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Abstract— We consider a large-population optimal control
problem involving a major agent and a large number of minor
agents. By starting with a centralized optimal control problem,
we employ a re-scaling method to derive decentralized control
laws. This re-scaling method is further used to obtain a tight
upper bound of O(1/N) for the performance loss resulting
from decentralized control. This improves upon known results
of O(1/

√
N) in the literature for similar models.

I. INTRODUCTION

Mean field game (MFG) theory provides a powerful
methodology to over the curse of dimensionality in large
population noncooperative decision problems [16], [14],
[25], [8]. A significant extension the theory is to introduce
one or a few major players interacting with a large number of
minor players [13]. These MFG models of major and minor
players (i.e. mixed players/agents) have attracted consider-
able interest and led to extensive generalizations [7], [10],
[28], [4], [27]. The major player serves as a common source
of randomness for all players, which has connections with
mean field games with common noise [5], [9].

On the other hand, cooperation in dynamic multi-agent
decision problems is traditionally a well studied subject. For
general cooperative differential games, see [32]. Naturally,
cooperative decision-making in mean field models is of
interest, especially from the point of view of addressing
complexity [15]. Such decision problems may be referred
to as mean field teams. The work [15] introduced an linear-
quadratic (LQ) social optimization problem where all the
agents cooperatively minimize a social cost as the sum of
their individual costs, and it shows that the consistency based
approach [14] in mean field games may be extended to
this model by combining with a person-by-person optimality
principle in team decision theory [22]. The central result
is the so-called social optimality theorem which states that
the optimality loss of the obtained decentralized strategies
becomes negligible when the population size goes to infinity
[15]. A mean field team is studied in [31] where a Markov
jump parameter appears as a common source of randomness
for all agents. Optimal control of McKean–Vlasov dynamics
is analyzed in [24] and under some conditions it is shown
that the optimal solution may be interpreted as the limit
of the social optimum solution of N -players as N → ∞.
Cooperative mean field control has applications in economic
theory [29] and power grids [11]. Furthermore, social optima
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are useful for studying efficiency of mean field games by
providing a performance benchmark [3].

For mean field teams with mixed players, the analysis
in an LQ framework has been formulated in our earlier
work [17], where partial analysis was presented by applying
a state space augmentation technique to characterize the
dynamics of the random mean field evolution. Later, [18],
[19] re-examined the problem by applying the person-by-
person optimality principle adopted in [15], and showed an
optimality loss of O(1/

√
N) under decentralized control. In

a mixed player setting, [7] considers a nonlinear diffusion
model and assumes that all minor players act as a team to
minimize a common cost against the major player. More re-
cently, optimal control of large-populations of mixed players
is analyzed to treat LQ non-Gaussian models [2] and design
deep learning algorithms [1].

In this paper we apply a re-scaling technique to the high
dimensional optimal control problem with mixed agents.
This technique was initially developed for LQ mean field
games [21], and has been applied to social optimization
with indefinite cost weights but no major player [20]. Our
model involves random coefficients, which leads to in-depth
analysis of high dimensional backward stochastic differen-
tial equations (BSDEs). The optimal control nature of our
problem shares some similarity with mean field type optimal
control [12], [33]. However, the later involves only a single
decision-maker which directly controls the state mean.

Throughout this paper, we use (Ω,F , {Ft}t≥0, P ) to
denote an underlying filtered probability space. Let Sn be the
Euclidean space of n × n real and symmetric matrices, Sn+
its subset of positive semi-definite matrices, and Ik the k×k
identity matrix. The Banach space L2

F (0, T ;Rk) consists
of all Rk-valued Ft-adapted square integrable processes
{v(t), 0 ≤ t ≤ T} with norm ‖v‖L2

F
= (E

∫ T
0
|v(t)|2dt)1/2.

The Banach space L∞F (0, T ;Rk) consists of all Rk-valued
Ft-adapted essentially bounded processes {v(t), 0 ≤ t ≤ T}
with norm ‖v‖L∞

F
= ess supt,ω |v(t)|. We can similarly

define such spaces with other choices of the filtration and
the Euclidean space. Given a symmetric matrix M ≥ 0,
the quadratic form zTMz may be denoted as |z|2M . Let
{FWt , t ≥ 0} be the filtration by a Brownian motion
{W (t), t ≥ 0}.

The paper is organized as follows. Section II formulates
the large population optimal control problem (i.e. mean field
social optimization) with a major player. Section III develops
the multi-scale analysis to derive mean field limit of the
solution and resulting decentralized control laws. Section IV
derives some prior bounds for a high dimensional BSDE.
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Section V obtains bounds of the optimality loss of the
decentralized control. Section VI concludes the paper.

II. THE MEAN FIELD SOCIAL OPTIMIZATION MODEL

Consider the LQ mean field decision model with a major
player A0 and minor players {Ai, 1 ≤ i ≤ N}. At time
t ≥ 0, the states of A0 and Ai are, respectively, denoted by
XN

0 (t) and XN
i (t), 1 ≤ i ≤ N . The state processes satisfy

the linear stochastic differential equations (SDEs):

dXN
0 (t) =

[
A0(t)XN

0 (t) +B0(t)uN0 (t) + F0(t)X(N)(t)
]
dt

+D0(t)dW0(t), (1)

dXN
i (t) =

[
A(t)XN

i (t) +B(t)uNi (t) + F (t)X(N)(t)

+G(t)XN
0 (t)

]
dt+D(t)dWi(t)

+D1(t)dW0(t), 1 ≤ i ≤ N, (2)

where X(N)(t) = (1/N)
∑N
i=1X

N
i (t) is the coupling term

and W0 is the common noise. The states XN
0 , XN

i and
controls uN0 , uNi are, respectively, n and n1 dimensional
vectors. The initial states XN

j (0), 0 ≤ j ≤ N , are inde-
pendent with finite second moment, and also independent of
the Brownian motions. The coefficients in the dynamics are
random. The noise processes W0, Wi are, respectively, n2
and n3 dimensional independent standard Brownian motions
adapted to Ft. We choose Ft as the σ-algebra FW�X

t :=
σ(XN

j (0),Wj(τ), 0 ≤ j ≤ N, τ ≤ t). Denote FW0
t :=

σ(W0(τ), τ ≤ t).
For 0 ≤ j ≤ N , denote uN−j =(
uN0 , . . . , u

N
j−1, u

N
j+1, . . . , u

N
N

)
. The cost for A0 is given by

J0(uN0 , u
N
−0) = E

∫ T

0

{∣∣XN
0 (t)−H0(t)X(N)(t)

∣∣2
Q0(t)

+ (uN0 (t))TR0(t)uN0 (t)
}
dt

+ E|XN
0 (T )−H0,fX

(N)(T )|2Q0f
, (3)

where Ψ0(X(N)(t)) = H0(t)X(N)(t). The cost for Ai, 1 ≤
i ≤ N , is given by

Ji(u
N
i , u

N
−i)

= E
∫ T

0

{∣∣XN
i (t)−H1(t)XN

0 (t)−H2(t)X(N)(t)
∣∣2
Q(t)

+ (uNi (t))TR(t)uNi (t)
}
dt

+ E|XN
i (T )−H1fX

N
0 (T )−H2fX

(N)(T )|2Qf
, (4)

The terms H1(t)XN
0 (t) and H1fX

N
0 (T ) indicate the strong

influence of the major agent. Also, the parameters in the two
costs are random.

We introduce the standing assumptions for this paper.
(A1) We have

A0, F0, A, F,G,H0, H1, H2 ∈ L∞FW0 (0, T ;Rn×n),

B0, B ∈ L∞FW0 (0, T ;Rn×n1),

D0, D,D1 ∈ L2
FW0 (0, T ;Rn×n2),

Q0, Q ∈ L∞FW0 (0, T ;Sn), Q0(t) ∈ Sn+, Q(t) ∈ Sn+,
R0, R ∈ L∞FW0 (0, T ;Sn1), R0(t) ≥ c1In1

, R(t) ≥ c1In1
,

where t ∈ [0, T ] and c1 > 0 is a fixed deterministic constant.
(A2) The terminal cost parameters

H0f , Q0f , H1f , H2f , Qf , are FW0

T -measurable and
essentially bounded, and Q0f , Qf are Sn+-valued.

The stochastic control literature [6], [23], [30] has con-
sidered a similar randomness structure where the system
coefficients depend on a smaller filtration.

For a stochastic process {Z(t), 0 ≤ t ≤ T}, we will often
write Z for Z(t) by suppressing the time variable t.

A. The mean field social optimization problem

For the mean field social optimization problem, we attempt
to minimize the following social cost

J (N)
soc (u) = J0 +

λ

N

N∑
k=1

Jk, (5)

where uN = (uN0 , u
N
1 , . . . , u

N
N ) and λ > 0. It is necessary

to introduce the scaling factor λ/N in order to obtain a well
defined limiting problem when N tends to infinity.

III. THE MULTI-SCALE APPROACH

For notational simplicity, we take n2 = 1 so that W0 is a
scalar. The general case does not cause essential difficulty.

A. The high dimensional vector model

Denote

Xt =


XN

0

XN
1
...

XN
N

 ,ut =


uN0
uN1

...
uNN

 , Wt =

W1

...
WN

 ,
We write the system dynamics in a compact form

dXt = (AXt +But)dt+DdWt +D0dW0(t), (6)

where

A(t) =


A0

F0

N
F0

N · · · F0

N

G A+ F
N

F
N · · · F

N

G F
N A+ F

N · · · F
N

...
...

...
. . .

...
G F

N
F
N · · · A+ F

N

 ,

and it is straightforward to determine B,D,D0. For the
representation of the cost, we denote

Q(t) =


Q̄0 Q̄2 Q̄2 · · · Q̄2

Q̄T2 Q̄1 Q̄3 · · · Q̄3

Q̄T2 Q̄3 Q̄1 · · · Q̄3

...
...

...
. . .

...
Q̄T2 Q̄3 Q̄3 · · · Q̄1

 , (7)
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where

Q̄0 = Q0 + λHT
1 QH1,

Q̄1 =
HT

0 Q0H0

N2
+
λ

N
[(I − HT

2

N
)Q(I − H2

N
)

+
(N − 1)HT

2 QH2

N2
],

Q̄2 = −Q0H0

N
+
λ

N
[
(N − 1)HT

1 QH2

N

−HT
1 Q(I − H2

N
)],

Q̄3 =
HT

0 Q0H0

N2
+

λ

N2
[
(N − 2)HT

2 QH2

N

− (I − HT
2

N
)QH2 −HT

2 Q(I − H2

N
)].

We can similarly define Qf with the same structure and its
submatrices Q̄kf , k = 0, 1, 2, 3. The social cost is written in
the form

J (N)
soc = E

∫ T

0

(XT
t QXt + uTt Rut)dt+ EXT

TQfXT .

where R can be easily determined.
Denote the value function

V (t,x) = EF
W0
t

t,x [

∫ T

t

(XT
s QXs + uTsRus)ds+XT

TQfXT ]

(8)

as a random field. The subscript in the expectation indicates
the initial condition (t,x). Write V (t,x) = xTPtx +
2xTSt + rt. We use V, Φ to write a stochastic Hamilton-
Jacobi-Bellman (SHJB) equation as a BSDE as in [30]. Let
Φ = xTΨtx + 2xTΥt + γt.

The stochastic Riccati equation is given in the form
0 = dPt + (ATP + PA− PBR−1BTP +Q)dt

−ΨtdW0(t),

PT = Qf .

By Lemma [19, Lemma A.1], we obtain a unique solution
(P ,Ψ), where P ∈ L∞FW0

(0, T ;Rn(N+1)). Next, S and r
satisfy the BSDEs{
dSt = −[(AT − PBR−1BT )St + ΨtD0]dt+ ΥtdW0,

ST = 0,
drt = −{Tr(P [DDT +D0D

T
0 ])

−STBR−1BTS + 2Υ TD0}dt+ γtdW0(t),

rT = 0.

We denote

Pt =


ΠN

0 ΠN
2 ΠN

2 · · · ΠN
2

ΠNT
2 ΠN

1 ΠN
3 · · · ΠN

3

ΠNT
2 ΠN

3 ΠN
1 · · · ΠN

3
...

...
...

. . .
...

ΠNT
2 ΠN

3 ΠN
3 · · · ΠN

1

 , (9)

Ψt =


ΨN0 ΨN2 ΨN2 · · · ΨN2
ΨNT2 ΨN1 ΨN3 · · · ΨN3
ΨNT2 ΨN3 ΨN1 · · · ΨN3

...
...

...
. . .

...
ΨNT2 ΨN3 ΨN3 · · · ΨN1

 ,

and

St =


SN0
SN

...
SN

 , Υt =


ΥN0
ΥN

...
ΥN

 .

The above structural properties (i.e. symmetry among the
minor agents) of (P ,Ψ ,S,Υ ) may be established using the
permutation method in [26, Lemma A.1] and uniqueness of
the solution of the BSDEs of (P ,S). To proceed, we will
write the BSDEs of ΠN

0 , ΠN
1 , ΠN

2 , and ΠN
3 . It is easily seen

that, due to the properties of PT and Qf , we immediately
have the terminal conditions

ΠN
k (T ) = Q̄kf , k = 0, 1, 2, 3.

Denote M0 = B0R
−1
0 BT0 and Mλ = λ−1BR−1BT . For

ΠN
0 , we have the BSDE

0 = dΠN
0 (t) + [ΠN

0 A0 +NΠN
2 G+AT0Π

N
0

+NGTΠNT
2 −ΠN

0 M0Π
N
0 −N2ΠN

2 MλΠ
NT
2

+Q0 + λHT
1 QH1]dt− ΨN0 dW0(t).

The BSDEs of ΠN
k , 1 ≤ k ≤ 3, are not displayed due to

limited space. Next, we similarly write the BSDEs of SN0
and SN with terminal conditions SN0 (T ) = 0, SN (T ) = 0.
Finally, the BSDE of rt with rT = 0 reads

drt = − {Tr[ΠN
0 D0D

T
0 +NΠN

1 (DDT +D1D
T
1 )

+ 2NΠN
2 D0D

T
1 +N(N − 1)ΠN

3 D1D
T
1 ]

− (SNT0 M0S
N
0 +N2SNTMλS

N )

+ 2(ΥNT0 D0 +NΥNTD1)}dt+ γtdW0(t).

B. The re-scaling method

Next define

ΛN0 = ΠN
0 , Λ

N
1 = NΠN

1 , Λ
N
2 = NΠN

2 , Λ
N
3 = N2ΠN

3 ,

ΦN0 = ΨN0 , Φ
N
1 = NΨN1 , Φ

N
2 = NΨN2 , Φ

N
3 = N2ΨN3 .
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Letting N → ∞ in the equations of ΛNk , 0 ≤ k ≤ 3, we
formally obtain the following BSDEs

0 =dΛ0(t) + (Λ0A0 +AT0 Λ0 + Λ2G+GTΛT2

− Λ0M0Λ0 − Λ2MλΛ
T
2 +Q0 + λHT

1 QH1)dt

− Φ0dW0(t),

0 = dΛ1(t) + (Λ1A+ATΛ1 − Λ1MλΛ1 + λQ)dt

− Φ1dW0(t),

0 = dΛ2(t) + [Λ0F0 + Λ2(A+ F ) +AT0 Λ2

+G(Λ1 + Λ3)− Λ0M0Λ2 − Λ2Mλ(Λ1 + Λ3)

+ λ(HT
1 QH2 −HT

1 Q)−Q0H0]dt− Φ2dW0(t),

0 = dΛ3(t) + [ΛT2 F0 + FT0 Λ2 + Λ1F + FTΛ1

+ Λ3(A+ F ) + (A+ F )TΛ3 − ΛT2M0Λ2

− Λ1MλΛ3 − Λ3MλΛ1 − Λ3MλΛ3 +HT
0 Q0H0

+ λ(HT
2 QH2 −QH2 −HT

2 Q)]dt− Φ3dW0

with the terminal conditions

Λ0(T ) = Q0f + λHT
1fQfH1f , Λ1(T ) = λQf +HT

2fQfH2f ,

Λ2(T ) = −Q0fH0f + λHT
1fQfH2f − λHT

1fQf ,

Λ3(T ) = HT
0fQ0fH0f + λ(HT

2fQfH2f −QfH2f −HT
2fQf ).

By a similar argument, as N →∞, (SN0 , NS
N ) and r = rN ,

respectively, have the limiting forms (ϕ0, ϕ) and ρ, which
satisfy the following equations

0 = dϕ0 + [(AT0 − Λ0M0)ϕ0 + (GT − Λ2Mλ)ϕ

+ Φ0D0 + Φ2D1]dt− η0dW0(t),

0 = dϕ+ {(FT0 − Λ2M0)ϕ0 + [A+ F − (Λ1 + Λ3)Mλ]ϕ

+ ΦT2D0 + (Φ1 + Φ3)D1}dt− ηdW0(t),

0 = dρ+ {Tr[Λ0D0D
T + Λ1(DDT +D1D

T
1 )

+ 2Λ2D0D
T
1 + Λ3D1D

T
1 ]− (ϕT0M0ϕ0 + ϕTMλϕ)

+ 2(ηT0 D0 + ηTD1)}dt− ζdW0(t),

where ϕ0(T ) = ϕ(T ) = 0 and ρ(T ) = 0.

C. Existence and uniqueness of the BSDEs

Theorem 3.1: (i) There exists a unique solution (Λ1, Φ1)
on [0, T ].

(ii) There exists a unique solution (Λ0, Λ2, Λ3, Φ0, Φ2, Φ3)
on [0, T ].

(iii) There exists a unique solution (ϕ0, ϕ, ρ, η0, η, ζ) on
[0, T ].

Proof: Part (i) follows easily from [19, Lemma A.1].
Now we consider the Riccati equation of P (where P has
a unique solution) in the proof of Theorem 5.2 in [19], for
which we take the partition

P(t) =

[
P1 PT2
P2 P3

]
.

By comparing the equations of (Λ0, Λ2, Λ3) and these of
(P1, P2, P3), we obtain Λ0 = P1, Λ2 = PT2 , Λ1+Λ3 = P3.
Then the existence of (Λ0, Λ2, Λ3) follows, and uniqueness
holds since P is unique.

After uniquely determining the solution in part (ii), we
uniquely obtain (ϕ0, ϕ) from linear BSDEs, and finally get
(ρ, ζ) on [0, T ].

D. Decentralized control laws for N + 1 agents

The major agent’s control law is given by

uN0 = −R−10 BT0 (Λ0X
N
0 (t) + Λ2m(t)+ϕ0(t)), (10)

and the minor agent’s control law is given by

uNi = −λ−1R−1BT (Λ1Xi(t)+ΛT2X
N
0 (t)+Λ3m(t)+ϕ(t)).

In the above, m(t) approximates X(N)(t) and is given by

dm(t) = {[A+ F −Mλ(Λ1 + Λ3)]m+ (G−MλΛ
T
2 )XN

0

−Mλϕ}dt+D1dW0(t).

IV. PRIOR BOUNDS ON P

In order to obtain more specific bound information on the
matrix Pt in (9), we introduce an auxiliary optimal control
problem, which has state dynamics and cost:

dXt = (AXt +But)dt,

J (N)
soc = E

∫ T

0

(XT
t QXt + uTt Rut)dt+ EXT

TQfXT .

We still denote the state components by XN
k (t).

Now let the initial condition be x = (xT0 , x
T
1 , · · · , xTN )T ∈

Rn(N+1) at time s. Conditioning on FW0
s , we determine the

optimal cost as xTP (s)x. By elementary ODE estimates,
for the particular control ut = 0 for all t ∈ [s, T ], we have

sup
N

sup
|x0|≤1,··· ,|xN |≤1

sup
0≤k≤N,s≤t≤T

|XN
k (t)| ≤ C. (11)

with probability one. Since s is arbitrary, by use of the
individual costs, we obtain the bound

sup
t

sup
|x0|≤1,··· ,|xN |≤1

xTP (t)x ≤ C. (12)

In particular, if we take x̂ = (x0, y, · · · , y), then

sup
t

sup
|x0|≤1,|y|≤1

x̂TP (t)x̂ ≤ C. (13)

Taking particular values of (x0, y) in (13), we may obtain
bound information on ΠN

i and prove the following lemma.
Lemma 4.1: We have

sup
0≤t≤T

{|ΠN
0 |+N |ΠN

1 |+N |ΠN
2 |+N2|ΠN

3 |} = O(1).

The bound on the right hand side is deterministic.

A. Approximation error estimate

Notice that we can compare the BSDEs of
(ΛN0 , Λ

N
1 , Λ

N
2 , Λ

N
3 ) and those of (Λ0, Λ1, Λ2, Λ3) by

viewing the former as the latter being perturbed by some
small error terms of O(1/N), where the error bound is due
to Lemma 4.1. Since both solution processes stay in a prior
compact set, the Lipschitz property (B) in [34, Theorem
7.3.3] is satisfied. Subsequently, in view of Lemma 4.1 and
[34, Theorem 7.3.3], for 0 ≤ k ≤ 3, we have

E sup
t∈[0,T ]

‖ΛNk (t)− Λk(t)‖ = O(1/N). (14)
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B. The asymptotic value of the social optimum

Denote the optimal control in (8) by uopt. To evaluate the
asymptotic value of J (N)

soc (uopt), we suppose
EXN

0 (0) = µ0, EXN
i (0) = µ, i ≥ 1,

Cov(XN
0 (0), XN

0 (0)) = Σ0,

Cov(XN
i (0), XN

i (0)) = Σ, i ≥ 1.

(15)

Denote

J∞soc = µT0 Λ0(0)µ+ 2µT0 Λ2(0)µ+ µT [Λ1(0) + Λ3(0)]µ

+ Tr(Λ0(0)Σ0 + Λ1(0)Σ)

+ 2µT0 ϕ0(0) + 2µTϕ(0) + ρ(0).

Theorem 4.2: Under (15), we have

|J (N)
soc (uopt)− J∞soc| = O(1/N). (16)

Proof: The optimal social cost is given by

J (N)
soc (uopt) = EXT (0)P0X(0) + 2EXT (0)S0 + r0.

Note that P0, S0, and r0 are all deterministic for t = 0. We
can show similar convergence rate for SN0 to ϕ0, NSN to
ϕ, and r to ρ, as in (14). The theorem follows.

V. CLOSED-LOOP PERFORMANCE ANALYSIS

Under the decentralized control laws, the closed-loop state
processes are

dXN
0 =

[
A0X

N
0 −M0(Λ0X

N
0 + Λ2m+ ϕ0) + F0X

(N)
]
dt

+D0dW0(t), (17)

dXN
i =

[
AXN

i −Mλ(Λ1Xi + ΛT2X
N
0 + Λ3m+ ϕ)

+ FX(N) +GXN
0 (t)

]
dt

+DdWi(t) +D1dW0(t), 1 ≤ i ≤ N, (18)

where

dm(t) = {[A+ F −Mλ(Λ1 + Λ3)]m+ (G−MλΛ
T
2 )XN

0

−Mλϕ}dt+D1dW0(t), m(0) = µ.

Denote

Â =
A0 −M0Λ0

F0

N · · · F0

N −M0Λ2

G−MλΛ
T
2 Ac · · · F

N −MλΛ3

...
...

. . .
...

...
G−MλΛ

T
2

F
N

F
N Ac −MλΛ3

G−MλΛ
T
2 0 0 0 A+ F −Mλ(Λ1 + Λ3)


where Ac = A−MλΛ1 + F

N . Denote

D̂ =

[
D


]
, D̂0 =

[
D0

(N+1)×1 ⊗D1

]
, (19)

where  is the n3 ×Nn3 zero matrix and

b̂ =


−M0ϕ0

−Mλϕ
...

−Mλϕ

 , ϕ̂ =


R̂0ϕ0

R̂λϕ
...

R̂λϕ

 . (20)

We write the closed-loop dynamics in the form

dZt = (ÂZ + b̂)dt+ D̂dWt + D̂0dW0(t). (21)

Denote

x =


x0
x1
...
xN

 , z =

[
x
m

]
, u =


u0
u1
...
uN

 ,
R̂0 = −R−10 BT0 , R̂λ = −R−1λ BT , and

M̂ =


R̂0Λ0 0 . . . 0 R̂0Λ2

R̂λΛ
T
2 R̂λΛ1 . . . 0 R̂λΛ3

...
...

. . .
...

...
R̂λΛ

T
2 0 . . . R̂λΛ1 R̂λΛ3

 .
In addition, denote Q̂f = diag[Qf ,n×n] and

Q̂ = diag[Q,n×n] + M̂TRM̂ .

We can write u = M̂Z + ϕ̂ and

V̂ (t, z) = EF
W0
t

t,z

[ ∫ T

t

(ZTs Q̂Zs + 2ZTs M̂
TRϕ̂s

+ ϕ̂TsRϕ̂s)ds+ZTT Q̂fZT

]
.

We have

− dV̂ − [(Âz)TDzV̂ +
1

2
tr[(D̂D̂T + D̂0D̂

T
0 )DzzV̂ ]

+ D̂T
0 DzΦ̂+ zT Q̂z + 2zTM̂TRϕ̂

+ ϕ̂TRϕ̂]dt+ Φ̂dW0(t) = 0,

V̂ (T, z) = zT Q̂fz.

Then given the initial condition Zt = z, the social cost may
be represented as

V̂ (t, z) = zT P̂tz + 2zT Ŝt + r̂t,

Φ̂(t, z) = zT Ψ̂tz + 2zT Υ̂t + γ̂t,

where

0 = dP̂ + (ÂT P̂ + P̂ Â+ Q̂)dt− Ψ̂dW0,

0 = dŜ + [ÂT Ŝ + Ψ̂D̂0 + P̂ b̂+ M̂TRϕ̂]dt

− Υ̂ dW0,

0 = dr̂ + {tr[(D̂D̂T + D̂0D̂
T
0 )P̂ ] + 2b̂T Ŝ + 2D̂T

0 Υ

+ ϕ̂TRϕ̂}dt− γ̂dW0,

with P̂T = Q̂f , ŜT = 0, r̂T = 0.
We look for P̂ and Ŝ with the representations

P̂ =



Π̂N
0 Π̂N

2 Π̂N
2 · · · Π̂N

2 ΠN
a

Π̂NT
2 Π̂N

1 Π̂N
3 · · · Π̂N

3 ΠN
b

Π̂NT
2 Π̂N

3 Π̂N
1 · · · Π̂N

3 ΠN
b

...
...

...
. . .

...
Π̂NT

2 Π̂N
3 Π̂N

3 · · · Π̂N
1 ΠN

b

ΠNT
a ΠNT

b ΠNT
b · · · ΠNT

b ΠN
m


,

Ŝ = [ŜNT0 , ŜNT , . . . , ŜNT , ŜNTm ]T ,
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and similar decomposition of Ψ̂ and Υ̂ . We obtain

0 = dΠ̂N
0 + [Π̂N

0 (A0 −M0Λ0) + (A0 −M0Λ0)T Π̂N
0

+NΠ̂N
2 (G−MλΛ

T
2 ) +N(G−MλΛ

T
2 )T Π̂NT

2

+ Π̂N
a (G−MλΛ

T
2 ) + (G−MλΛ

T
2 )T Π̂NT

a

+ ΛT0M0Λ0 + Λ2MλΛ
T
2 + Q̄0]dt− Ψ̂N0 dW0(t),

with terminal conditions Π̂N
k (T ) = Q̂kf , 0 ≤ k ≤ 3, and

Π̂N
a (T ) = Π̂N

b (T ) = Π̂N
m (T ) = 0.

Next, we similarly have equations for ŜN0 , Ŝ
N , ŜNm and r̂.

Denote Λ̂N0 = Π̂N
0 , Λ̂

N
1 = NΠ̂N

1 , Λ̂
N
2 = NΠ̂N

2 , Λ̂
N
3 =

N2Π̂N
3 , and Λ̂Na = Π̂N

a , Λ̂
N
n = NΠ̂N

n , Λ̂
N
m = Π̂N

m . We
further obtain a set of limiting BSDEs, which are omitted
here due to limited space.

Theorem 5.1: Assume (15). Then we have

0 ≤ EV̂ (0,X(0))− J (N)
soc (uopt) = O(1/N). (22)

Proof: (Sketch) We first obtain the limiting linear BS-
DEs of (Λ̂Nk , Λ̂

N
a , Λ̂

N
b , Λ̂m, 0 ≤ k ≤ 3) and Ŝt, r̂t. By com-

paring the above limiting BSDEs with those of (Λ0, · · · , ρ),
we further show |EV̂ (0,X(0))−J∞soc| = O(1/N). Recalling
Theorem 4.2, we complete the proof.

The above performance estimate improves upon the bound
O(1/

√
N) in [18], [19]. For the model without a major

player, a similar bound of O(1/
√
N) was obtained in [15].

VI. CONCLUSION

We analyze an LQ mean field social optimization problem
with mixed agents. We adopt a re-scaling method to derive
decentralized control laws and further obtain tight bound of
O(1/N) for optimality loss.
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