T

∫ T

0

f(za, t) dt.

B. FOURIER COMPUTATIONS

Start by noting that h(xa+δau(t)) and its time derivatives
are continuous and periodic. Therefore, h(xa + δau(t)) can
be expressed in terms of its Fourier series as

h(xa + δau(t)) =
a0(va)

2
+

∞∑
k=1

ak(va) cos (k2πt) + bk(va) sin (k2πt)
(9)

where

ak(va) := 2

∫ 1

0

h(xa + δau(t)) cos(k2πt) dt (10a)

bk(va) := 2

∫ 1

0

h(xa + δau(t)) sin(k2πt) dt . (10b)

By expanding h(xa+g(σa)u(τ)) in terms of Fourier series
and by keeping in mind the definition of ε(·), it turns out
that ∫ 1

0

h(xa + δau(t)) dt =
a0(va)

2
(11a)∫ 1

0

ε(xa, aa, δa, t)u(t) dt =
b1(va)

2
(11b)∫ 1

0

ε2(xa, aa, δa, t) dt =

(
a0(va)

2
− aa

)2

(11c)

+

∞∑
k=1

a2k(va) + b2k(va)

2

Define

ρ(va, aa) =

(
a0(va)

2
− aa

)2

+

∞∑
k=1

a2k(va) + b2k(va)

2

(12)

and rewrite system (5) as

ẋa = −γ1γ2
b1(va)

2
√
ϵ0 + σa/2

(13a)

δ̇a = −γ1γ2 δa + γ1γ2 g(
√
b21/(ϵ0 + σa/2)) (13b)

ḃa = −γ1 ba + γ1
b1(va)

2
(13c)

σ̇a = −γ1 σa + γ1 ρ(va, aa) (13d)

ȧa = −γ1 aa + γ1
a0(va)

2
. (13e)

C. PROOF OF CLAIM 1

We take (5b) and (13c)-(13e), and define

µ(va) =

 b1(va)/2
ρ(va, a0(va)/2)

a0(va)/2

 . (14)

Then, fwa(va, µ(va)) = 0.
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