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Abstract— In this paper, a new variant of the predictor-
corrector interior point method (IPM) pipeline is proposed
for model predictive control (MPC) problems for linear
time-invariant systems, which can be reformulated as
quadratic programming (QP) problems. At each iteration
in the IPM, finding the search direction via solving a
linear system of equations is usually the step with the
highest computational cost. A modified Uzawa algorithm
is developed to improve the performance in the proposed
IPM, which can address the ill-conditioning issue at the
late iterations and reduce computational cost. Results of
an MPC problem example are presented to show the
performance of the proposed pipeline.

I. INTRODUCTION

Model predictive control (MPC) is an optimization-
based technique to obtain the optimal control inputs
for a system at a certain sampling instant, providing
optimal control strategies capable of handling various
system requirements [1]. For practical realization of
MPC, improving the efficiency of the optimization step
is critical. A popular class of algorithms is the interior
point methods (IPMs), in which the optimal solution
is iteratively approached by moving inside a feasible
region. Various IPM frameworks have been developed
(see [2], etc. for detailed summaries), which are ac-
knowledged to be more efficient than other algorithms
(e.g., active-set) for large-scale problems. IPMs typically
converge to the optimum in a small number of iterations.
However, at each iteration, a linear system of equations
must be solved to find the search direction, referred to
as the Newton step (Eq. (4)). Hence, the computational
cost per iteration can be expensive [3], and it is always
of interest to reduce this cost to improve the overall IPM
performance.

For solving the Newton step in IPMs, iterative meth-
ods are often preferred due to memory [4] and hardware
implementation efficiency [5], especially for large-scale
problems. However, it is well-known that the matrix
in the Newton step becomes extremely ill-conditioned
in late iterations [3], resulting in slow convergence for
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most iterative methods. Hence, preconditioning tech-
niques have been employed, including preconditioners
for conjugate gradient (CG) [6], [7], Minimal Residual
(MINRES) method [5], [8], Riccati Recursion [9], etc.
In this paper, we devise an iterative method based on
the Uzawa algorithm for this step. The Uzawa algo-
rithm [10] was designed for solving a linear system of
equations with a 2 × 2 block structure. The algorithm
and its variants, including inexact Uzawa [11], [12] and
preconditioned Uzawa [12], [13] algorithms, are mainly
developed for various saddle point problems.

Among all variants of IPMs, the Mehrotra predictor-
corrector (PC) method ([3], [14]), is widely used due
to its superior performance. A predictor and a corrector
step are computed to find the search direction at each
iteration, leading to a faster convergence than other IPM
schemes [2]. Using this framework, a new variant PC
approach to solve MPC in the quadratic programming
(QP) form is proposed in this paper. We derive an
augmented Newton step (Eq. (8)) for computing the
search directions at each iteration, and develop a mod-
ified Uzawa algorithm (Algorithm 1) to solve this step.
It is shown that the convergence of the approach is
not significantly impacted by the condition number of
the matrix, which can address the ill-conditioning issue
in IPMs. The proposed IPM pipeline is validated by
solving a linear MPC problem. To summarize, the main
contributions are as follows,
• A new predictor-corrector IPM approach is pro-

posed. A modified Uzawa algorithm is employed to help
reduce the computational cost at each iteration.

• Numerical results of an MPC problem are presented
to validate the proposed algorithms.

The rest of the paper is organized as follows: Section
II describes the background of MPC and IPMs. Section
III presents the modified Uzawa algorithm and the
overall PC pipeline. A linear MPC example is solved
in Section IV to illustrate the proposed algorithm’s per-
formance. The conclusion and future work are provided
in Section V.

II. BACKGROUND

A. Model Predictive Control (MPC)

This paper focuses on a linearly constrained MPC
problem of a discrete-time linear dynamical system. The
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state equations are formulated as xi+1 = Axi + Bui,
where xi ∈ Rnx , ui ∈ Rnu are the state and input
vectors respectively at the ith time instant, and A ∈
Rnx×nx and B ∈ Rnx×nu are assumed to be time-
invariant. Additionally, linear constraints are enforced
for states and inputs:

C1xi ≤ d1 (i ∈ Z[1,N ]), C2ui ≤ d2 (i ∈ Z[0,N−1]),

where C1 ∈ RnC1
×nx and C2 ∈ RnC2

×nu are assumed
to be full rank. Redundant rows can be removed if
C1, C2 are not full rank.

For the MPC problem, optimal control inputs are
obtained by solving a nonlinear optimization problem
regarding certain objectives within a finite horizon N .
The objective is considered to be of a quadratic form,

min
xi,ui

J =

N−1∑
i=0

([
xi

ui

]T [
Qi ST

i

Si Ri

] [
xi

ui

]
+

[
qi
ri

]T [
xi

ui

])
+ xT

NQNxN + qTNxN , (1)

with Qi ∈ Rnx×nx , Si ∈ Rnx×nu , Ri ∈ Rnu×nu , qi ∈
Rnx , ri ∈ Rnu . For the problem to be convex, it is

assumed that QN ⪰ 0,

[
Qi ST

i

Si Ri

]
⪰ 0,∀i ∈ Z[0,N−1].

At the time instant t, we define the optimizing variable
vector ξ(t) ∈ Rnξ , which is the concatenating column
vector of variables xt, ut, . . . , xt+N−1, ut+N−1, xt+N .
For simplicity, we drop the notation t for all variables in
ξ(t) as ξ = [xT

0 , u
T
0 , x

T
1 , u

T
1 , · · · , uT

N−1, x
T
N ]T . Hence,

the MPC problem follows a QP formulation at instant t,

min
ξ

J(ξ) =
1

2
ξTQξ + qT ξ, s.t.Aξ = b, Cξ ≤ d. (2)

The detailed matrices and vectors can be found in
Appendix A. For describing the analysis later, let nξ =
N(nx + nu) + nx, nEq = (N + 1)nx, and nIn =
N(nC1

+nC2
) +nC1

denote the dimension of the opti-
mizing variables, the number of equality and inequality
constraints, respectively.

B. IPM & Predictor-Corrector (PC) Method
In this section, a brief introduction of the IPMs and

the Mehrotra PC method is presented. The detailed
expressions can be found in Appendix A and references
such as [2], etc. IPM is a class of algorithms to solve QP
(Eq. (2)) efficiently. For convex problems, the solution of
the Karush–Kuhn–Tucker (KKT) conditions is the global
optimum of Eq. (2), whose formulation is

Qξ∗ + q+AT η∗ +CTϕ∗ = 0, (3a)
Aξ∗ − b = 0, Cξ∗ − d+ s∗ = 0, (3b)
s∗i ϕ

∗
i = 0, s∗i , ϕ

∗
i ≥ 0, ∀i ∈ Z[1,nIn]. (3c)

Here (·)∗ denotes the variables evaluated at the opti-
mum, s ∈ RnIn is the slack variable vector, η ∈ RnEq

and ϕ ∈ RnIn are the Lagrange multipliers for the
equality and inequality constraints, respectively. Let z =

[ξT , ηT , sT , ϕT ]T . The concept of the path-following
IPMs is to iteratively approach z∗ as the solution of
Eq. (3) via Newton’s method, instead of solving Eq. (3)
directly. A centering parameter σ ∈ [0, 1] and a duality
measure µ = sTϕ

nIn
are introduced so that for all i, siϕi =

σµ is maintained at each iteration. At the kth iteration,
let Sk−1 := diag(si,k−1) and Φk−1 := diag(ϕi,k−1),
and define Θk = diag(θi,k) = ΦkS

−1
k , i.e., θi,k =

ϕi,k

si,k
.

The search direction △zk is obtained byQ AT 0 CT

A 0 0 0
0 0 Θk−1 InIn

C 0 InIn 0


△ξ
△η
△s
△ϕ


k

=

r11r12
r21
r22


k

, (4)

⇔
[
H1 HT

2

H2 H4

] [
△z1
△z2

]
=

[
r1
r2

]
⇔ H△z = r, (5)

where △z1 = [△ξT , △ηT ]T , △z2 = [△sT , △ϕT ]T .
The matrices and vectors are detailed in Appendix A.

Compared with traditional path-following IPMs where
△z is solely determined from Eq. (4), the search direc-
tion by Mehrotra PC method [14] at each iteration is
determined in two steps: i) an affine-scaling ‘predictor’
direction and ii) a ‘corrector’ direction. In the predictor
step, let the centering parameter σ = 0, so that △zaff
can be found by solving Eq. (4) as,Q AT 0 CT

A 0 0 0
0 0 Θ InIn

C 0 InIn 0


△ξaff
△ηaff
△saff
△ϕaff

 =

r11r12
−ϕ
r22

 . (6)

The step lengths αs,aff and αϕ,aff along △zaff are then
calculated (see [2]), and we obtain saff = s+αs,aff△saff
and ϕaff = ϕ + αϕ,aff△ϕaff. Next, in the corrector
step, let σ = (µaff/µ)

3, where µ = (sTϕ)/nIn and
µaff = ((saff)

T (ϕaff))/nIn. The search direction △z of
the corrector step is obtained as,

H△z =

 r11
r12

−ϕ+ σµS−11nIn −△Saff△ΦaffS
−11nIn

r22

 , (7)

where △Saff = diag(△saff) and △Φaff = diag(△ϕaff).
The step length α along △z from Eq. (7) can be found
(see [2]), and z is updated by z = z + α△z.

Note that the Newton step is solved twice (Eq. (6), (7))
at each iteration in PC method. However, only the
terms r21, i.e., the third sub-block of the right-hand side
vector r, differ between the equations. Moreover, the
step lengths are only determined by △s and △ϕ, i.e.,
△z2. Hence, the objective is to accelerate the step of
solving Eq. (6) and (7), which will be presented in the
next section.

III. PROPOSED APPROACH

A. Augmented Newton Step

One common approach in IPMs is to eliminate △s
or △ϕ in Eq. (4) [3], leading to an ‘augmented system’
to solve △ξ and △η. However, as discussed above, △s
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and △ϕ are the terms of interest in the PC method,
while △ξ and △η are not required until the end of the
iteration. Hence, we can eliminate △z1 in the Newton
step to obtain

(H4 −H2H−1
1 HT

2 )△z2 = r2 −H2H−1
1 r1

⇔ Ĥ2△z2 = r̃2, (8)

where

Ĥ2 =

[
Θ InIn

InIn −CM1C
T

]
=:

[
Θ InIn

InIn −T

]
, (9a)

r̃2 =

[
r21

r22 −CM1r11 −CM2r12

]
=:

[
r̃21
r̃22

]
. (9b)

Here, M1 and M2 are the (1, 1) and (1, 2) sub-blocks
of H−1

1 with detailed expressions in Appendix A. Eq. (8)
is referred to as the augmented Newton step. It is seen
that Eq. (6) and (7) follow this augmented Newton step
with a slightly different r̃2. After finding △z2 in Eq. (8),
△z1 is obtained by

△z1 = H−1
1 (r1 −HT

2 △z2), (10)

and △z = [△zT1 △zT2 ]
T is the search direction solution.

Note that many matrices are constant throughout the
process, so they only need to be computed once.

Due to the complementary slackness (Eq. (3c)), either
one of ϕi and si will be approximately 0. The ith

inequality constraint is inactive if ϕi → 0, otherwise
active if si → 0. Hence, θi = ϕi

si
will be either very

small (inactive) or very large (active), resulting in an
ill-conditioned Θ in Ĥ2 as IPM proceeds close to the
optimum. This can cause a slow convergence for many
iterative methods to solve Eq. (8). Hence, a modified
Uzawa algorithm is presented to avoid this issue.

B. A Modified Uzawa Algorithm
To obtain △z2 for Eq. (8), the standard Uzawa

algorithm works as follows. Given an initial value of
△z22,0, the variables are updated at the kth iteration as,

△z21,k+1 = Θ−1(r̃21 −△z22,k)

△z22,k+1 = △z22,k + αk(△z21,k+1 − T△z22,k − r̃22)

until convergence, where αk is the step size fitting
the convergence condition. However as discussed previ-
ously, at the late IPM iterations, the condition number of
Θ is large. In this case, small step size αk is required to
guarantee convergence of the standard Uzawa algorithm,
which leads to a slow convergence.

Therefore, to reduce the influence of the condition
number of Θ on the convergence, we modify the stan-
dard Uzawa algorithm with an exact step size calcu-
lation, inspired by [15], to solve Eq. (8). First, we
eliminate △z21 in Eq. (8) and obtain,

(Θ−1 + T )△z22 = Θ−1r̃21 − r̃22 ⇔ (Θ−1 + T )△z22 = r̂.
(11)

Let △z∗22 denote the solution of Eq. (11), then it is
clear that △z∗22 is also the solution to the following least
squares problem Γ(△z22),

min
△z22

Γ(△z22) :=
1

2
∥(Θ−1 + T )△z22 − r̂)∥. (12)

Hence, we can find △z∗22 by solving Eq. (12). At
the kth iteration, gk = △z21,k − T△z22,k − r̃22 is
a descent direction [15]. Thus, along the gk direc-
tion, the exact step size αk to minimize Eq. (12) is
αk = (gTk (Θ

−1 + T )gk)/(g
T
k (Θ

−1 + T )2gk). With this
information, the modified Uzawa algorithm to solve
Eq. (8) is presented in Algorithm 1, where vectors qk, pk
are introduced to replace the computationally expensive
matrix multiplication operations.

Algorithm 1 Modified Uzawa Algorithm
Select an initial △z22,0. Set k = 0.
Compute △z21,0 = Θ−1(r̃21 −△z22,0).
while not converged do

Compute gk = △z21,k − T△z22,k − r̃22.
Compute qk = Θ−1gk, pk = qk+Tgk, αk =

gT
k pk

pT
k pk

.
△z22,k+1 = △z22,k + αkgk.
△z21,k+1 = △z21,k − αkqk.
Stop if ∥[αkg

T
k , αkq

T
k ]

T ∥∞ < εtol.
end while

Computational complexity: To solve Eq. (8), a direct
method to find △s and △ϕ can take up to 8n3

In +2n2
In −

nIn floating-point operations. Using Algorithm 1, the
total computational cost for obtaining △s and △ϕ is
O((2n2

In + 10nIn)N̄it), where N̄it is the average number
of iterations to converge for Algorithm 1. Hence, for
solving Eq. (8), Algorithm 1 and existing iterative meth-
ods can be less computationally expensive when N̄it <
nIn. However, it is well-known that N̄it is negatively
impacted by the condition number of H using iterative
methods like MINRES. Hence, Algorithm 1 is preferable
given N̄it is not significantly impacted by condition
numbers, which is shown next.

Convergence analysis: For the convergence analysis
of Algorithm 1, we require a prior result from [15].
Lemma 1. Consider Lemma 3.1 [15] to the augmented
Newton step (Eq. (8)) with Ĥ2 matrix structure. Suppose
that for all v ∈ RnIn , a constant β > 0 exists such that
⟨(Θ−1 + T )v, v⟩ ≥ β∥v∥2 is satisfied, then we have
⟨(Θ−1 + T )v, v⟩ ≥ γ−2β∥v∥2 for all γ ≥ ∥Θ∥

λmin(Θ) . ■

In fact, Θ is a diagonal matrix with all positive entries,
so Lemma 1 clearly holds in our problem since γ ≥ 1.
Next, convergence analysis of Algorithm 1 is shown.

Theorem 1. Consider Algorithm 1 with any △z22,0 ∈
RnIn . Assume the stabilized condition [15]

⟨(Θ−1 + T )v, v⟩ ≥ β∥v∥2, ∀v ∈ RnIn (13)
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is satisfied for some constant β > 0. Then, △z22,k
converges to △z∗22 with a linear rate as,

∥△z22,k+1 −△z∗22∥2M
∥△z22,k −△z∗22∥2M

=
Γ(△z22,k+1)

Γ(△z22,k)
≤ 1−c0 < 1, (14)

where c0 = β2

γ4∥(Θ−1+T )∥2 , and M = (Θ−1 + T )2.
Hence, [△zT21,k, △zT22,k]

T from Algorithm 1 converges
to the solution △z2 of the augmented Newton step (8).
Proof : The proof is deferred to Appendix B. ■

Remark 1: At late iterations of the IPMs, some entries
of Θ are large while others are nearly 0, leading to the
condition number that can cause slow convergence for
many iterative methods. Theorem 1 indicates that the
convergence rate of the proposed algorithm is close to 1
under this scenario, since c0 becomes small. Moreover,
the algorithm requires a low computational cost at each
iteration, leading to an overall improved performance.

C. New Variant PC Method
For the overall PC pipeline, we develop an additional

step to simplify the calculations of the search directions
using Algorithm 1. In the predictor step, △saff and
△ϕaff are solved by r̃21 = −ϕ. In the corrector step,
r̃21 = −ϕ + σµS−11nIn − △Saff△ΦaffS

−11nIn . Let
△s = △saff +△se and △ϕ = △ϕaff +△ϕe, then △se
and △ϕe can be solved by

Ĥ2

[
△se
△ϕe

]
=

[
σµS−11nIn −△Saff△ΦaffS

−11nIn

0

]
. (15)

Algorithm 2 Variant PC Method
Select an initial z0 = [ξT0 , η

T
0 , s

T
0 , ϕ

T
0 ]

T with s0, ϕ0 >
0. Set k = 0.
while not converged do
zk = [ξTk , η

T
k , s

T
k , ϕ

T
k ]

T for the kth iteration.
µ = (sTk ϕk)/nIn.
(Prediction Step)

Obtain △saff,△ϕaff by (8) with r̃21 = ϕ using
Algorithm 1.

Find step lengths αs,aff, αϕ,aff and scale down as
αs,aff = βsαs,aff, αϕ,aff = βsαϕ,aff.

saff = s+ αs,aff△saff, ϕaff = ϕ+ αϕ,aff△ϕaff.
µaff = (sTaffϕaff)/nIn, σ = (µaff/µ)

3.
(Correction Step)

Obtain △se,△ϕe by (15) using Algorithm 1.
△s = △saff +△se, △ϕ = △ϕaff +△ϕe.
Find step length α and scale down as α = βsα.

Obtain △z1 by Eq. (10).
Update z by zk+1 = zk + α△z.
Test stopping criteria.

end while

The complete PC IPM pipeline is outlined in Algo-
rithm 2. Note that a small offset exists between △z2
obtained from Algorithm 1 and the actual solution of

Eq. (8), which is of the magnitude of εtol. If the step
lengths αs,aff, αϕ,aff and α are used in the new IPM
pipeline, this error may update the variables out of the
interior region and thus leads to a sub-optimal solution
to the problem. Hence, a parameter βs ∈ (0, 1) is
introduced for scaling down the step lengths to avoid this
undesired result. The selection of βs is dependent on εtol
in Algorithm 1 and the matrices of the problem. If βs is
a small number, the IPM proceeds more conservatively.
Finally, the stopping criteria consist of i) the primal
feasibility, ii) the dual feasibility, and iii) the duality
gap [16], [17].
Remark 2: Since the majority of computations occur
in Algorithm 1, the proposed approach is expected to
perform better for the problems where the number of the
inequality constraints nIn is not significantly larger than
the total number of the variables and equality constraints
nξ+nEq. Otherwise, it could be computationally cheaper
to eliminate △z2 to calculate △z1 as the augmented
Newton step.

IV. NUMERICAL EXAMPLE

In this section, the proposed approach is employed to
solve an MPC problem of controlling a servo motor [18].
The continuous-time system model is,

ẋ(t) =

 0 1 0 1
−128 −2.5 6.4 0
0 0 0 1

128 0 −6.4 −10.2

x(t) +

000
1

u(t),

y(t) =

[
1 0 0 0

1282 0 −64.0 0

]
x(t). (16)

The system model is then discretized at dt = 0.05 s
using the first-order Euler discretization. The objective
is to maintain the motor position y1 to a desired angle
at 30◦, subject to the constraints that the shaft torque
|y2| ≤ 78.5 N · m, and the input voltage |u| ≤ 220V.
The weighting matrices are Qi = diag([103, 0, 0, 0]) and
Ri = 10−4. The initial states are assumed to be x0 = 0.

Four approaches are coded in MATLAB to solve this
MPC problem, including the nominal PC method [3],
and the pipeline of Algorithm 2 with the augmented
Newton step solved by i) MINRES [19], ii) LU de-
composition, and iii) the modified Uzawa method. The
window size N is selected from 30 to 90 with an
increment of 10, and the number of time steps in the
overall MPC problem equals N + 10. The tolerance
values are 10−6. As mentioned earlier, since a minor
error in the inner loop results will be created when using
MINRES and the modified Uzawa method, the scaling
parameter βs = 0.8 is selected for both approaches.

Fig. 1 compares the total computational time for the
overall MPC problem and the average time at each
instant. As N increases, Algorithm 1 performs better
than MINRES. The nominal PC method runs faster than
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Fig. 1. Computational Time for MPC Example: (top) total time for
solving all time instants, (bottom) average time for optimal control
problem at each time instant.

Fig. 2. Average Number of Iterations to Converge for Solving
Augmented Newton Step.

Algorithm 2 for relatively small N , but its performance
worsens as N becomes large. Fig. 2 presents the average
number of iterations for convergence of the augmented
Newton step using MINRES and our proposed method.
In contrast to MINRES, as the dimension increases,
the average number of iterations using Algorithm 1
maintains approximately the same, as expected. Overall,
the computational time is affected by i) the number of
iterations for convergence, and ii) computational cost at
each iteration. While the modified Uzawa method needs
more iterations to converge, the computational cost at
each iteration is much less than that of MINRES. Hence,
our proposed approach requires less computational cost.
Remark 3: It is worth noting that if LU decomposition
is employed in Algorithm 2, the computational time
is faster than the MATLAB built-in IPM solver (i.e.,
‘fmincon’), and faster than all the iterative methods
presented. However, the proposed iterative method can
be preferable due to a low memory requirement and
parallel computing capability. For example, Algorithm 1
can be calculated in a distributed manner by splitting the
matrix-vector products T△z22 and Tv, and the overall

computational time can be reduced accordingly. More-
over, as discovered in the inexact IPM framework [20],
the exact solution for the Newton step may not be
needed at each iteration; i.e., a pre-mature termination
of Algorithm 1, which will be studied in future.

In this example, we present that the modified Uzawa
method can outperform other iterative methods like
MINRES for solving (Eq. (8)), so that performance
of the overall IPM can be improved. Other methods
for linear MPC have not been implemented currently.
Additionally, the algorithm is implemented in MATLAB,
thus is not expected to outperform the state-of-the-art QP
solvers coded in C++, such as PIQP [17], HPIPM [21],
etc. The C++ implementation (with parallel computation
by GPU) will be addressed in our future work.

V. CONCLUSION

This paper proposes a new variant of the predictor-
corrector IPM algorithm for solving a linear MPC prob-
lem. A new augmented Newton step is formulated to
potentially reduce the high computational cost of finding
the search direction at each iteration. A modified Uzawa
algorithm is then employed to solve this step, whose
convergence is not significantly impacted by the ill-
conditioning issue at late iterations. Numerical results
of a linear MPC problem are presented to validate the
proposed algorithm. In future, we will implement the
complete IPM pipeline in C++ to compare its perfor-
mance with state-of-the-art solvers.

APPENDIX

A. Notation

R denotes the real number set. Z[a,b] denotes the
integer set from a to b, where integers a ≤ b. Rn is
the n-dimensional real vector set. 1n ∈ Rn is the vector
with all 1 entries. Rn×m is the n×m-dimensional real
matrix set. In ∈ Rn×n denotes the n×n identity matrix.
‘⊗’ refers to the Kronecker product. ‘≻ / ⪰ 0’ refers to
positive definite or semidefinite. ∥v∥ and ∥v∥∞ denote
the L2 and L∞ norm of a vector v. ∥M∥ denotes the
induced L2 norm of a matrix M . ∥v∥M =

√
vTMv for

a vector v and a symmetric positive definite matrix M .
λmin(M) is the smallest eigenvalue of M .

The matrices and vectors in Eq. (2) are as follows,

Q = 2



Q0 ST
0

S0 R0

. . .
QN−1 ST

N−1
SN−1 RN−1

QN


, q =



q0
r0
...

qN−1

rN−1

qN

 ,

A =

IN ⊗
[
−Inx 0
A B

]
0

0 0

+

[
0 0
0 −Inx

]
, b =


x0

0
...
0

 ,
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C =

IN ⊗
[
C1 0
0 C2

]
0

0 C1

 , d =

1N ⊗
[
d1
d2

]
d1

 ,

with the dimensions Q ∈ Rnξ×nξ , q ∈ Rnξ , A ∈
RnEq×nξ , b ∈ RnEq , C ∈ RnIn×nξ , d ∈ RnIn .

The right-hand side of Eq. (4) are as follows,

r1,k =

[
r11,k
r12,k

]
=

[
−Qξk−1 − q−AT ηk−1 −CTϕk−1

−Aξk−1 + b

]
,

r2,k =

[
r21,k
r22,k

]
=

[
−ϕk−1 + σkµkS

−1
k−11nIn

−Cξk−1 + d− sk−1

]
.

The decomposed sub-blocks of H in Eq. (5) are,

H1 =

[
Q AT

A 0

]
, H2 =

[
0 0
C 0

]
, H4 =

[
Θk−1 InIn

InIn 0

]
.

A closed-form solution of M1 and M2 in Eq. (9) can
be found [22] as,

M1 = Q−1 −Q−1AT (AQ−1AT )−1AQ−1, (17a)

M2 = Q−1AT (AQ−1AT )−1, (17b)

so T = CM1C
T in Eq. (9) is symmetric.

B. Proof of Theorem 1
This proof follows Theorem 3.2 in [15] with Θ−1+T

being a symmetric matrix. Let Θ̂ = Θ−1 + T . Since
△z∗22 = Θ̂−1r̂ is the solution for Eq. (12), then at the
kth iteration,

1

2
∥△z22,k −△z∗22∥2M

=
1

2
(△z22,k −△z∗22)

T Θ̂2(△z22,k −△z∗22)

=
1

2
(Θ̂△z22,k − Θ̂△z∗22)

T (Θ̂△z22,k − Θ̂△z∗22)

=
1

2
(Θ̂△z22,k − r̂)T (Θ̂△z22,k − r̂) = Γ(△z22,k).

Given the selected descent direction gk and step size αk,

∥△z22,k+1 −△z∗22∥2M
∥△z22,k −△z∗22∥2M

=
Γ(△z22,k + αkgk)

Γ(△z22,k)

=
1
2g

T
k Θ̂

2gkα
2
k − 2gTk Θ̂gkαk + gTk gk

1
2 (Θ̂△z22,k − r̂)T (Θ̂△z22,k − r̂)

= 1− (gTk Θ̂gk)
2

(gTk Θ̂
2gk)(gTk gk)

. (18)

For the convergence of the proposed algorithm, we
have ∥△z22,k+1−△z∗

22∥
2
M

∥△z22,k−△z∗
22∥2

M
< 1. Hence,

(gTk Θ̂gk)
2

(gTk Θ̂
2gk)(gTk gk)

≤ 1 ⇒ (Θ̂gk, gk)
2

∥Θ̂gk∥2∥gk∥2
≤ 1

⇔ γ−4β2∥gk∥2

∥Θ̂gk∥2
≤ 1 ⇔ β2

γ4∥Θ̂∥2
≤ 1. (19)

γ is a parameter satisfying γ ≥ ∥Θ∥
λmin(Θ) , and β ≤

λmin(Θ̂). Hence, the proposed algorithm is proved to
converge with the notation c0 = β2

γ4∥Θ̂∥2
. ■
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