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Abstract— The Stanley controller was designed for the
DARPA 2005 Grand Challenge and has been widely used in real
autonomous vehicles and simulation models. While the original
paper presented an analysis of the tracking performance of this
controller with straight roads, the analysis for general curved
lanes and with perception errors is not available. We utilize
Lyapunov theory to give tracking performance guarantees for
the Stanley controller. Our analysis can be used for ensuring
safety of lane following and provide guidelines for choosing
design parameters with respect to velocity, lane curvation, and
sensing constraints.

I. INTRODUCTION

The Stanley controller was originally designed and im-
plemented by the Stanford Racing Team, on a Volkswagen
Touareg [1] as a part of the 2005 DARPA Grand Challenge.
As a trajectory tracking controller for autonomous vehicles,
it led the Stanford team to gain excellent performance in the
competition and ultimately win in the Grand Challenge [2].
Since then, the Stanley controller has been used in many
real systems, simulation models, and research prototypes.
For instance, Amer et al. [3] combined a modified Stan-
ley controller with particle swarm optimization to design
path tracking controllers for autonomous armoured vehicles.
Wang et al. [4] utilized genetic algorithms to optimize the
Stanley controller for autonomous agricultural tractors. On
the theoretical side, AbdElmoniem et al. [5] used the Stanley
model for a predictive lateral controller. Hsieh et al. [6] used
approximate abstractions to carry out a safety analysis when
the state estimates came from computer vision models.

Although the Stanley controller and its variants have been
used widely, to the best of our knowledge, a formal analysis
of its tracking performance with respect to general curved
roads has not been published. Further, the impact of sensing
or perception error on this control strategy, an important
consideration in any real system, has also not been analyzed.
Understanding the tracking performance in detail can be the
basis for safety analysis (verification) as well as synthesis of
higher-level planners. The latter synthesis approach has been
explored and implemented in a number of tools for different
types of vehicles and controllers [7], [8].

In this paper, we provide a detailed Lyapunov-based analy-
sis of the tracking performance of the Stanley controller, for
a vehicle with the bicycle dynamics [9], following curved
lanes, and using noisy sensors. With respect to the reference
path, the key state variables of the vehicle’s are the crosstrack
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error d and the heading error ψ. We will precisely define
these quantities in Section II-A (see Figure 1). Let ds and
ψs represent the sensed crosstrack and heading errors. Let
us assume the difference between the actual and the sensed
values (sensing error) is at most ed and eψ , respectively.
The Stanley controller uses these sensed values (ds, ψs) to
compute the control signal, which is the steering angle δ.
We visualize the key state variables—the actual crosstrack
and heading errors (d, ψ)—under the action of the steering
control as a point moving on the 2D plane. We take the point
(d, ψ) = (0, 0) as the equilibrium point and the system is
unsafe when explicit finite upper bounds can’t be guaranteed
for the crosstrack and heading errors.

There are several challenges in this analysis. First, as
the vehicle is following an arbitrary curved path, we have
to perform a coordinate transformation to represent the
crosstrack (d) and the heading (ψ) errors along a coordinate
system that moves along the path. Second, the tracking
performance analysis for a straight lane can be done using
a standard Lyapunov function [6], but this function now
has to be modified to accommodate path curvatures and
sensing noise. Most importantly, because of the curvature,
saturation in control, and the perception errors, we cannot
expect the tracking errors to converge to zero from all
possible initial conditions. Therefore, we have to carefully
identify what region of the state space can guarantee explicit
finite upper bounds for d and ψ. This region can be seen
as an important outcome of the analysis, which gives the,
so called, safe operating design domain (ODD). The safe
ODD for this problem turns out to be a symmetrical region
around the equilibrium point in the state space, and the
theoretical guarantee aligns with the extreme cases, where
the path is maximally curving away from the vehicle and
the sensing noise reaches the highest level. Our analysis
shows a lower speed is safer when the car is very far
away from the reference path. The analysis also implies the
optimal controller gain increases inversely with the vehicle
speed and shorter vehicles are easier to safely control. With
these results, system designers can be more informed about
choosing design parameters with respect to different vehicle
speeds, lane curvatures and sensing constraints, and thus
become confident when they use the Stanley controller.

In Section II, we first introduce the basic dynamics model
for a vehicle following curved paths with noisy perception.
With these sets of necessary knowledge, we continue to apply
Lyapunov theory and analyze the results by numerical ap-
proximations in Section III. In Section IV, we further analyze
how the vehicle speed, controller gain and vehicle length can
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affect the area of safe ODD. Section V presents simulations,
which further validate the safety of Stanley under curved
paths and noisy perception. Section VI summarizes this
paper, while Appendix contains detailed proofs that support
the establishment of safe ODD around the equilibrium point
in the state space.

II. GENERAL STANLEY CONTROLLER

Section II-A introduces the vehicle model following a path
and the sensing errors. Section II-B is about the dynamics
of the Stanley controller, under the impact of sensing noise.
Section II-C defines the path curvature and integrates it into
the dynamics model.

A. Vehicle Model, Paths, and Sensing Errors

Fig. 1. Bicycle model, with the front wheels as guiding wheels. The left
and right rectangular blocks represent the rear and front pairs of wheels,
respectively. ρ is a continuously differentiable curve.

We will use the popular bicycle model [12] for the ground
vehicle as depicted in Figure 1. Throughout this paper, (x, y)
is the coordinate of the front wheel center and is considered
as the position of the vehicle. Let L be the length of the
car. The direction of the line joining the mid-points of the
wheels is the vehicle’s heading. The heading angle θ is the
angle between the vehicle’s heading and the x-axis in the
world frame. The front wheels are used as guiding wheels:
δ is the steering angle, which is the angle of the front wheel
with respect to the vehicle’s heading. The steering angle δ
is the main control input of the vehicle.

The curve ρ represents the reference path the car is
trying to follow. Let’s denote the closest point to the vehicle
position (x, y) on the reference path as the critical point
(point C in Figure 1). θt represents the angle between the
path’s tangent at C and the x-axis in the world frame. The
crosstrack error, d, represents the distance between (x, y)
and point C. In fact, d is positive when the vehicle is on the
left side of the reference path and vice versa.

In Figure 1, s ∈ R≥0 represents the distance that the
car has travelled along the reference path. Conceptually, this
distance is equal to the total curve length on the reference
path between the current and initial critical points. For
example, in Figure 2, while the car is moving from P1 to
P2, the critical point moves from C1 to C2 on the reference
path. In this case, the distance s is one fourth of the circle
circumference.

Fig. 2. Distance that the vehicle travels along a circle. The balls represent
the car’s positions. The circle represents the reference path. The arrows
represent the car’s trajectory.

Aside from the crosstrack error d, we define the heading
error ψ as:

ψ = θ − θt, (1)

which is the difference between the car’s heading (θ) and
the reference path’s heading (θt) at the current critical point.
For the calculations of both crosstrack and heading errors, the
critical point needs to be estimated from sensors. For exam-
ple, in a vision-based lane tracking system, as in [13], camera
images are used to detect the lanes ahead of the vehicle and
then the crosstrack and heading errors relative to the center of
the lane are computed. Inevitably, this estimation introduces
errors. In general, the estimation error characteristics can be
quite complicated and state-dependent [6]. However, for now,
we assume the following worst-case estimation error model:

ds = d+ ed, ψs = ψ + eψ, (2)

where ds is the sensed crosstrack error and ed ∈ [−ϵd, ϵd]
is the bounded error in sensing ds. Similarly, ψs is the
sensed heading error and eψ ∈ [−ϵψ, ϵψ] is the bounded
error in sensing ψs. We are interested in understanding the
performance of the Stanley controller with respect to the
curvature of the lanes as well as the sensing error parameters,
namely ϵd and ϵψ .

B. Stanley Controller Dynamics

Disturbed by perception noise, the vehicle uses ds and ψs
to generate the steering angle δ in the Stanley model [1], as
below.

δ =


−ψs − arctan(K·ds

vf
) |ψs + arctan(K·ds

vf
)| < δmax

−δmax ψs + arctan(K·ds
vf

) ≥ δmax

δmax ψs + arctan(K·ds
vf

) ≤ −δmax
(3)

In (3), K denotes the positive controller gain, vf repre-
sents the constant forward speed, and δmax is the vehicle’s
maximum steering angle (0 < δmax <

π
2 ). The first line in

(3) is defined as nominal region control, while the last two
lines are saturated region control [1]. Our analysis mainly
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focuses on the nominal region, as the maximum steering
angle is used to return from the saturated regions to the
nominal region [1]. For the convenience of later calculations,
we designate α(x) = arctan(K·x

vf
).

The kinematics for the crosstrack error is ḋ =
vf sin (ψ + δ) [10]. Combining this with (3) and (2), we get:

ḋ = vf sin (ψ − ψs − α(ds)) = −vf sin (eψ + α(ds)). (4)

We can then use the chain rule and (4) to calculate α̇(d),
which will be used in the Lyapunov analysis.

α̇(d) =
d

dt
arctan

(K · d
vf

)
=

1

1 + K2d2

v2f

K

vf
ḋ

=
−Kv2f

v2f +K2d2
sin(eψ + α(ds)).

(5)

C. Path Curvature at Critical Points

Fig. 3. Illustration of the reference path’s curvature profile. The reference
path consists of a curve (part of a radius-2 circle) and a straight line.

Each reference path has a curvature profile c(·) : R≥0 →
R, which is a function of s (the distance that the vehicle
has travelled along the reference path). Mathematically, the
definition of curvature is c(s) = dθt

ds . Let’s suppose the
vehicle and its corresponding critical point move along the
reference path within an infinitesimal time period dt. The
definition of curvature can then imply:

c(s) · ds
dt

=
dθt
dt

=⇒ c(s)ṡ = θ̇t. (6)

For example, in Figure 3, the initial position of the car
(s = 0) is P1 with C1 as the critical point, which means
c(s) = 1

r = 1
2 at P1. When the car moves from P1 to P2,

the critical point gradually moves from C1 to C2 on the
reference path. As discussed previously, s = π and thus
c(s) = 1

2 at P2. When the car later moves from P2 to P3,
the critical point gradually moves from C2 to C3 on the
reference path, which means s = π + 3 and c(s) = 0 at P3.

The geometrical analysis in [10] also establishes:

ṡ = vfcos(ψ + δ) + θ̇td = vfcos(eψ + α(ds)) + θ̇td. (7)

By combining (6) and (7), we can get:

ṡ =
vfcos(eψ + α(ds))

1− d · c(s)
, θ̇t =

vfcos(eψ + α(ds))c(s)

1− d · c(s)
.

(8)

According to the derivation in [11], θ̇ =
vf tan(δ)

L . By
combining this result with (1) and (8), we have:

ψ̇ = θ̇ − θ̇t

= −
( tan(ψs + α(ds))

L
+
cos(eψ + α(ds))c(s)

1− d · c(s)

)
vf .

(9)

III. TRACKING ERROR ANALYSIS

Throughout the analysis, we will make the following
assumption, which states that the worst-case noise won’t
exceed the maximum steering input. This rules out uninter-
esting extreme values. Otherwise, any vehicle states in the
nominal region will look like saturated states.

Assumption 1. ϵψ + α(ϵd) < δmax.

Next we will define a function based on tracking errors,
and show that it satisfies the Lyapunov conditions inside the
safe operating design domain (ODD). In Section III-B, we
will use this result to derive the upper bounds of tracking
errors. A qualitative analysis is also done for the state space
outside safe ODD. Section III-C puts these derived upper
bounds and analysis results together, to show that (d, ψ)
always stays within a certain distance from the equilibrium
point.

A. Lyapunov Analysis
We define the Lyapunov function as a function of the

crosstrack error d and the heading error ψ: V (d, ψ) =
|ψ + arctan(K·d

vf
)| = |ψ + α(d)|. We choose this Lyapunov

function because the sum ψ + α(d) can reflect the counter-
effects when d and ψ are of opposite signs and equals to zero
at the equilibrium point. For the convenience of calculations,
we analyze the time derivative of

(
V (d, ψ)

)2
. By applying

the chain rule and combining (5) and (9), we can get:

dV 2

dt
= 2

(
ψ + α(d)

)(
ψ̇ + α̇(d)

)
= −2vf

(
ψ + α(d)

)( tan(ψs + α(ds)
)

L
+
cos

(
eψ + α(ds)

)
c(s)

1− d · c(s)

+
Kvf

v2f +K2d2
sin

(
eψ + α(ds)

))
.

(10)

We can partition the error space inside the nominal region
as in Figure 4 and define the following four sub-regions.

• E1: d > 0 and A(d) < ψ < −α(d)
• E2: Rotate E1 by 180 degrees around the equilibrium

point
• E3: d > 0 and −α(d) < ψ < B(d)
• E4: Rotate E3 by 180 degrees around the equilibrium

point,
where A(d) and B(d) are defined as:

A(d) = −arctan
(
L
(sin(ϵψ)

d
+

Kvf
v2f +K2d2

))
−ϵψ − α(d+ ϵd)

B(d) = arctan

(
L
(1

d
+
Kvf · sin(δmax)
v2f +K2d2

))
+ϵψ − α(d− ϵd).

(11)
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Fig. 4. Error space inside the nominal region. The two black dashed lines
represent d = ϵd +

vf ·tan(ϵψ)

K
and d = −

(
ϵd +

vf ·tan(ϵψ)

K

)
.

We define E − (E1 ∪ E2 ∪ E3 ∪ E4) as the safe operating
design domain (ODD) and prove that the Lyapunov condition
is guaranteed to hold in this region, even under arbitrarily
large path curvatures and the most adversarial sensing noise.
For the sake of convenience, let’s denote UE = E1 ∪ E2 ∪
E3 ∪E4 and SE = E −UE. It’s trivial to see V (d, ψ) > 0
for (d, ψ) ∈ SE.

Lemma 1. dV 2

dt < 0 in SE.

Proof: Suppose (d, ψ) is in the state space region below
E1

(
d > 0 and −α(d) − δmax < ψ < A(d)

)
. From the

definition of E1, we have:

ψs + α(ds) ≤ ψ + ϵψ + α(d+ ϵd)

< −arctan
(
L
(sin(ϵψ)

d
+

Kvf
v2f +K2d2

))
,

tan(ψs + α(ds))

L
< −sin(ϵψ)

d
− Kvf
v2f +K2d2

,

tan(ψs + α(ds))

L
+
sin(ϵψ)

d
+

Kvf
v2f +K2d2

< 0. (12)

From Theorem 1 in Appendix, we get cos(eψ+α(ds))c(s)
1−d·c(s) <

sin(ϵψ)
d . Kvf

v2
f
+K2d2

sin(eψ + α(ds)) ≤ Kvf
v2
f
+K2d2

is also a trivial
fact. By putting these two facts into (12), we get:

tan(ψs + α(ds))

L
+
cos(eψ + α(ds))c(s)

1− d · c(s)

+
Kvf

v2f +K2d2
sin(eψ + α(ds)) <

tan(ψs + α(ds))

L
+
sin(ϵψ)

d
+

Kvf
v2f +K2d2

< 0.

(13)

For the state space below E1, ψ+α(d) < 0. Plugging this and
(13) into (10), we can get dV 2

dt
< 0 for this region. The proof

for the state space above E2 is similar, due to symmetry.

Suppose (d, ψ) is in the state space above E3

(
d > 0 and

B(d) < ψ < −α(d)+ δmax
)
. From the definition of E3, we

have:

ψs + α(ds) ≥ ψ − ϵψ + α(d− ϵd)

> arctan

(
L
(1
d
+
Kvf · sin(δmax)
v2f +K2d2

))
,

tan(ψs + α(ds))

L
>

1

d
+
Kvf · sin(δmax)
v2f +K2d2

,

tan(ψs + α(ds))

L
− 1

d
− Kvf · sin(δmax)

v2f +K2d2
> 0. (14)

By doing an analysis similar to Theorem 1 in Appendix, we
get cos(eψ+α(ds))c(s)

1−d·c(s) > − 1
d

and Kvf
v2f+K

2d2
sin(eψ + α(ds)) >

−Kvf ·sin(δmax)
v2f+K

2d2
. By putting these two facts into (14), we get:

tan(ψs + α(ds))

L
+
cos(eψ + α(ds))c(s)

1− d · c(s)

+
Kvf

v2f +K2d2
sin(eψ + α(ds)) >

tan(ψs + α(ds))

L
− 1

d
− Kvf · sin(δmax)

v2f +K2d2
> 0.

(15)

For the state space above E3, ψ+α(d) > 0. Plugging this and
(15) into (10), we can get dV 2

dt
< 0 for this region. The proof

for the state space below E4 is similar, due to symmetry.
In this way, dV

2

dt < 0 in SE is proved.

B. Tracking Error Bounds

Fig. 5. Left: d > 0, ψ > 0. Right: d < 0, ψ < 0. (The arrows represent
the car’s heading directions.)

Based on the Lyapunov analysis, we can proceed to derive
the following three statements, for bounds of tracking errors
in three parts of the nominal region. Lemma 2 and 3 deal
with the two parts that constitute safe ODD. Specifically,
Lemma 2 deals with the cases, in which the car’s heading
doesn’t comply with the reference path’s direction while the
path is curving away from the vehicle (Figure 5). Lemma
3 deals with the cases, in which the car’s heading generally
complies with the reference path’s direction while the car
isn’t too close to the path (black dash lines in Figure 4).
These two lemmas obtain explicit upper bounds for tracking
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errors. Lemma 4 carries out a qualitative analysis to the state
space outside safe ODD and proves a finite upper bound for
|d| exists.

Lemma 2. When (d, ψ) stays in SE, and d is of the same
sign as ψ, |d| and |ψ| have a finite upper bound.

Proof: Let’s denote the initial state as d(t0) = d0,
ψ(t0) = ψ0 and thus V (d0, ψ0) = η0. According to Lemma
1, V (d(t), ψ(t)) ≤ η0 for t ≥ t0. Now that d(t) and ψ(t)
are of the same sign, V (d(t), ψ(t)) = |ψ(t)| + |α(d(t))|.
Hence, |α(d(t))| ≤ V (d(t), ψ(t)) ≤ η0 and |ψ(t)| ≤
V (d(t), ψ(t)) ≤ η0, which means both of the crosstrack and
heading errors are bounded.

Lemma 3. When (d, ψ) stays in SE, d is of the opposite
sign to ψ, and |d| ≥ ϵd +

vf ·tan(ϵψ)

K
, |d| and |ψ| both have

finite upper bounds.

Proof: We borrow the same start time t0 and initial
conditions from Lemma 2. Now that d(t) and ψ(t) are of
opposite signs, we can write:

V (d(t), ψ(t)) =

{
|α(d(t))| − |ψ(t)| |ψ(t)| < |α(d(t))|
|ψ(t)| − |α(d(t))| |ψ(t)| > |α(d(t))|

.

(16)

According to Theorem 2 in Appendix, |d(t)| and |α(d(t))|
are both non-increasing, which means |α(d(t))| ≤
|α(d(t0))| = |α(d0)|. In the first case of (16), |ψ(t)| <
|α(d(t))| ≤ |α(d0)|. By Lemma 1, V (d(t), ψ(t)) is mono-
tonically decreasing. Then, in the second case of (16), |ψ(t)|
must be non-increasing

(
|ψ(t)| ≤ |ψ(t0)| = |ψ0|

)
.

Lemma 4. When (d, ψ) stays in UE, |d| has finite upper
bounds.

Proof: We borrow the same start time t0 and initial
conditions from Lemma 2. We can first divide UE according
to the value of |d|. |d| is obviously bounded when |d| <
ϵd +

vf ·tan(ϵψ)
K . When |d| ≥ ϵd +

vf ·tan(ϵψ)
K , we can divide

into the following two cases:

• dV 2

dt < 0: This case can fall to the proof in Lemma 2
when d(t) and ψ(t) are of the same sign. Otherwise, it
can fall to the proof in Lemma 3.

• dV 2

dt ≥ 0: We can assume an extreme case where dV 2

dt is
always positive. That is to say, |ψ(t) + α(d(t))| keeps
increasing for t ≥ t0. Geometrically, this means the
point (d(t), ψ(t)) has an increasing distance from the
black solid curve in Figure 4. Nevertheless, for each of
E1, E2, E3 and E4, the margin with respect to the black
curve is decreasing as |d| increases. As a result, the
vehicle state (d(t), ψ(t)) will exit UE at some moment
t1 ≥ t0. This also implies a finite upper bound for |d(t)|
theoretically exists, while the vehicle’s state stays in
UE.

In this way, we can see a finite upper bound for |d| exists,
no matter which part of UE the vehicle state resides in.

C. Safety Margins of Stanley Controller

For the whole state space inside the nominal region, we
can divide it into the following four parts:

• UE
• R1: the region in Lemma 2
• R2: the region in Lemma 3
• R3: the region in SE, where d is of the opposite sign

to ψ and |d| < ϵd +
vf ·tan(ϵψ)

K .
R1, R2 and R3 constitute safe ODD. While the car is fol-
lowing the reference path, its states (d(t), ψ(t)) can transfer
within these four regions and thus spend a certain amount of
time inside each of them. The crosstrack error d is obviously
bounded while (d(t), ψ(t)) is in R3. Lemma 2 and 3 show
that d has explicit upper bounds while (d(t), ψ(t)) is in R1

or R2. d is also proved to be bounded in UE by Lemma 4.
Consequently, at any time moment, a safety margin around
the most curved reference path (infinitely large curvature)
always exists under the disturbance of perception noise. As
a result, (d(t), ψ(t)) stays within a certain distance from the
equilibrium point.

IV. IMPACT OF VEHICLE PARAMETERS

A. Vehicle Speed

By looking at the definitions of E1, E2, E3 and E4,
we can see that the areas of these regions are mainly
determined by the terms arctan

(
L(

sin(ϵψ)
d ± Kvf

v2f+K
2d2

)
)

and

arctan
(
L( 1d ± Kvf ·sin(δmax)

v2f+K
2d2

)
)

respectively, for a specific
value of the crosstrack error d. For each of the four regions,
the area will be smaller and thus more state space can have
safety guarantees from Lemma 1, when Kvf

v2
f
+K2d2

is smaller.
Given the fact that vf represents the positive forward speed,
we have:

lim
vf→0+

Kvf
v2f +K2d2

= lim
vf→+∞

Kvf
v2f +K2d2

= 0, (17)

argmax
vf>0

Kvf
v2f +K2d2

= K|d|. (18)

The vehicle cannot stay still (zero velocity) or go infinitely
fast (vf → ∞), as indicated by (17). Let’s assume the
vehicle’s minimally allowed speed vmin and maximally
allowed speed vmax. There are then three cases, according
to (18):

• K|d| < vmin: When the vehicle is very close to the
reference path, the crosstrack error signal can be easily
distorted by perception noise, which makes the safety
guarantee in Lemma 1 hard to accomplish (as reflected
by Lemma 3). It’s better for the vehicle to choose
larger speeds and travel across more distances along
the reference path.

• vmin ≤ K|d| ≤ vmax: With respect to safety, the
vehicle should go at either vmin or vmax. If the vehicle
needs a shorter path completion time, vmax is a better
choice.

• K|d| > vmax: vf = vmin can produce more safety
guarantees. If the car still moves at high speeds when
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it’s far away from the reference path, the path and car
will diverge from each other at higher rates.

B. Controller Gain and Vehicle Length

For specific values of vf and d, we have:

argmax
K>0

Kvf
v2f +K2d2

=
vf
|d|
.

Hence, in terms of creating more safety guarantees, a lower
K is better for high speeds and low crosstrack errors, and a
higher K is better for low speeds and high crosstrack errors.

The areas of E1, E2, E3 and E4 become larger when L
becomes larger. This is because longer vehicles are harder
to safely control, as reflected by the equation θ̇ =

vf tan(δ)
L

[11]. The car’s heading direction changes slower for larger
L, under the same speed and steering angle.

V. SIMULATIONS

We use Matlab and Simulink to carry out simulations and
thus validate the safety of the Stanley controller, under the
impacts of path curvatures and sensing noise. We first use
Matlab scripts to define related parameters, whose values are
shown in Table I. Specifically, the reference path is a circle
centered at the origin, with a radius of 2.5 (the red curve
in Figure 6). The car tries to follow the red circle curve
clockwise and thus the path curvature c(s) = −0.4,∀s ≥ 0.

Parameters Values Descriptions

vf 2.8 Constant forward velocity (m/s)

L 1.75 Vehicle length (m)

K 0.45 Stanley controller gain

c(s) −0.4 Path curvature (rad/m)

ϵd 0.3 Maximum crosstrack noise (m)

ϵψ
π
18

(10◦) Maximum heading noise (rad)

δmax 1.4 Maximum steering angle (rad)

TABLE I
PARAMETERS FOR THE VEHICLE, REFERENCE PATH AND SENSING

NOISE.

Then, we use Simulink to build the Stanley controller.
This includes two random number generators that produce
additive noise to crosstrack and heading error signals respec-
tively, within the assumed ranges

(
[−ϵd, ϵd] and [−ϵψ, ϵψ]

)
.

In particular, we carry out two trials, whose vehicle initial
states are shown in Table II and visualized in Figure 6.

We run the built model for 9 seconds and the results are
shown in Figure 7. In both trials, the car gradually becomes
closer to the reference path. Similarly, the heading error ψ
converges to a certain level and then stays stable in both
trials.

Fig. 6. Reference path and initial states of the vehicle. (The arrows
represent the car’s heading directions. Point C represents the car’s initial
critical point.)

Trials 1 2

Initial position (0, 3.5) (0, 1.1)

Initial critical point (0, 2.5) (0, 2.5)

Initial crosstrack error (d) 1.0 −1.4

Initial heading error (ψ) π
6

(30◦) π
3

(60◦)

TABLE II
THE CAR’S INITIAL STATES DURING SIMULATIONS.

VI. CONCLUSIONS

Our work formally adds road curvatures and percep-
tion noise into the safety analysis of the popular Stanley
controller. By identifying and analyzing extreme cases (of
curvature and sensor noise), we’re able to show a region (safe
ODD), in which the tracking errors are bounded. This for-
mally establishes Stanley’s safety in realistic environments.
The assumptions and the analysis are conservative (roads
cannot have arbitrarily large curvatures and the perception
system is unlikely to consistently produce noise of the
highest level). Simulation results also validate our theoretical
conclusions about Stanley’s safety. We also show different
speeds are suitable for the vehicle’s safety under differ-
ent vehicle states. Additionally, we derive the relationships
among the optimal controller gain, the vehicle speed and
the tracking errors. These results can make engineers more
informed when choosing design parameters.

Furthermore, our work has revealed several interesting fu-
ture work directions. On the Lyapunov analysis side, we can
design new Lyapunov functions and even combine different
Lyapunov functions together for a more accurate analysis. On
the noise model side, we can work with hardware and sensor
engineers to bring more practical noise models into our
analysis, as the sensing noise can be state-dependent [6]. On
the controller design side, we can use the insights from our
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Fig. 7. Running results of the simulations.

analysis to create longitudinal dynamics and hereby replace
the constant forward speed in the original Stanley model.
We can also add in other constraints like maximally allowed
crosstrack errors and speed limits to set up an optimal control
problem for the minimum completion time.
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APPENDIX

Theorem 1. When d > 0, cos(eψ+α(ds))c(s)1−d·c(s) <
sin(ϵψ)

d . When

d < 0, cos(eψ+α(ds))c(s)1−d·c(s) >
sin(ϵψ)

d .

Proof: To create the worst cases where the reference
path is always curving away from the vehicle, we let c(s) ≤ 0
for d > 0 and vice versa, as illustrated in Figure 8. When d ∈

Fig. 8. Left: d > 0, c(s) < 0. Right: d < 0, c(s) > 0.

(0,+∞), ds ∈ (−ϵd,+∞). Hence, α(ds) ∈ (−α(ϵd), π2 )
and thus eψ + α(ds) ∈ (−ϵψ − α(ϵd),

π
2 + ϵψ). Considering

Assumption 1, we can get −π
2 < −δmax < −ϵψ − α(ϵd) <

eψ + α(ds) <
π
2 + ϵψ < π. From the trigonometry, we

can get cos
(
eψ + α(ds)

)
> cos

(
π
2

+ ϵψ
)
= −sin(ϵψ) and thus

cos(eψ+α(ds))c(s)

1−d·c(s) <
sin(ϵψ)c(s)

d·c(s)−1
.

Over the domain c(s) ∈ (−∞, 0], sin(ϵψ)c(s)d·c(s)−1 is monoton-
ically decreasing. Hence,
cos(eψ + α(ds))c(s)

1 − d · c(s)
<
sin(ϵψ)c(s)

d · c(s) − 1
< lim
c(s)→−∞

sin(ϵψ)c(s)

d · c(s) − 1
=
sin(ϵψ)

d
.

The proof is similar when d < 0.

Theorem 2. When |d| ≥ ϵd +
vf ·tan(ϵψ)

K , |d| and |α(d)| are
both non-increasing.

Proof: For positive values, d ≥ ϵd +
vf ·tan(ϵψ)

K , which
implies −ϵψ + α(d − ϵd) ≥ 0. By combining this with (2),
we get:

eψ + α(ds) ≥ −ϵψ + α(d− ϵd) ≥ 0. (19)

By plugging (19) into (4) and (5), we can conclude ḋ ≤ 0 and
α̇(d) ≤ 0. The proof for negative values of d is similar.
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