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Abstract— Periodic dynamical systems, distinguished by their
repetitive behavior over time, are prevalent across various
engineering disciplines. In numerous applications, particularly
within industrial contexts, the implementation of model pre-
dictive control (MPC) schemes tailored to optimize specific
economic criteria was shown to offer substantial advantages.
However, the real-time implementation of these schemes is often
infeasible due to limited computational resources. To tackle
this problem, we propose a resource-efficient economic model
predictive control scheme for periodic systems, leveraging
existing single-layer MPC techniques. Our method relies on a
single quadratic optimization problem, which ensures high com-
putational efficiency for real-time control in dynamic settings.
We prove feasibility, stability and convergence to optimum of
the proposed approach, and validate the effectiveness through
numerical experiments.

I. INTRODUCTION

Periodic systems are characterized by repetitive behavior

over time, meaning their dynamics, imposed constraints, or

encountered disturbances recur at consistent intervals [1].

Examples of such systems can be found across a wide

range of fields and applications. Many nonlinear mechanical

systems exhibit periodic orbits when subjected to external

periodic forces [2]. Periodic behavior is seen in various

configurations of power electronic converters operating under

different control strategies to manage power flow [3]. Biore-

actors utilized in the bioprocess industry demonstrate nat-

urally periodic dynamics due to microbial growth rates and

nutrient supply [4]. The operation of heating, ventilation, and

air conditioning (HVAC) systems is influenced by various

typically periodic constraints, such as occupancy patterns,

outdoor weather conditions, and time-of-day schedules [5].

In water distribution networks, periodic fluctuations in de-

mand result from factors such as daily usage patterns and

seasonal changes, requiring targeted management to ensure

a consistent and efficient supply [6]. In maritime transport

systems, navigation is conditioned by the effect of the tide,

which is of a periodic nature and conditions the temporary

windows of access to river channels [7].

Model predictive control (MPC) architectures have be-

come a preferred choice for managing periodic systems. This
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becomes evident from the numerous research studies in the

literature that explore this topic. To mention a few, [8], [9]

proposed specialized MPC formulations for tracking peri-

odic references, while [10], [11] focused on the application

aspects of these techniques in a wide variety of fields.

The performance of industrial processes is typically eval-

uated using specific indices that reflect economic criteria.

The objective of economic MPC (E-MPC) formulations

is to optimize system operation based on these economic

indices [12]. In this case, it has been shown that optimal

performance is attained during steady-state operation when

the system is strictly dissipative with respect to the economic

cost function. [13]. Moreover, under certain conditions—

such as those present in periodic systems—economically op-

timal operation is achieved by following a periodic trajectory

instead of maintaining a constant setpoint. [14].

To drive the system toward the economically optimal

trajectory, a two-layer control framework is typically em-

ployed. With this approach, an optimal periodic reference

is determined at the upper layer using a dynamic real-time

optimizer (DRTO) that incorporates the system’s dynamics;

at the lower layer, an MPC is used to track this optimal

trajectory [15]. However, the differences between these two

layers could lead to a loss of feasibility and stability. This

has been addressed, for example, in [16], where an approach

to guarantee recursive feasibility and convergence despite

variations in the economic cost function is proposed.

Still, variations in the economic criteria while the system

is operating can cause additional problems for the two-layer

approach. This is mainly because the optimal solution needs

to be recalculated in real time. However, the DRTO layer

has a much longer computational time than the MPC, which

could make online computation impossible, leading to a loss

of optimality. In response to this issue, and following the idea

proposed in [17], a number of studies have focused on single-

layer E-MPC formulations, i.e., integrating the real-time

DRTO and control stages into a unique layer. In the particular

context of constrained periodic linear systems, the authors of

[18] propose a single-layer architecture ensuring convergence

to the optimal periodic trajectory. The formulation in [19]

drops the requirement of the MPC terminal constraint under

given dissipativity and controllability conditions, specifically

focusing on scenarios where the optimal operating behavior

is periodic.

A key difficulty with one-layer E-MPC approaches is

their resolution in real time. In two-layer approaches, the

lower layer is typically designed to be resource-efficient. For

the latter, it is common to adopt a tracking MPC, which
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presents a quadratic program (QP) formulation and allows

for the use of tailored solvers, enabling more computationally

efficient implementations [20], [21]. For the specific context

of periodic systems, the authors of [22] focus on enhancing

the performance of the tracking MPC layer to achieve local

equivalence with the economic upper layer, although an

upper layer to calculate the trajectories for tracking is still

required. Note that this could be avoided if the E-MPC

would directly present a QP formulation; however, this is not

common because of the inherently non-quadratic nature of

economic objectives. An approach to achieve the formulation

of the E-MPC directly as a QP problem is presented in [18],

although for non-periodic operation. This approach is based

on a first-order Taylor approximation of the economic ob-

jective function, guaranteeing the convergence to the steady-

state optimum (see also [5]).

A. Contribution

The primary contribution of this paper is the develop-

ment of a novel single-layer E-MPC algorithm specifically

designed for periodic dynamical systems, which leverages

the advantages of single-layer E-MPC methods and extends

their application to periodic scenarios. Our proposal builds

upon the gradient-based approximation in [18] where, at each

sampling period, the solution of the E-MPC control problem

is attained by solving a single QP problem. This provides our

algorithm with high computational efficiency and positions

it as a viable option for expanding the scope of embedded

MPC applications to include periodic economic MPC control

problems.

The rest of the paper is structured as follows. Preliminary

sections II and III present the control objective and sum-

marize the periodic E-MPC formulation in [18]. The main

contribution of the paper is found in Sections IV and V,

where our QP-based single-layer periodic E-MPC algorithm

is illustrated. Section VI presents a numerical example that

demonstrates the performance of our approach.

II. PROBLEM FORMULATION

Consider a linear time-varying system whose dynamics are

described by the following discrete-time equation:

xk+1 = fk(xk, uk) = Akxk +Bkuk, (1)

where xk ∈ R
n and uk ∈ R

m are the state of the system

and the control input, respectively, at time instant k. It is

assumed that the pair (Ak, Bk) is controllable and that the

evolution of Ak and Bk for k ∈ N is perfectly known.

We consider possibly joint constraints on the state of the

system and control input as (xk, uk) ∈ Zk ⊆ R
n+m, where

Zk ⊆ R
n+m is a time-varying closed convex polyhedron

that contains the origin in its interior.

The stage cost ℓek(xk, uk, p) evaluates the economic per-

formance associated with the system at time instant k. This,

in addition to the state and control input, depends on an ex-

ogenous parameter p, which is allowed to be time-varying (it

could also indicate the switching between different economic

criteria); no assumption is made on the policy governing

the behavior of this parameter. For the sake of a compact

notation, we refer to pk as p in the rest of the paper.

Assumption 1: The system is periodic, with a periodicity

of T ∈ Z>0 sampling periods, i.e, at any time instant k it

holds that

Ak = Ak+T , Bk = Bk+T , Zk = Zk+T , (2a)

ℓek(x, u, p) = ℓek+T (x, u, p), ∀(x, u) ∈ Zk, ∀p. (2b)

The performance of the system is assessed by calculating

the average of the economic cost derived from the closed-

loop system trajectories, i.e.,

lim
M→∞

1

M

M−1∑

j=0

ℓej(xj , uj , p). (3)

From this point forward, to keep notation compact, we

may omit the subscript k when denoting quantities relative

to instant k, if it is understood from the context.

Since the system has a periodic behavior as per Assump-

tion 1, from [18, Theorem 1] we have that the trajectory

which minimizes the cost in (3) is also periodic. This optimal

trajectory, which we denote (x◦,u◦), can be obtained by

solving the following DRTO problem:

(x◦,u◦) = arg Dk(p) : min
x0,u

T−1∑

j=0

ℓek+j(xj , uj , p) (4a)

s.t. xj+1 = fk+j(xj , uj), xT = x0, (4b)

(xj , uj) ∈ Zk+j , ∀j ∈ Z[0,T−1], (4c)

where u := [u0, . . . , uT−1] ∈ R
mT , and Z[0,T−1] is the set

of integers from 0 to T − 1.

Assumption 2: The function ℓek is convex in (xk, uk) and

lower-bounded for all value of (xk, uk) ∈ Zk, p and k. In

addition, there exists α ∈ K∞ such that

ℓek+j(xj , uj , p)− ℓek+j(x
◦

j , u
◦

j , p) ≥

α(‖(xj , uj)− (x◦

j , u
◦

j )‖), ∀k, j.
We note that (x◦,u◦) is unique under Assumption 2.

Assumption 3: The gradient of ℓek(x, u, p) with respect to

(x, u) is ρ-Lipschitz continuous, i.e.,

‖∇(x,u)ℓ
e
k(x, u, p)−∇(v,w)ℓ

e
k(v, w, p)‖ ≤

ρ‖(x, u)− (v, w)‖, ∀p,

for all (x, u), (v, w) ∈ Zk and some ρ > 0.

In the next section, the goal is to design a controller that—

for any given value of p—stabilizes the system and steers it

to the optimal trajectory (x◦(p),u◦(p)), while also satisfying

the constraints during transients.

III. ECONOMIC MPC FOR CHANGING

PERIODIC OPERATION

First, we summarize the MPC control formulation pro-

posed in [18] that addresses the aforementioned control

objective. To keep notation compact, we write z := (x,u) ∈
R

n+mN when designating the pair composed of a given

initial state x and a sequence of N control inputs u.
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One of the main building blocks of our E-MPC control

scheme is a MPC controller which tracks periodic refer-

ences [18]. To this aim, we introduce an artificial periodic

trajectory ζ = (ξ,ν) ∈ R
n+mT as a decision variable: the

trajectory is determined by an initial state ξ and a sequence

ν := [ν0, . . . , νT−1] ∈ R
mT of T ≥ N control inputs ν. The

deviation between the predicted and artificial trajectories is

penalized through the stage cost S : Rn+mN×Rn+mT → R,

defined as

S(z, ζ) =

N−1∑

i=0

ℓs(xi − ξi, ui − νi), (5)

where ℓs : Rn × R
m → R is defined as

ℓs(v, w) = ‖v‖2Q + ‖w‖2R,

and Q,R are positive definite matrices. The economic cost

of the artificial trajectory ζ along the horizon T is evaluated

by the offset cost function Ok : R
n+mT → R, defined as:

Ok(ζ, p) =
T−1∑

j=0

ℓek+j(ξj , νj , p), (6)

where ℓek+j is as in (4a). Combining (5) and (6), the cost

function of the proposed single-layer MPC problem, Vk :
R

n+mN × R
n+mT → R, is defined as:

Vk(z, ζ, p) := S(z, ζ) +Ok(ζ, p). (7)

Then, for a given state x and parameter p at time k, the

single-layer MPC control problem is formulated as:

Pk(x, p) : min
z,ζ

Vk(z, ζ, p) (8a)

s.t. xi+1 = fk+i(xi, ui), (8b)

ξj+1 = fk+j(ξj , νj), (8c)

(xi, ui) ∈ Zk+i, ∀i ∈ Z[0,N−1], (8d)

(ξj , νj) ∈ Zk+j , ∀j ∈ Z[0,T−1], (8e)

x0 = x, ξT = ξ0, xN = ξN . (8f)

Problem (8) is referred to as single-layer economic MPC

as it integrates into a unique optimization problem the two

layers of the canonical E-MPC formulation, i.e., the upper-

layer DRTO and the lower-layer tracking MPC.

From [18, Theorem 3] we have that—for any feasible

initial state—system (1) driven by the optimal feedback

policy derived as the solution of (8) is recursively feasible,

and the optimal trajectory (x◦,u◦) is an asymptotically

stable equilibrium for the closed-loop system.

IV. GRADIENT-BASED APPROACH

We note that problem (8) is convex but is not, in general, a

QP problem—which can make its implementation difficult.

In this paper, inspired by the ideas in [23], we present a

gradient-based approximated formulation of the E-MPC for

changing periodic operation; this approach relies upon a

first-order approximation of the economic objective function,

allowing to reduce the control problem complexity to that of

a QP program, while maintaining the same properties as the

original control problem.

Let the approximated single-layer MPC cost function, Ṽk :
R

n+mN × R
n+mT × R

n+mT → R, be defined as:

Ṽk(z, ζ, ζ̂, p) = S(z, ζ) + Õk(ζ, ζ̂, p), (9)

where ζ̂ is a given feasible trajectory about which we take

the first-order Taylor approximation of the economic cost,

and Õk : Rn+mT ×R
n+mT → R is the approximated offset

cost, given by the following quadratic cost function:

Õk(ζ, ζ̂, p) =

T−1∑

j=0

(
ℓek+j(ξ̂j , ν̂j , p)

+∇(ξ,ν)ℓ
e
k+j(ξ̂j , ν̂j , p) ·

[
(ξj , νj)− (ξ̂j , ν̂j)

]

+
ρ

2

∥∥∥(ξj , νj)− (ξ̂j , ν̂j)
∥∥∥
2 )

, (10)

where ρ is the Lipschitz constant for ℓek as per Assumption 3,

so it holds that

ℓek(ξ, ν, p) ≤ ℓek(ξ̂, ν̂, p)+∇(ξ,ν)ℓ
e
k(ξ̂, ν̂, p)·

[
(ξ, ν)−(ξ̂, ν̂)

]

+
ρ

2

∥∥∥(ξ, ν)− (ξ̂, ν̂)
∥∥∥
2

, ∀k. (11)

Note that Õ is an upper-bound of O. Then, replacing O by

Õ in P, the approximated MPC problem is obtained. The

optimal solution for this is:

(z∗, ζ∗) = arg P̃k(x, ζ̂, p), (12)

with

P̃k(x, ζ̂, p) : min
z,ζ

Ṽk(z, ζ, ζ̂, p) (13a)

s.t. (8b) to (8f). (13b)

Then, the MPC feedback law is obtained as

κ̃k(x, ζ̂, p) = u∗

0,

i.e., it is given by the application of the first element of the

control sequence u
∗—part of the solution z∗ of (13) at each

time k—in a receding-horizon fashion.

A. Proposed algorithm

Next, we introduce our single-layer E-MPC algorithm

inspired by Newton’s optimization method, where the lin-

earization point is selected to be the optimal artificial trajec-

tory of the optimization problem solved at the previous time

step. The resulting procedure is described in Algorithm 1. It

can be noticed from (12) that u∗
0 depends on the exogenous

parameter ζ̂. A suitable initial value for ζ̂ could be obtained

by solving (13) first with Õ as any quadratic offset cost

function (since this initial point does not need to be optimal

but only feasible).
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Algorithm 1 Approximated single-layer periodic E-MPC

Require: Initial feasible ζ̂ = (ξ̂, ν̂).
At each sampling time k ≥ 0:

1: Read: x, p

2: Solve QP: (z∗, ζ∗) = arg P̃k(x, ζ̂, p)
3: Apply: u∗

0

4: Update: ζ̂ : ξ̂ ← ξ∗1 , ν̂ ←
[
ν∗1 , . . . , ν

∗

T -1, ν
∗
0

]

V. STABILITY AND CONVERGENCE ANALYSIS

Algorithm 1 implements (13) in a receding horizon fash-

ion. In the remainder of this section, we show that its solution

achieves the same desirable closed-loop properties of the

original (non-QP) E-MPC P, namely, (i) for any feasible

initial state the optimization problem is recursively feasible,

and (ii) the optimal trajectory of the system is asymptoti-

cally stable for the controlled system. These properties are

formally presented next.

Assumption 4 (Controllability): For integers 0 ≤ i < j let

Ψ(j, i) = (Aj ·Aj−1 · · ·Ai+1) ·Bi.

Then, let the controllability matrix Γ be defined as

Γk(c) = [Ψ(k + c, k),Ψ(k + c, k + 1), . . .

. . . ,Ψ(k + c, k + c− 1), Bk+c].

We assume that

∃c ∈ [0, T − 1] : rank (Γk(c)) = n, ∀k.

A. Recursive feasibility:

In [18], it is proved that P is recursively feasible. Since the

constraints in P are the same as those in P̃, this is recursively

feasible irrespective of the selected values of ζ̂.

B. Stability and convergence:

From instant k, assume a feasible periodic trajectory

ζ̂k. From the feasible state xk and considering ζ̂k for the

linearization of P̃, the solution to P̃k(xk, ζ̂k, p) would be

(z∗

k, ζ
∗

k). Thus, the cost associated to the system at instant

k would be Ṽk(z
∗

k, ζ
∗

k, ζ̂k, p). First it is proved that this is a

decreasing function.

For instant k + 1, we propose a solution for this new

instant, denoted as z+
k
:= (x+

k,0,u
+
k ), such that1

x+
k,0 = x∗

k,1 , u
+
k =

[
u∗

k,1, . . . , u
∗

k,N−1, ν
∗

k,N

]
.

This solution is feasible, as proven in [18, Theorem 3]. Next,

according to step 4 in Algorithm 1, the feasible trajectory

for the linearization in this instant k + 1, denoted as ζ̂k+1,

is obtained by shifting ζ∗

k as:

ξ̂k+1,0 = ξ∗k,1 , ν̂k+1 =
[
ν∗k,1, . . . , ν

∗

k,T−1, ν
∗

k,0

]
. (14)

Denote

∆Ṽ = Ṽk+1(z
+
k , ζ̂k+1, ζ̂k+1, p)− Ṽk(z

∗

k, ζ
∗

k, ζ̂k, p).

1Here, we denote by xk,i the value of x at time k + i predicted from
the initial condition xk .

For fixed p, we have that:

∆Ṽ = Ṽk+1(z
+
k , ζ̂k+1, ζ̂k+1)− Ṽk+1(z

+
k , ζ̂k+1, ζ̂

+
k )︸ ︷︷ ︸

∆V1

+ Ṽk+1(z
+
k , ζ̂k+1, ζ̂

+
k )− Ṽk(z

∗

k, ζ
∗

k, ζ̂k)︸ ︷︷ ︸
∆V2

, (15)

where ξ̂+k,0 = ξ̂k,1 , ν̂+
k =

[
ν̂k,1, . . . , ν̂k,T−1, ν̂k,0

]
.

The first term of the right hand side of the equation can

be expanded as:

∆V1 =

T−1∑

j=0

ℓek+j(ξ
∗

k,j , ν
∗

k,j , p)−
( T−1∑

j=0

(
ℓek+j(ξ̂k,j , ν̂k,j , p)

+∇(ξ,ν)ℓ
e
k+j(ξ̂k,j , ν̂k,j , p) ·

[
(ξ∗k,j , ν

∗

k,j)− (ξ̂k,j , ν̂k,j)
]

+
ρ

2

∥∥∥(ξ∗k,j , ν∗k,j)− (ξ̂k,j , ν̂k,j)
∥∥∥
2 )

. (16)

From (11), it holds for all j that

ℓek+j(ξj , νj , p)−
(
ℓek+j(ξ̂j , ν̂j , p)+

∇(ξ,ν)ℓ
e
k+j(ξ̂j , ν̂j , p) ·

[
(ξj , νj)− (ξ̂j , ν̂j)

]

+
ρ

2

∥∥∥(ξj , νj)− (ξ̂j , ν̂j)
∥∥∥
2)
≤ 0. (17)

The inequality still holds by taking the sum from j = 0
to T − 1 of both left- and right-hand side terms in (17).

Therefore, ∆V1 ≤ 0. In addition, it is proven in [18,

Theorem 3] that the second term of the left hand side of

equation (15) is such that

∆V2 ≤ −ℓ
s(x∗

k,0 − ξ∗k,0, u
∗

k,0 − ν∗k,0). (18)

From the above, and recalling x∗

k,0 = xk, we have that

∆Ṽ ∗ ≤ ∆Ṽ ≤ −ℓs(xk − ξ∗k,0, u
∗

k,0 − ν∗k,0), (19)

with ∆Ṽ ∗ = Ṽk+1(z
∗

k+1, ζ
∗

k+1, ζ̂k+1, p)− Ṽk(z
∗

k, ζ
∗

k, ζ̂k, p).
From this, it is inferred that the system converges to an

admissible periodic trajectory z∞ = ζ∞ and that at z∞

the optimal solution is such that z∗
∞ = z∞, ζ∗

∞ = ζ∞.

The optimal cost function at (z∞, ζ∞) is

Ṽk(z∞, ζ∞, ζ∞, p) = Ok(ζ∞, p). Considering that O

is convex, based on [18] it can be proved that the system

converges to a feasible periodic trajectory such that

z∗

∞ → ζ∗

∞ → argmin
ζ

Ok(ζ, p), (20)

i.e., the solution to D. Thus, z∗
∞ → ζ◦.

VI. NUMERICAL EXAMPLE

The proposed approach is implemented in a linearized

ball and plate system, where the purpose is to control a

ball rolling on a plate. Note that, in this numerical example,

the periodicity of the system is not directly induced by the

system behaviour, but by a periodic reference trajectory to

be followed by the ball. The position of the ball is denoted

as [y1, y2]. The controlled angles of the plate are [θ1, θ2]. A

discrete-time linear system in the form of (1) is derived by
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setting the equilibrium point as the origin for all states and

inputs, with a sampling time of 0.05 s, as in [24], [25]. The

input of the system is the angular acceleration u = [θ̈1, θ̈2]
⊤.

The state vector x is defined by the position and

velocity of both the ball and angles, i.e., x =
[y1, ẏ1, θ1, θ̇1, y2, ẏ2, θ2, θ̇2]

⊤. The system constraints are:

|y1|+ |y2| ≤ 6 cm, (21a)

|θi| ≤
π

2
rad, |θ̈i| ≤ 110 rad/s2, i = 1, 2. (21b)

The system matrices are defined as follows:

A=

[
F 04×4

04×4 F

]
, F=




1 5e-2 8.8e-3 1e-4
0 1 3.5e-1 8.8e-3
0 0 1 5e-2
0 0 0 1


 ,

B=

[
G 04×1

04×1 G

]
, G=

[
0 1e-4 1.3e-3 5e-2

]⊤
.

Finally, the prediction and control horizon are T = N = 90.

In this numerical study, the ball is assumed to be initially

stationary and positioned at the center of the plate. Then,

we adopt a reference trajectory consisting of five vertices,

forming a star shape, which are contained within a circle

with 8-cm radius; we point out that some portions of this

trajectory are located outside the constraints—which prevents

us from solving the problem using a traditional tracking

MPC. We consider the following two scenarios regarding

the control objective.

A. Scenario 1 – Pure path-following problem

Here, only a path-following problem is considered, hence

the performance index ℓek+j is:

ℓek(x, u, x
r) = ‖x− xr‖2Ex

, (22)

where xr is the periodic trajectory reference that the ball has

to follow, and Ex = diag(700, 0, 0, 0, 700, 0, 0, 0), i.e., only

the states corresponding to the position of the ball in the

plate are weighted. Finally, for the stage cost S, the identity

matrices Q = 10I8 and R = I8 are considered.

The simulation results relative to this scenario are shown

in Fig. 1. It can be noticed how the system reaches the target

trajectory—without violating the constraints—and converges

to the same optimal periodic trajectory obtained by solving

the DRTO problem (4).

B. Scenario 2 – Economic optimization problem

This scenario differs from Scenario 1 in that the economic

performance index is also used to measure (and penalize)

the energy consumption of the motor. Assuming that the

inertia of the plate remains constant (i.e., the mass of the

ball can be neglected), the torque of the plate is proportional

to the angular acceleration. Thus, the consumption can be

calculated as a function of the acceleration, yielding the

following economic performance index:

ℓek(x, u, x
r) = ‖x−xr‖2Ex︸ ︷︷ ︸

Reference

+

2∑

i=1

(
au2

i−bu
4
i+cu6

i

)

︸ ︷︷ ︸
Motor consumption

, (23)
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Fig. 1. Pure path-following problem. Ball and plate system controlled
through Algorithm 1. A star-shaped periodic trajectory, which is unreachable
in some places, is set as a reference. The ball converges to the optimal
periodic trajectory obtained by solving the DRTO problem (4).
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Fig. 2. Economic MPC problem. Ball and plate system controlled by
Algorithm 1. A star-shaped periodic trajectory—partly unfeasible—is set as
a reference (same as in Fig. 1). In this case, the economic objective is to
minimize the energy demand of the actuators (hence the acceleration of the
plate). The ball converges to the same optimal periodic trajectory obtained
by solving the DRTO problem (4).

where xr and Ex are as in Scenario 1, a = c = 4000 and

b = 6800. All other parameters remain as in Scenario 1.

Fig. 2 shows the simulation results relative to this sce-

nario. It can be observed that here the ball follows a curve

with a gentler slope, indicating that implementation of the

economic objective results in a limited acceleration input

compared to the pure path-following scenario (see Fig. 1).

Analogous conclusions can be drawn about minimizing the

distance from the target trajectory while remaining inside the

feasible domain, and the convergence to the optimal periodic

trajectory of the DRTO problem (4).

C. Comparative Analysis

We conclude our numerical study by comparing our

single-layer periodic E-MPC scheme with a standard MPC

for periodic reference tracking (see [26]). For both con-

trollers, all parameters are set as per the economic case in
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Fig. 3. Comparison between the proposed single-layer periodic E-MPC,
and a standard MPC for periodic reference tracking (see [26]), in following
the optimal DRTO periodic trajectory (x◦,u◦) determined by setting (4a)
as per (23). Both schemes converge to the same periodic cost evolution
(as expected); however, the proposed single-layer E-MPC achieves a more
economic solution in the sense of (23) (achieving an average cost of 3.46
against the 3.71 for the tracking MPC).

scenario 2, except for ℓe, which is only used for the E-

MPC and set equal to (23). For the tracking MPC, instead,

the distance from the given reference trajectory (x◦,u◦) is

penalized via the stage cost matrices Q and R, defined as in

scenario 1. Fig. 3 shows the evolution of the (economic)

performance index (23) for both the single-layer E-MPC

and the two-layer tracking MPC while the optimal DRTO

trajectory is followed.

VII. CONCLUSIONS

In this work, we proposed a single-layer economic model

predictive control design, based on a QP formulation, for

the optimal periodic operation of constrained linear systems,

accommodating potential variations in the economic cost

function. The proposed controller only requires knowledge

of the gradient of the economic cost function, which is

updated online as described in our Algorithm 1. This allows

for easy implementation on industrial platforms through

the use of quadratic solvers. We prove feasibility, stability

and convergence to optimum of the proposed approach. In

addition, its performance is validated on the control of a ball-

and-plate system. This shows how the controller is capable

of optimally following a specified periodic trajectory while

simultaneously minimizing a given economic cost.
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