
Guaranteed Completion of Complex Tasks via
Temporal Logic Trees and Hamilton-Jacobi Reachability

Frank J. Jiang1, Kaj Munhoz Arfvidsson1, Chong He2, Mo Chen2, Karl H. Johansson1,

Abstract— In this paper, we present an approach for guar-
anteeing the completion of complex tasks with cyber-physical
systems (CPS). Specifically, we leverage temporal logic trees
constructed using Hamilton-Jacobi reachability analysis to (1)
check for the existence of control policies that complete a speci-
fied task and (2) develop a computationally-efficient approach to
synthesize the full set of control inputs the CPS can implement
in real-time to ensure the task is completed. We show that, by
checking the approximation directions of each state set in the
temporal logic tree, we can check if the temporal logic tree
suffers from the “leaking corner issue,” where the intersection
of reachable sets yields an incorrect approximation. By ensuring
a temporal logic tree has no leaking corners, we know the
temporal logic tree correctly verifies the existence of control
policies that satisfy the specified task. After confirming the
existence of control policies, we show that we can leverage the
value functions obtained through Hamilton-Jacobi reachability
analysis to efficiently compute the set of control inputs the
CPS can implement throughout the deployment time horizon
to guarantee the completion of the specified task. Finally, we
use a newly released Python toolbox to evaluate the presented
approach on a simulated driving task.

I. INTRODUCTION

Over the past few decades, there has been a signifi-
cant surge in interest towards the development of control
techniques for CPS that offer formal safety and liveness
guarantees. As CPS become more common in various ap-
plications, we need to ensure that these systems not only
meet safety or task requirements, but are guaranteed to never
violate them during deployment. This challenge has called
for the proposal of rigorous methodologies around designing,
validating, and implementing controllers for CPS in a way
that ensures that safety and liveness is always fulfilled, even
in varying or unpredictable environments.

Many of the developed approaches are based on safe-
ty/liveness filters or automata-based temporal logic ap-
proaches. For CPS, there is a large variety of safety/live-

This work was partially supported by the Wallenberg Artificial Intelli-
gence, Autonomous Systems, and Software Program (WASP) funded by the
Knut and Alice Wallenberg Foundation. It was also partially supported by
the Swedish Research Council, Swedish Research Council Distinguished
Professor Grant 2017-01078, the Knut and Alice Wallenberg Foundation
Wallenberg Scholar Grant, and the Swedish Innovation agency (Vinnova),
under grant 2021-02555 Future 5G Ride, within the Strategic Vehicle
Research and Innovation program (FFI).

1F. J. Jiang, K. Munhoz Arfvidsson, and K. H. Johansson are with
the Division of Decision and Control Systems, EECS, KTH Royal Insti-
tute of Technology, Malvinas väg 10, 10044 Stockholm, Sweden, email:
{frankji, kajarf, kallej}@kth.se. They are also affili-
ated with the Integrated Transport Research Lab and Digital Futures.

2C. He and M. Chen are with the School of Computing Sci-
ence, Simon Fraser University, Burnaby, BC V5A 1S6, Canada, email:
chong he@sfu.ca, mochen@cs.sfu.ca.

Fig. 1. We illustrate and annotate an example temporal logic tree that is
used to guarantee the completion of a vehicle parking task.

ness filter-based control approaches [1], such as Hamilton-
Jacobi reachability analysis-based approaches [2], [3], con-
trol barrier function-based approaches [4], [5], and zonotope-
based approaches [6], [7]. Since safety/liveness filters are
developed around the analysis of the dynamics propagation,
the resultant controllers benefit from strong, low-level safety
guarantees that take into account phenomenon such as the
nonlinearity of the underlying dynamics or bounded dis-
turbances. However, with many safety/liveness filter-based
approaches, the tasks that are being solved are usually simple
reach-avoid problems and the difficulty of the safety filter de-
sign can grow quickly as the complexity of the task grows. In
contrast, automata-based temporal logic control approaches,
such as [8]–[12], leverage the richness of temporal logic
languages like linear temporal logic to specify, verify, and
synthesize control policies for CPS. Although automata-
based temporal logic approaches are powerful for working
with complex tasks, the application of these approaches to
nonlinear systems or disturbed systems can be impractical
due to poor online scalability [13].

To combine the strengths of both approaches, there have
been a number of proposals to combine safety/liveness filters
with temporal logic over the recent years. In [14], authors
explore the use of Hamilton-Jacobi reachability analysis to
synthesize control sets for satisfying signal temporal logic
specifications. In [15], authors explore the application of
control barrier functions to efficiently synthesize control
policies for a signal temporal logic fragment. More recently,
authors introduce a tree-based computation model called

2024 IEEE 63rd Conference on Decision and Control (CDC)
December 16-19, 2024. MiCo, Milan, Italy

979-8-3503-1632-2/24/$31.00 ©2024 IEEE 5203

temporal logic trees that directly utilizes backward reach-
ability analysis to verify and synthesize control sets for
linear temporal logic [13] and signal temporal logic [16].
While temporal logic trees have shown initial promise in
CPS applications such as automated parking [17] and remote
driving [18], there are still a number of challenges with
the general application of temporal logic trees. Notably, one
of the main challenges is explicitly synthesizing the set of
control inputs that is guaranteed to satisfy the constructed
temporal logic tree.

A. Contribution

The main contribution of this paper is an approach that
efficiently synthesizes the least-restrictive set of control
inputs that a CPS can implement to guarantee the com-
pletion of a specified task. To do this, we leverage the
value functions resulting from Hamilton-Jacobi reachability
analysis to efficiently compute least-restrictive control sets
using a computation inspired by the work presented in [19].
These control sets are “least-restrictive,” since they give the
full set of inputs that the system can implement to stay
within the computed satisfaction set. We start by detailing
how to construct a temporal logic tree using Hamilton-
Jacobi reachability analysis and show how we can check
if there exist control policies that satisfy the constructed
tree. Then, we develop a computationally efficient approach
to synthesizing least-restrictive control sets from the value
functions underlying the constructed temporal logic tree and
evaluate the approach on a simulated driving task. Explicitly,
the contributions of this paper can be summarized as follows:

1) we detail an algorithm to check for the existence of
satisfying control policies for a constructed temporal
logic tree,

2) we introduce a computationally-efficient approach for
explicitly computing least-restrictive control sets from
temporal logic trees,

3) we evaluate the methods presented in this paper on a
simulated driving task using the newly open-sourced
toolbox called “Python Specification and Control with
Temporal Logic Trees” (pyspect)1.

II. PRELIMINARIES

In this section, we recall and introduce preliminary ma-
terial that we use in the rest of the paper. Then, in the
following section, we start using this material to clearly state
the challenges and problems addressed in this work.

A. System Dynamics

In this work, we consider systems with the following
control-affine dynamics

ż = f(z) + g(z)u, (1)

where, z ∈ Rnx and u ∈ U ⊂ Rnu . f and g is uni-
formly continuous, bounded, and Lipschitz continuous in
z. Given deployment time horizon T , we denote control

1https://github.com/KTH-SML/pyspect

functions as u(·) : [0, T] → U , which we assume are
measurable, and let U be the function space containing
all u(·). Let ζ(t; z0, t0, u(·)) ∈ Rnx be the state of sys-
tem (1) at time t along a trajectory starting from initial state
ζ(t0; z0, t0, u(·)) = z0 under u(·). For simplicity, we will
sometimes write ζ(·) to denote a trajectory of system (1).

B. Temporal Logic

In this section, we introduce the temporal logic we use to
define complex tasks for system (1). In this work, we work
with linear temporal logic (LTL). While LTL is a simpler
logic compared to other popular logics like signal temporal
logic, we choose to work with LTL in this work since we
can express sufficiently complex tasks for our examples.

An LTL formula is defined over a finite set of atomic
propositions AP with both logic and temporal operators. We
can describe the syntax of LTL with:

φ ::= true | p ∈ AP | ¬φ | φ1 ∧ φ2 | φ1 Uφ2,

where U denotes the “until” operators. By using the negation
operator and the conjunction operator, we can define disjunc-
tion, φ1∨φ2 = ¬(¬φ1∧¬φ2). Then, by employing the until
operator, we can define: (1) eventually, ♢φ = trueUφ and
(2) always, □φ = ¬♢¬φ. In this work, we omit the next
operator ⃝, since we develop our approach using Hamilton-
Jacobi reachability analysis for continuous time models
like (1). Instead of working with LTL over infinite traces, we
work with LTL over finite traces. The semantics for LTL over
finite traces can be adapted from the semantics of the more
common LTL over infinite traces by introducing a “last” time
T and replacing ∞ with T [20]. This is particularly useful
for working with general, nonlinear reachability analysis
approaches as they typically do not compute or approximate
infinite horizon reachable sets. In this work, we refer to T
as the “deployment time horizon”.

Definition 2.1: (LTL semantics) For an LTL formula φ,
a trajectory ζ(·), a deployment time horizon T , and a time
instant check 0 ≤ t ≤ T , the satisfaction relation (ζ(·), t) |=
φ is defined as

(ζ(·), t) |= p ∈ AP ⇔ p ∈ l(ζ(t)),

(ζ(·), t) |= ¬φ ⇔ (ζ(·), t) ⊭ φ,

(ζ(·), t) |= φ1 ∧ φ2 ⇔ (ζ(·), t) |= φ1 ∧ (ζ(·), t) |= φ2,

(ζ(·), t) |= φ1 ∨ φ2 ⇔ (ζ(·), t) |= φ1 ∨ (ζ(·), t) |= φ2,

(ζ(·), t) |= φ1 Uφ2 ⇔ ∃t1 ∈ [t, T] s.t.{
(ζ(·), t1) |= φ2,

∀t2 ∈ [t, t1), (ζ(·), t2) |= φ1,

(ζ(·), t) |= ♢φ ⇔ ∃t1 ∈ [t, T], s.t. (ζ(·), t1) |= φ,

(ζ(·), t) |= □φ ⇔ ∀t1 ∈ [t, T], s.t. (ζ(·), t1) |= φ.

where p is an atomic proposition and l(·) is a labeling
function defined as l : Rnx → 2AP . For a proposition p,
we define the following function for relating the proposition
to a state set: L−1(p) = {z ∈ Rnx | p ∈ l(z)}. Using l(·)
and L−1(·), we are able to associate sets in the state space
of system (1) with atomic propositions.

5204

Definition 2.2: (True Satisfaction Set) For an LTL for-
mula φ, we say Φ is φ’s true satisfaction set when Φ is the
largest set in Rnx where ∀z ∈ Φ, ∃u(·) ∈ U, ∀t ∈ [0, T],
(ζ(t; z, 0, u(·)), t) |= φ.

C. Temporal Logic Trees

Once we have specified an LTL specification for our
system, we can use temporal logic trees (TLT) to check
the feasibility and synthesize control sets for satisfying the
specification. In Fig. 1, we illustrate an example of a TLT
that is constructed for a parking task.

Definition 2.3: (Temporal Logic Tree) A temporal logic
tree (TLT) is a tree for which each node is either a state set
node corresponding to a subset of Rnz , or an operator node
corresponding to one of the operators {¬,∧,∨, U ,□}; the
root node and the leaf nodes are state set nodes; if a state
set node is not a leaf node, its unique child is an operator
node; the children of any operator node are state set nodes.

From a specified LTL formula, we can follow [13, Algo-
rithm] to construct a temporal logic tree. Once the temporal
logic tree is constructed, we can evaluate whether the LTL
formula is satisfiable by checking whether the root of the
temporal logic tree is an empty set or not [13, Theorem V.1].

1) Reachability Analysis: To construct a TLT, we need to
compute the following types of reachable tubes.

Definition 2.4: (Backward Reachable Tube) Given sys-
tem (1), a target set T ⊆ Rnx , and a constraint set C ⊆ Rnx ,
we define the backward reachable tube as

R(T ; C) = {z | ∃u(·) ∈ U,
∃τ ∈ [0, T), ζ(τ ; z, 0, u(·)) ∈ T ,

∀τ ′ ∈ [0, τ), ζ(τ ′; z, 0, u(·)) ∈ C},

where R(T ; C) contains the set of states that are able to
reach the target set T while staying within constraint set C.
For simplicity, we will denote this operation with R(·).

Definition 2.5: (Robust Control Invariant Set) For sys-
tem (1) and constraint set C ⊆ Rnx , RCI(C) ⊆ Rnx the
largest robust control invariant set such that ∀z ∈ RCI(C)
there ∃u(·) ∈ U such that ∀τ ∈ [0, T], ζ(τ ; z, 0, u(·)) ∈ C.

We denote the over- and under-approximation of the true
backward reachable tube (or largest RCIS) with R and R
(or RCI and RCI), respectively.

D. Least-Restrictive Control Sets

After constructing TLTs, we can compute control sets
that can be used to saturate the inputs to system (1) to
guarantee that the verified task is completed. We define a
least-restrictive control set as the following:

Definition 2.6: (Least-Restrictive Control Set) Given
system (1), state z ∈ Rnx , time t ∈ [0, T], a reachable tube
S, the least-restrictive control set is defined as

U(z, t) = {u(t) : u(·) ∈ U,∀τ ∈ [t, T],

ζ(τ ; z, t, u(·)) ∈ S}, (2)

where U(z, t) is a state and time feedback control set that
contains all the control inputs system (1) is allowed to

implement at state z and time t to stay within the reachable
tube for the rest of the deployment time horizon.

III. CHALLENGE: COMPLETION OF COMPLEX TASKS

In this section, we clarify the specific problems we address
in this work. To do this, we start by considering an example
that will be evaluated at the end of this paper: vehicle
parking. As is thoroughly discussed in [17], although vehicle
parking may seem like a task that is simple, the complexity
of the task easily grows in parking scenarios with stringent
requirements. There may be varying speed requirements,
hard-to-navigate driving spaces, multiple available spots, etc.
As the complexity of the task grows or even changes in real-
time (in the case where the parking environment changes),
it’s critically important we are able to guarantee the vehicle
is able to safely and successfully complete it’s parking
task. One approach to this problem is constructing TLTs
using Hamilton-Jacobi (HJ) reachability analysis [17], [18],
[21]. A challenge faced by these works is that the least-
restrictive control set is used implicitly and is not explicitly
computed. Additionally, there is still no formal treatment
for the challenge of checking whether there exists control
policies that satisfy the constructed temporal logic tree.
To address these two challenges, we solve the following
problems.

Problem 3.1: Given system (1) and a TLT T constructed
using HJ reachability analysis for LTL task φ, guarantee
that there exists control policies where system (1)’s resultant
trajectory fully satisfies T.

Problem 3.2: Given that there exists control policies such
that system (1) is able to satisfy the constructed T, efficiently
utilize the value functions from the HJ reachability analysis
to compute a least-restrictive control set Û that contains all
of the control inputs system (1) can implement in real-time
to guarantee it satisfies φ.

IV. CONSTRUCTING TLT USING HJ REACHABILITY

In this section, we will detail the HJ reachability par-
tial differential equations (PDE) that need to be solved
for constructing the temporal logic tree. In particular, we
introduce the computations involved with approximating the
satisfaction sets of {U ,♢,□}.

A. Key HJ PDEs

We define two key HJ PDEs that need to be solved to
approximate solutions to R(·) and RCI(·) For the first
PDE, with implicit target surface function VT as our initial
condition, we solve for solution VR under implicit constraint
surface function VC in the constrained, reach HJ PDE

max{Dt′VR(z, t′) + min
u∈U

DzVR(z, t′) · f(z, u),

−VC(z)− VR(z, t′)} = 0,

VR(z, 0) = VT (z),
(3)

where t′ ≤ 0 is the time used to solve the PDE backwards
in time. With VC and VT defined such that C and T are their
respective zero sub-level sets (e.g. using a signed distance

5205

Fig. 2. We illustrate and describe all the different branches that can occur in a TLT and their corresponding state set and operator nodes.

function), we compute the backward reachable tube defined
in Definition 2.4 as the zero sub-level set of the solution
of (3) at time t′ = −T , which we write explicitly as

R(T ; C) = {z | VR(z,−T) ≤ 0}. (4)

Then, for the second PDE, it will be useful to introduce
the concept of avoid tubes, although they are not always
necessary for temporal logic trees.

Definition 4.1: (Avoid Tube) Given the system (1) and a
set the system should stay outside of O ⊂ Rnx , we define
an avoid tube as

A(O) = {z | ∀u(·) ∈ U,∃τ ∈ [0, T), ζ(τ ; z, 0, u(·)) ∈ A},
We then introduce the second HJ PDE that we solve to

find avoid tubes. With the implicit avoid surface function
VO as an initial condition, we solve for VA in the following
avoid HJ PDE,

Dt′VA(z, t
′) + max

u∈U
DzVA(z, t

′) · f(z, u) = 0,

VA(z, 0) = VO(z),
(5)

We can compute the avoid tube defined in Definition 4.1 as
the zero sub-level set of the solution of (5) at time t′ = −T ,
which we write explicitly as

A(O) = {z | VA(z,−T) ≤ 0}. (6)

Next, we show how we utilize (4) and (6) to approximate
the satisfaction sets for {U ,♢,□} and verify that there exists
control policies that satisfy each operator.

B. Approximating U (Until) and ♢ (Eventually)

Let φ1 and φ2 be two LTL sub-formulae. In the left-most
branch in Fig. 2, we can see how φ1 Uφ2 looks as a TLT
branch when C and T correspond to the satisfaction sets of
φ1 and φ2, respectively. Now, let Φ1, Φ2, Vφ1 , Vφ2 be the
satisfaction state sets and surface functions corresponding to
LTL formulae φ1 and φ2. Then, we approximate φ1 Uφ2

based on (4) by finding

R(Φ2; Φ1) = {z | VR(z,−T) ≤ 0}. (7)

In other words, the until operator corresponds to solving a
constrained backward reachability problem with the target
as the satisfaction set of φ2 and with the constraint as the
satisfaction set of φ1. Since ♢φ2 = trueUφ2, we perform
a similar computation to (7) to find the satisfaction set for

the eventually operator. However, since Φ1 becomes the
satisfaction set of true, we end up solving an unconstrained
backward reachability problem, as is illustrated in the middle
reachability branch in Fig. 2. For most solvers, this is
equivalent to dropping VC(z) in (3). Depending on how many
ancestor ¬ operator nodes the U node has, we may need to
change whether we under- (R(·)) or over-approximate (R(·))
solutions to (4). This can be done numerically in level-set
methods for solving (4) [2].

C. Approximating □ (Always)

Let φ and Φ ⊂ Rnx be an LTL sub-formula and the
corresponding satisfaction set. In Definitions 2.5, RCI(·)
is defined around the existence of a control policy u(·)
that keeps system (1) within a set for all time. Since this
is consistent with the satisfaction requirement of □φ, to
approximate the satisfaction set of □φ we can find an
approximate solution to RCI(Φ). In Fig. 2, we can see how
□φ looks as a TLT branch when C = Φ. For approximating
RCI(Φ), we utilize the avoid tube defined in Definition 4.1.
Instead of directly approximating the largest set of states
where there exists control policies that keep the system in
Φ, it is more common to approximate the set of states where
for all control policies the system is forced outside of Φ
and taking the complement of this set. In other words, we
compute RCI(·) as the following:

RCI(Φ) = AC(ΦC). (8)

Based on (6) and with O = ΦC , we approximate □φ with

RCI(Φ) = {z | VA(z,−T) > 0}. (9)

Similar to the U operator, depending on how many ancestor
¬ operator nodes the □ node has, we may need to change
whether we under- (RCI(·)) or over-approximate (RCI(·))
solutions, which is done by numerically over- or under-
approximating (6), respectively.

V. COMPUTING LEAST-RESTRICTIVE CONTROL SETS

In this section, we present our approach for efficiently
computing least-restrictive control sets from a TLT con-
structed using HJ reachability analysis. We start by introduc-
ing an algorithm for quickly checking if control policies still
exist for satisfying the TLT. Then, we introduce the explicit
computation of the least-restrictive control sets that enable a
system to follow the existing control policies.

5206

Algorithm 1 ctrlExists
Input: Root node R of a constructed TLT
Output: E, O, U, or I
1: if isLeaf(R) then
2: return approxDirection(R) # E, O, U
3: end if
4: c = child(R)
5: G = grandChildren(R)
6: if length(G) == 1 then
7: g = G
8: a = ctrlExists(g)
9: if a == I then return I

10: # check operator nodes with single child
11: if c == U or c == □ then
12: ao = approxDirection(c)
13: if a0 != a then return I else return a
14: else if c == ¬ then
15: return -1 * a
16: end if
17: else
18: g1, g2 = G
19: a1, a2 = ctrlExists(g1), ctrlExists(g2)
20: if a1 == I or a2 == I then return I
21: # check operator nodes with two children
22: if c == ∧ then
23: if a1==U or a2==U then return I else return O
24: else if c == ∨ then
25: if a1 == a2 then return a1
26: else if a1 == E then return a2
27: else if a2 == E then return a1
28: else return Invalid
29: end if
30: end if
31: end if

A. Checking for existing control policies

From [13], we know that the constructed TLT for an LTL
specification φ should under-approximate the true satisfac-
tion set of φ. However, as is emphasized in [13, Theorem
V.1] the under-approximation is tied to the existence of
control policies that satisfy the constructed TLT. In some
applications or tasks, this can be obvious to the designer.
However, in many applications or tasks, this should be auto-
matically checked. One of the key challenges with automati-
cally checking and ensuring that there exists control policies
that satisfy the constructed TLT is the so-called “leaking
corner problem.” The leaking corner problem occurs when
two satisfaction sets are intersected. This problem also arises
in the context of system decomposition [19], [22] and classic
reach-avoid problems [23]. In the construction of TLTs, this
problem is further complicated by the fact that in an LTL
formula, there may be many nested {¬,∧,∨}, which all have
requirements and effects around approximation directions. To
address this, we start by characterizing the effect of the set
operations underlying {¬,∧,∨}.

Lemma 5.1: (Effect of ¬) Let φ be an LTL subformula,
Φ ⊂ Rnx be φ’s true satisfaction set. Similarly, let Φ′ be the
true satisfaction set of ¬φ. Also, let Φ̂ be either an over- or
under-approximation of Φ.

• Let Φ̂ be an over-approximation of Φ (Φ̂ ⊃ Φ), then
Φ̂C is an under-approximation of Φ′ (Φ̂C ⊂ Φ′).

• Let Φ̂ be an under-approximation of Φ (Φ̂ ⊂ Φ), then
Φ̂C is an over-approximation of Φ′ (Φ̂C ⊃ Φ′).

Algorithm 2 leastRestrictiveCtrl
Input: state z ∈ Rnx , time t, and constructed TLT T
Output: least-restrictive control set Uz,t ⊆ U for z and t

1: C = controlTree(z, t, T) # [13, Algorithm 4]
2: Ĉ = compressTree(C) # [13, Algorithm 2]
3: Uz,t = setBacktrack(Ĉ) # [13, Algorithm 5]
4: return Uz,t

Proof: Proof in [24, Appendix I].
In other words, the ¬ operator reverses the approximation
direction.

Lemma 5.2: (Effect of ∧) Let φ = φ1∧φ2, and Φ,Φ1,Φ2

be their respective, true satisfaction sets. Then,

Φ ⊆ Φ1 ∩ Φ2 (10)
Proof: Proof in [24, Appendix I].

In other words, the set intersection underlying ∧ can lead
to over-approximation of the true satisfaction set. This is
the key leaking corner issue, as we want the constructed
TLT to under-approximate the true satisfaction set. However,
this issue can be remedied if the ∧ operator node has an ¬
operator node as an ancestor.

Corollary 5.1: (Effect of ¬ on ∧) Let φ = φ1 ∧ φ2, and
Φ,Φ1,Φ2 be their respective, true satisfaction sets. Then, we
get the following under-approximation of ¬φ

ΦC ⊇ (Φ1 ∩ Φ2)
C (11)

Proof: Seen through Lemma 5.1 and Lemma 5.2.
In other words, if an ¬ is applied to an ∧, the result is an
under-approximation. This means that the resulting set only
contains states where there exist control policies that satisfy
the corresponding sub-formula.

Remark 5.1: Within the scope of this work, we will pro-
pose an algorithm for just checking if the leaking corner
issue affects the constructed TLT. However, there are a
couple other approaches to treat this problem: (1) additional
assumptions are made to ensure ∧ results in an exact
result, and (2) post-processing of the ∧ operator’s under-
lying set intersection to ensure result is exact or an under-
approximation. In some cases, the first approach is viable
and an assumption can be made (i.e. one child is the subset
of the other child) where leaking corner problems is avoided.
However, for cases when the leaking corner problem cannot
be avoided, an important future work will be to develop and
incorporate new, computationally-efficient algorithms for the
second approach.

Lemma 5.3: (Effect of ∨) Let φ = φ1∨φ2, and Φ,Φ1,Φ2

be their respective, true satisfaction sets. Then,

Φ ≡ Φ1 ∪ Φ2 (12)
Proof: Proof in [24, Appendix I].

This means that there is no contribution of additional ap-
proximation from ∨ operators when taking the union of the
underlying satisfaction sets. That said, there are requirements
on the children of ∨, which are outlined in Algorithm 1.

Now that we have characterized the individual effects of
the {¬,∧,∨} operators on the existence of control policies,
we present Algorithm 1. In Algorithm 1, we recurse through

5207

Fig. 3. The full, under-approximating satisfaction set for the parking task
computed by constructing the temporal logic tree using HJ reachability
analysis

the TLT and consider the numerical approximations under-
lying {U ,□} and the approximation effects of {¬,∧,∨} to
decide whether control policies exist the satisfy the full TLT.
For the output of the algorithm, we enumerate the variables
E = 0, O = +1, U = −1, and I = NaN corresponding to
exact, over-, under-approximation, and invalid, respectively.

Theorem 5.1: Let φ be an LTL formula and R be the
non-empty root node of a constructed TLT T for verifying
φ. If ctrlExists(R) returns U, then there exists control
policies that satisfy T.

Proof: Proof in [24, Appendix I].

B. Synthesizing Least-Restrictive Control Sets

Now, to synthesize the least-restrictive control set for full
TLT, we follow [13, Algorithm 3]. For clarity, we include an
adapted version in Algorithm 2. We start by computing the
individual least-restrictive control sets for U and □ operator
nodes (Line 11 and 23 in [13, Algorithm 4]). This is done by
computing the following control set using the value function
VΦ from performing HJ reachability analysis:

UΦ(z, t) = {u ∈ U | DtVΦ(z,−T + t)+

DzVΦ(z,−T + t)⊤(f(z) + g(z)u) ≤ 0}. (13)

For 0 ≤ t ≤ T , let the computational time step be δt, and
s = −T + t. The value function can be modified with first-
order Taylor expansion:

VΦ(ζ(s+ δt; z, s), s+ δt) = VΦ(z, s)+

DtVΦ(z, s)δt+DzVΦ(z, s)
⊤(f(z) + g(z)u)δt ≤ 0. (14)

The above equation implies that the satisfaction of Φ induces
the least restrictive control set as the half-space:

a+ b⊤u ≤ 0 (15)

with

a = VΦ(z, s) +DtVΦ(z, s)δt+DzVΦ(z, s)
⊤f(z)δt

b⊤ = DzVΦ(z, s)
⊤g(z)δt

This results in a least-restrictive control set that is an
additional control constraint on top of any original control
constraints, such as control bounds. Readers can find a

code snippet for computing this control set using the odp
toolbox [25] in [24, Appendix II].

Proposition 5.1: Satisfaction of Φ is guaranteed if
VΦ(z, s) ≤ 0. In this case, the state z at time s has a
nonempty feasible control set.

Proof: This is a well-known result (for example, see
[26]), and in the “reach” case follows immediately from Eq.
(3). The first argument of the max operator, Dt′VR(z, t′) +
minu∈U DzVR(z, t′) · f(z, u), is the total time derivative of
VR when the optimal control is applied. Thus, Eq. (3) implies
that VR is non-increasing along optimal trajectories. It is
also known that VR exists and is unique [27], [28], so by
construction, if VR(z, s) ≤ 0, there must exist a control to
keep the value of VR non-positive. This can also be shown
in a similar argument involving VA in the “avoid case”,
following Eq. (5). We conclude the proof by noting that
VΦ(z, s) is equal to either VR or VA depending on Φ.

Finally, we can show that the output of Algorithm 2 will
result in the guaranteed completion of the specified task.

Theorem 5.2: Let φ be an LTL formula and T be the
constructed TLT that passes ctrlExists. If at t = 0, z(0)
is in the root node’s state set and ∀t ∈ [0, T], system (1)
implements u(t) ∈ Uz(t),t, where Uz(t),t is the output of
leastRestrictiveCtrl(z(t), t,T), then system (1) is
guaranteed to satisfy φ.

Proof: Since the system starts at time t = 0 with
z(0) in T’s root node’s state set, then we know the system
initially satisfies φ since the root node’s state set under-
approximates the true satisfaction set of φ. In Algorithm 2,
when the control tree is synthesized, each state set node
in T is replaced by least-restrictive control sets (13) or
the union/intersection of control sets (13). We know from
Proposition 5.1 that the individual least-restrictive control
sets that are the parents of U and □ operator nodes in the
control tree are nonempty feasible control sets and ensure the
system satisfies the corresponding LTL sub-formula. Since
we know T passes ctrlExists, we know that T does
not have leaking corners and the combined least-restrictive
control sets will also be nonempty feasible control sets. Since
compressTree and setBacktrack only apply unions
to the least-restrictive control sets up T, the final output Uz,t

of setBacktrack is also the nonempty feasible control set
containing all of the control inputs the system can implement
to satisfy φ at state z and time t.

Now that we are able to check the existence of satisfying
control policies and synthesize least-restrictive control sets
for a specified task, we illustrate and evaluate our approach
on a simulated driving task in the next section.

VI. SIMULATED DRIVING EXAMPLE

In this section, we apply the presented approach to a
simulated driving task where a vehicle is tasked to park into
a parking lot on a road network inspired by the Kyrkogatan-
Nygatan intersection in Eskilstuna, Sweden. For this task, the
vehicle starts from somewhere in the road network nearby
the parking lot and while it’s entering the parking lot, it’s task
will be changed due to an unplanned blocking of one part of

5208

Fig. 4. We illustrate the deployment of the simulated vehicle for the specified parking task. In the two larger plots, we show the full environment and an xy
projection (in blue) of the 5D satisfaction state set of the constructed TLT. In the smaller plots, we show the velocity-heading projection of the constructed
TLT’s satisfaction set (in blue) and the computed least-restrictive control set (in green) for different states and times throughout the task completion.

the parking lot. With this example, we illustrate the resultant
least-restrictive control sets that are computed during the
deployment to show case how the sets correctly constrain
the vehicle’s acceleration and steering rates to guarantee
the parking task is completed. For this example, we utilize
the newly released pyspect toolbox, where the code for the
example itself can also be found.

A. Nonlinear, 5-state Vehicle Model

For the vehicle, let z = [x, y, θ, δ, v]⊤ be the state, where
x, y, θ, δ, and v are the vehicle’s x-position, y-position, head-
ing angle, steering angle, and velocity, respectively. Then,
let u = [s, a]⊤ be the input, where s and a are the steering
rate and acceleration inputs into the vehicle, respectively.
Explicitly, we write the dynamics as the following:

f(z) =

v cos θ
v sin θ
v tan δ

L
0
0

 , g(z) =

0 0
0 0
0 0
1 0
0 1

 ,

where L is the wheel-base length of the vehicle.

B. Task Specification

When constructing the task specification, we start by
defining atomic propositions that describe this environment
in terms of road geometries and other state constraints.
For convenience, we denote state inequalities using propo-
sitions like x<c where L′(x<c) ≡ {z ∈ Rnx | x < c}.
Then, we define sub-formulae such as Kyrkog. Geometry,
P-Lot Geometry, etc. that describe the drivable space. We
also embed any speed limits and heading constraints into

these formulae, for instance,

Kyrkogatan = Kyrkog. Geometry

∧ (y<3 → v>0.4 ∧ v<1.0)

∧ (y≥3 → v>0.3 ∧ v<0.6)

∧ (y<1.8 → θ>+π
5

∧ θ<−π
5
)

∧ (y≥1.8 → θ>+4π
5

∨ θ<−4π
5
).

For the exact definitions and values, we refer readers to the
implementation available in pyspect.

The task is for the vehicle to park in one of the two
empty parking spots. Namely, the target is Empty Spots =
Parking Spot 1 ∨ Parking Spot 2. In practice, picking be-
tween these can relate to which is closest or is most ac-
cessible. Furthermore, the sub-formulae

φL = (Kyrkogatan ∨ P-Lot Left)UEmpty Spots and
φR = (Kyrkogatan ∨ P-Lot Right)UEmpty Spots

allow the vehicle to go either left or right inside parking lot.
With these, the final task specification is φ = φL ∨ φR and
the corresponding TLT is shown in Fig. 1.

C. Results

The TLT is evaluated with a time horizon T = 30 seconds.
In Fig. 3, we visualize the time evolution of the satisfaction
set along the xy-plane. Since φ allows the vehicle to reach the
empty spots via either left or right pass, we can see the tube
filling the entirety of the parking lot’s inside. The vehicle
can enter the parking lot from both sides of Kyrkogatan
and, as such, we can see the tube’s ridge near the entrance
splitting in both directions. Consider now that the left pass
is blocked, see Fig. 4, which forces the vehicle to go via the
right pass. The unplanned block results in the pruning of the

5209

TLT branch (shown in Fig. 1) corresponding to φL. Then,
the only remaining branch corresponds to φR, forcing the
vehicle to switch to the right pass for the parking maneuver.
Consequently, the backward reachable tube becomes much
smaller and the system has stricter constraints on control
inputs. Without needing to reconstruct the TLT, it is possible
to react to the unplanned block by following the constraints
imposed by computing least-restrictive control sets based
on φR. Constructing the TLT in this simulation, with a 30
second time horizon, took 65.01 seconds on a system with an
AMD Ryzen Threadripper 3970X and an NVIDIA GeForce
RTX 2080 Ti while computing the least-restrictive control
set took 18 milliseconds on average, resulting in a control
rate of around 50 Hz.

VII. CONCLUSION

In this paper, we present an approach for guaranteeing a
CPS completes an LTL task by synthesizing least-restrictive
control sets from TLTs constructed from HJ reachability
analysis. We are able to take advantage of the richness of
LTL task specification together with the strong, low-level
guarantees provided by HJ reachability analysis. We detail
the key HJ reachability computations required to construct
a TLT and provide an algorithm that verifies the existence
of control policies that satisfy the constructed TLT. Then,
if there exists control policies that satisfy the constructed
TLT, we can efficiently compute least-restrictive control sets
that guarantee the CPS completes the specified task. To
implement and evaluate the approach, we develop pyspect for
working with TLT. Using this toolbox, we showcase the effi-
cacy of the approach on a simulated driving example where
we visualize the evolution of the least-restrictive control sets
and find the computation to be efficient. Our future work
includes both the development of computationally-efficient
approaches to directly resolving leaking corner issues and
deploying this method on real hardware.

REFERENCES

[1] K. P. Wabersich, A. J. Taylor, J. J. Choi, K. Sreenath, C. J. Tom-
lin, A. D. Ames, and M. N. Zeilinger, “Data-Driven Safety Fil-
ters: Hamilton-Jacobi Reachability, Control Barrier Functions, and
Predictive Methods for Uncertain Systems,” IEEE Control Systems
Magazine, vol. 43, no. 5, pp. 137–177, 2023.

[2] I. M. Mitchell, Application of level set methods to control and
reachability problems in continuous and hybrid systems. stanford
university, 2002.

[3] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin, “Hamilton-
Jacobi Reachability: A Brief Overview and Recent Advances,” no.
arXiv:1709.07523, sep 2017.

[4] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876,
2016.

[5] J. J. Choi, D. Lee, K. Sreenath, C. J. Tomlin, and S. L. Herbert,
“Robust control barrier–value functions for safety-critical control,” in
2021 60th IEEE Conference on Decision and Control (CDC). IEEE,
2021, pp. 6814–6821.

[6] M. Althoff, “An introduction to CORA 2015,” in Proc. of the
Workshop on Applied Verification for Continuous and Hybrid Systems,
2015.

[7] N. Kochdumper, F. Gruber, B. Schürmann, V. Gaßmann, M. Klischat,
and M. Althoff, “AROC: A Toolbox for Automated Reachset Optimal
Controller Synthesis,” in Proc. of the 24th International Conference
on Hybrid Systems: Computation and Control, 2021.

[8] B. Yordanov, J. Tumova, I. Cerna, J. Barnat, and C. Belta, “Temporal
logic control of discrete-time piecewise affine systems,” IEEE Trans-
actions on Automatic Control, vol. 57, no. 6, pp. 1491–1504, 2011.

[9] S. Karaman, R. G. Sanfelice, and E. Frazzoli, “Optimal control of
mixed logical dynamical systems with linear temporal logic specifi-
cations,” in 2008 47th IEEE Conference on Decision and Control.
IEEE, 2008, pp. 2117–2122.

[10] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding Horizon
Temporal Logic Planning,” IEEE Transactions on Automatic Control,
vol. 57, no. 11, pp. 2817–2830, 2012.

[11] A. Ulusoy and C. Belta, “Receding horizon temporal logic control
in dynamic environments,” The International Journal of Robotics
Research, vol. 33, no. 12, pp. 1593–1607, 2014.

[12] C. Belta, B. Yordanov, and E. A. Gol, Formal Methods for Discrete-
Time Dynamical Systems. Springer, 2017.

[13] Y. Gao, A. Abate, F. J. Jiang, M. Giacobbe, L. Xie, and K. H.
Johansson, “Temporal Logic Trees for Model Checking and Control
Synthesis of Uncertain Discrete-time Systems,” IEEE Transactions on
Automatic Control, p. 1, 2021.

[14] M. Chen, Q. Tam, S. C. Livingston, and M. Pavone, “Signal tem-
poral logic meets reachability: Connections and applications,” in
International Workshop on the Algorithmic Foundations of Robotics.
Springer, 2018, pp. 581–601.

[15] L. Lindemann and D. V. Dimarogonas, “Control barrier functions for
signal temporal logic tasks,” IEEE control systems letters, vol. 3, no. 1,
pp. 96–101, 2018.

[16] P. Yu, Y. Gao, F. J. Jiang, K. H. Johansson, and D. V. Dimarogonas,
“Online Control Synthesis for Uncertain Systems under Signal Tem-
poral Logic Specifications,” arXiv e-prints, p. arXiv:2103.09091, mar
2023.

[17] F. J. Jiang, Y. Gao, L. Xie, and K. H. Johansson, “Ensuring safety for
vehicle parking tasks using Hamilton-Jacobi reachability analysis,” in
2020 59th IEEE Conference on Decision and Control (CDC), 2020,
pp. 1416–1421.

[18] ——, “Human-Centered Design for Safe Teleoperation of Connected
Vehicles,” in IFAC Conference on Cyber-Physical Human-Systems,
Shanghai, China, 2020.

[19] C. He, Z. Gong, M. Chen, and S. Herbert, “Efficient and Guaranteed
Hamilton-Jacobi Reachability via Self-Contained Subsystem Decom-
position and Admissible Control Sets,” IEEE Control Systems Letters,
2023.

[20] G. De Giacomo and M. Y. Vardi, “Linear temporal logic and linear
dynamic logic on finite traces,” in IJCAI’13 Proceedings of the
Twenty-Third international joint conference on Artificial Intelligence.
Association for Computing Machinery, 2013, pp. 854–860.

[21] P. Yu, Y. Gao, F. J. Jiang, K. H. Johansson, and D. V. Dimarogonas,
“Online control synthesis for uncertain systems under signal temporal
logic specifications,” The International Journal of Robotics Research,
2023.

[22] M. Chen, S. L. Herbert, M. S. Vashishtha, S. Bansal, and C. J. Tomlin,
“Decomposition of Reachable Sets and Tubes for a Class of Nonlinear
Systems,” IEEE Transactions on Automatic Control, vol. 63, no. 11,
pp. 3675–3688, 2018.

[23] D. Lee, M. Chen, and C. J. Tomlin, “Removing Leaking Corners
to Reduce Dimensionality in Hamilton-Jacobi Reachability,” in 2019
International Conference on Robotics and Automation (ICRA), 2019,
pp. 9320–9326.

[24] F. J. Jiang, K. M. Arfvidsson, C. He, M. Chen, and K. H. Johansson,
“Guaranteed completion of complex tasks via temporal logic trees
and hamilton-jacobi reachability (extended version),” arXiv preprint
arXiv:2404.08334, 2024.

[25] M. Bui, G. Giovanis, M. Chen, and A. Shriraman, “OptimizedDP:
An Efficient, User-friendly Library For Optimal Control and Dynamic
Programming,” no. arXiv:2204.05520, apr 2022.

[26] J. F. Fisac, M. Chen, C. J. Tomlin, and S. S. Sastry, “Reach-avoid
problems with time-varying dynamics, targets and constraints,” in
Proceedings of the 18th International Conference on Hybrid Systems:
Computation and Control. Seattle Washington: ACM, apr 2015, pp.
11–20.

[27] E. N. Barron and H. Ishii, “The Bellman equation for minimizing the
maximum cost,” Nonlinear Analysis: Theory, Methods & Applications,
vol. 13.

[28] E. N. Barron, “Differential games maximum cost,” Nonlinear Analysis:
Theory, Methods & Applications, vol. 14, jun.

5210

