
Efficient and Real-Time Reinforcement Learning for Linear Quadratic
Systems with Application to H-infinity Control

Ali Aalipour and Alireza Khani

Abstract— This paper presents a model-free, real-time, data-
efficient Q-learning-based algorithm to solve the H∞ control
of linear discrete-time systems. The computational complexity
is shown to reduce from O(q3) in the literature to O(q2) in
the proposed algorithm, where q is quadratic in the sum of
the size of state variables, control inputs, and disturbance. An
adaptive optimal controller is designed and the parameters
of the action and critic networks are learned online without
the knowledge of the system dynamics, making the proposed
algorithm completely model-free. Also, a sufficient probing
noise is only needed in the first iteration and does not affect
the proposed algorithm. With no need for an initial stabilizing
policy, the algorithm converges to the closed-form solution
obtained by solving the Riccati equation. A simulation study
is performed by applying the proposed algorithm to real-time
control of an autonomous mobility-on-demand (AMoD) system
for a real-world case study to evaluate the effectiveness of the
proposed algorithm.

I. INTRODUCTION

Reinforcement learning (RL) is one of the three funda-
mental machine learning paradigms, alongside supervised
learning and unsupervised learning, which has a long history
[1]. The dynamical system’s model is typically unknown
in RL settings, and the ideal controller is discovered by
engagement with the environment. It is fundamental for the
RL algorithms to deliver assured stability and performance
as the range of RL extends to more difficult tasks. Due
to deep networks’ inherent complexity and the intricacy
of the tasks, we are still a long way from being able to
analyze RL algorithms. In addition, the majority of them are
neither theoretically tractable nor can their convergence be
investigated.

H∞ problem is a classical control problem where the dy-
namical system follows linear dynamics and the cost function
to be minimized is quadratic. It is a robust control method
that is implemented to attenuate the effects of disturbances
on the performance of dynamical systems. It is a great
benchmark for studying since the closed-form solution for
H∞ is available. Moreover, it is theoretically tractable in
comparison to the RL algorithms.

As a result of the aforementioned factors, the linear
quadratic (LQ) problem has received greater attention from
the RL community [2], [3], [4], see also [5] for a thorough
overview of RL methods and their properties for the LQ

Ali Aalipour and Alireza Khani are with the Department of Electrical and
Computer Engineering and Department of Civil, Environmental, and Geo-
Engineering, University of Minnesota, MN, USA {aalip002@umn.edu,
akhani@umn.edu}.

∗The study has been conducted in the University of Minnesota Transit
Lab, through the support of various grants and sponsored projects.

problems. In addition, the convergence of policy gradient
methods for the linear quadratic regulator (LQR) problem is
shown in [6]. RL also has been applied for solving optimal
control problems in an uncertain environment,[7], [8], [9].
Inherently, the Q-learning algorithm does not eliminate the
impacts of the probing noise, which is employed to excite the
system, in the Bellman equation when evaluating the value
function. The algorithm’s convergence may be impacted, and
this may lead to bias. In [9], two separate policies are used to
update the algorithm to cancel the effects of probing noise.
However, there should be enough generated data for each
iteration to estimate the policies.

A. Contributions

In this paper, we propose a RL algorithm to solve the
H∞ control of linear discrete-time systems. It is model-
free, real-time, and data-efficient, i.e., using a single data,
the parameters of the actor and critic networks are updated.
This feature results in reducing the order of computational
complexity to square (O(q2)) where q is the number of
parameters being estimated, compared to the cube order
(O(q3)) in the state-of-the-art algorithms in the literature
(e.g., [7], [9]). This RL algorithm does not suffer from bias
if probing noise is used. Moreover, a sufficient amount of
probing noise is only needed in the first iteration, i.e., the
policy used to generate data, called the behavior policy is
different only in the first iteration than the policy being
evaluated and improved, called the estimation policy or
target policy. The convergence of the proposed algorithm
is shown. Moreover, we apply the proposed algorithm to
an autonomous mobility-on-demand (AMoD) system which
can be modeled as an H∞ control of linear discrete-time
systems, in particular, to optimize vehicle scheduling and
rebalancing in the AMoD system that can be modeled as
a linear discrete-time system. To fulfill customer demands,
rebalancing is crucial to ensure that vehicles are distributed
properly which means dispatching available empty vehicles
to areas undersupplied areas. In summary, the contributions
of this paper can be expressed as follows:

1) Proposed a model-free, real-time, and data-efficient
algorithm to solve the H∞ control of linear discrete-
time systems.

2) Reduced the order of computational complexity form
cube (O(q3)) in the state-of-the-art algorithms in the
literature to square (O(q2)).

3) Discussed the properties of the proposed algorithm and
proved its convergence.

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 6271

4) Applied the proposed algorithm to an AMoD system
which can be modeled as an H∞ control of linear
discrete-time systems.

B. Organization

The remainder of the paper is organized as follows. In Sec-
tion II, the discrete-time H∞ control problem is formulated.
This section is concluded by implementing the value iteration
algorithm. In Section III, the online implementation of the
proposed algorithm and its properties are analyzed. Besides,
the convergence of the proposed algorithm is proved. Section
IV presents the problem formulation and model for the
AMoD system. We present the results of the numerical case
study example in Section V. Finally, the paper is concluded
in Section VI.

C. Notation

vecs(P) =
[
p11, ..., p1n, p22, ..., p2n, ..., pnn

]T
is

the vectorization of the upper-triangular part of
a symmetric matrix P ∈ Rn×n, and vecv(v) =[
v21 , 2v1v2, ..., 2v1vn, v

2
2 , ..., 2v2vn, ...v

2
n

]T
is the quadratic

vector of the vector v ∈ Rn.

II. DISCRETE-TIME (DT) H∞ CONTROL PROBLEM

Consider the following linear discrete-time system

xt+1 = Axt + Bvt + Ldt, (1)

where xt ∈ Rm1 is the system state, vt ∈ Rm2 is the control
input, and dt ∈ Rm3 is the external disturbance input.

Assumption 1: The pair (A,B) is stabilizable, i.e., all
uncontrollable modes are asymptotically stable.
We consider the standard Q-learning algorithm and discuss
its properties. Since system identification is not going to be
performed to estimate the parameters of systems, we use the
following objective function

J (xt, vt, dt) =

∞∑
i=t

r(xi, vi, di) (2)

where

r(xi, vi, di) = xT
i Rxxi + vTi Rvvi − γ2dTi di,

for a prescribed fixed value of γ. Matrices Rx and Rv

are positive semidefinite (PSD) and positive definite (PD),
respectively. In the H∞ control problem, γ is an upper bound
on the desired L2 gain disturbance attenuation [10]. Note that
the formulation we used is similar to min-max LQ in [11]
and [12]. In the zero-sum game LQ problem, it is desired to
find the optimal control v⋆t and the worst-case disturbance
d⋆t . Note that functions in L2 [0,∞) represent the signals
having finite energy over infinite interval [0,∞). That is,
∞∑
t=0

dTt dt < ∞. Moreover, using (2) and given some fixed

policy for an admissible control policy vt = Kvxt and a
disturbance policy dt = Kdxt the value function is defined
as

V (xt,Kv,Kd) =

∞∑
i=t

r(xi,Kvxi,Kdxi), (3)

Since V (xt,Kv,Kd) = Q(xt,Kvxt,Kddt), the Bellman
equation under the policy gains Kv and Kd can be rewritten
as follows:

Q(xt, vt, dt) =r(xt, vt, dt) + V (xt+1,Kv,Kd), (4)

and the Bellman optimality equation for the Q-function under
the optimal policy gains K⋆

v and K⋆
d is

Q⋆(xt, vt, dt) =r(xt, vt, dt) +Q⋆(xt+1,K
⋆
vxt+1,K

⋆
vxt+1).

(5)

A. Derivation of Q-learning Algorithm

We use the Q-function to develop a Q-learning algorithm
([1], [13]) to solve for the DT H∞ Control Problem using
the Bellman equation (4). The learning process starts with
an initial Q-function Q0(x, v, d) = 0 in the Q-learning that
is not necessarily optimal, and then derives Q1(x, v, d) by
solving Eq. (6) with i = 0.

1) Policy evaluation: We evaluate the policy by using
Q-function in (6).

Qi+1(xt, vt, dt) =r(xt, vt, dt) +Qi(xt+1,K
i
vxt+1,K

i
vxt+1).

(6)

2) Policy improvement: The control and disturbance poli-
cies will be improved as follows:

Ki+1
v =argmin

Kv

Qi+1(xt, vt, dt)

Ki+1
d =argmax

Kd

Qi+1(xt, vt, dt).

Let zt = [xT
t , v

T
t , d

T
t]

T and

P i =
[
I Ki

v
T

Ki
d
T
]
Si

[
I Ki

v
T

Ki
d
T
]T

.

Given a linear system, linear policies, and quadratic cost, we
can assume the quality function (Q-function) is quadratic in
the state, control, and disturbance so that

Qi+1(zt) = zTt S
i+1zt. (7)

Applying (7) in (6), the Lyapunov equation yields

zTt S
i+1zt = r(xt, vt, dt) + xT

t+1P
ixt+1. (8)

Replacing the dynamics (1) in (8), we have:

zTt S
i+1zt = xT

t Rxxt + vTt Rvvt − γ2dTt dt

+ (Axt + Bvt + Ldt)TP i(Axt + Bvt + Ldt)
=
[
xT
t vTt dTt

]Rx +ATP iA ATP iB ATP iL
BTP iA Rv + BTP iB BTP iL
LTP iA LTP iB LTP iL − γ2I

xt

vt
dt


=zTt

Rx +ATP iA ATP iB ATP iL
BTP iA Rv + BTP iB BTP iL
LTP iA LTP iB LTP iL − γ2I

 zt.

Let us partition matrix Si+1 as

Si+1 =

Si+1
xx Si+1

xv Si+1
xd

Si+1
vx Si+1

vv Si+1
vd

Si+1
dx Si+1

dv Si+1
dd

 . (9)

6272

Optimizing Qi+1(zt) over vt and dt results in

vt = −Si+1
vv

−1
(Si+1

vd dt + Si+1
vx xt),

dt = −Si+1
dd

−1
(Si+1

dv vt + Si+1
dx xt).

Substituting vt in dt and vice versa yields the equations
vi+1
t = Ki+1

v xt and di+1
t = Ki+1

d xt where

Ki+1
v =

(
Si+1
vv − Si+1

vd Si+1
dd

−1
Si+1
dv

)−1

×
(
Si+1
vd Si+1

dd

−1
Si+1
dx − Si+1

vx

)
, (10a)

Ki+1
d =

(
Si+1
dd − Si+1

dv Si+1
vv

−1
Si+1
vd

)−1

×
(
Si+1
dv Si+1

vv

−1
Si+1
vx − Si+1

dx

)
. (10b)

Using (7) and applying the above result in (8), the following
recursion can be concluded:

Si+1 =

Rx 0 0
0 Rv 0
0 0 −γ2I


︸ ︷︷ ︸

G

+

AT

BT

LT

[
I Ki

v
T

Ki
d
T
]
Si

 I
Ki

v

Ki
d

 [
A B L

]
. (11)

Given

P i =
[
I Ki

v
T

Ki
d
T
]
Si

[
I Ki

v
T

Ki
d
T
]T

,

the following equation can be concluded:

P i+1 =
[
I Ki+1

v
T

Ki+1
d

T
]
Si+1

[
I Ki+1

v
T

Ki+1
d

T
]T

.

Substituting (11), (10a), and (10b), one can obtain:

P i+1 = Rx +ATP iA−
[
ATP iB ATP iL

][
Rv +BTP iB BTP iL

LTP iB LTP iL − γ2I

]−1 [BTP iA
LTP iA

]
. (12)

Equation (12) is called Lyapunov Recursion.
In summary, we evaluate the policy gains Kv and Kd by

finding the quadratic kernel S of the Q-function using (11)
and then improved policy gains are given by (10a) and (10b).

III. ONLINE IMPLEMENTATION OF THE PROPOSED
ALGORITHM

In this section, we discuss the online implementation of
the proposed algorithm and prove its convergence. Algorithm
1 summarizes the steps of the proposed algorithm for the H∞
problem (1).

We will parameterize the Q-function in (6) so that
we can separate the unknown matrix S. Using param-
eterization and defining s = vecs(S), p = vecs(P),
zt =

[
xT
t , v

T
t , d

T
t

]T
, ϕt(K

i
v) = [xT

t , (K
i
vxt)

T , dTt]
T , and

ϕt(K
i
v,K

i
d) = [xT

t , (K
i
vxt)

T , (Ki
dxt)

T]T , we have the below
equation:

vecv(zt)si+1 = r (xt, vt, dt) + vecv(ϕt+1(K
i
v,K

i
d))si.

(13)

Algorithm 1

1: Initialization: i = 0, Any arbitrary policy gain K0
v ,

K0
d , and S = 0

2: for τ = −(q − 1), · · · , 0 do
3: Sample λ ∼ N (0,Wλ) and set v = K0

vx+ λ.
4: Take v and d and observe x+.
5: end for
6: Estimate S1 by (14)
7: Improve the policies K1

v and K1
d by (10a) and (10b).

8: while ∥Si+1 − Si∥2 > ϵ do
9: Take Ki

v and observe xi+1.
10: Estimate Si+1 by (14).
11: Improve the policies by (10a) and (10b).
12: i = i+ 1.
13: end while

To find the optimal policy in each iteration, we need to solve
the following least square (LS) problem:

si+1 = min
s

∥Ψis− Γi∥22 , (14)

where:
ξ = vecs (G) .

Γi = Ψiξ +Φisi =
[
ΓT
i−1, γ

T
i

]T
where

γi = vecv(ϕi(K
i
v))ξ + vecv(ϕi+1(K

i
v,K

i
d))si.

Φisi can be written as X+
i pi where

X+
i =

[
X+

i−1

T
, vecv(xi+1)

T
]T

.

Ψi =
[
Ψi−1

T , vecv(ϕi(K
i
v))

T
]T

and
Φi =

[
ΦT

i−1, vecv(ϕi+1(K
i
v,K

i
d))

T
]T

, for i = 1, 2, · · · .
The initial values are given as
Ψ0 =

[
vecv(z−(q−1))

T , vecv(z−(q−2))
T , · · · , vecv(z0)T

]T
,

Φ0 =

vecv(ϕ−(q−2)(K
0
v ,K

0
d))

. . .
vecv(ϕ1(K

0
v ,K

0
d))

, Γ0 = Ψ0ξ +Φ0s0, and

X+
0 =

[
vecv(x−(q−2)))

T , · · · , vecv(x1)
T
]T

.
Equation (13) is used in the policy evaluation step to

solve for the unknown vector s in the least-squares sense
by collecting q ≥ q data samples of x, v, and d, where
q = (m1 +m2 +m3)(m1 +m2 +m3 + 1)/2. It should be
noted that vt and dt are linearly dependent on xt which
means that ΨTΨ is not invertible. To resolve this issue,
excitation noise is added in vt and dt in only the first iteration
such that a unique solution to (14) is guaranteed. On the other
hand, rank (Ψ) = q. In Algorithm (1), instead of getting q
samples in each iteration and updating matrix S, we update
the algorithms using only a single data. Another advantage is
that persistent excitation is needed only in the initial iteration.
Note that we only have one index since we use only a single
data in each iteration.

A. Recursive Least Square (RLS)

LS estimation is used when one has an overdetermined
system of equations. If data is coming in sequentially, we
do not have to recompute everything each time a new data

6273

point comes in. Moreover, we can write our new, updated
estimate in terms of our old estimate [14].

Consider Eq. (14). The solution can thus be written as

Ψi
TΨisi+1 = Ψi

TΓi. (15)

By defining Ξi = ΨT
i Ψi, we have

Ξi = ΨT
i Ψi =ΨT

i−1Ψi−1 + vecv(ϕi(K
i
v))

Tvecv(ϕi(K
i
v))

=Ξi−1 + vecv(ϕi(K
i
v))

Tvecv(ϕi(K
i
v)). (16)

Rearranging Eq. (15), we get

Ξisi+1 =ΨT
i−1Γi−1 + vecv(ϕi(K

i
v))

T γi

=Ξi−1si + vecv(ϕi(K
i
v))

T γi.

By denoting Mi = Ξ−1
i ,

si+1 = Mi

(
Ξi−1si + vecv(ϕi(K

i
v))

T γi
)
.

Plug the above equation into (16), it yields

si+1 = si −Mi

×
(
vecv(ϕi(K

i
v))

Tvecv(ϕi(K
i
v))si − vecv(ϕi(K

i
v))

T γi
)

= si +Mivecv(ϕi(K
i
v))

T
(
γi − vecv(ϕi(K

i
v))si

)
,

where Mi can be updated in each iteration using Sherman-
Morrison formula ([15]) as follows:

Mi = Mi−1 −
Mi−1vecv(ϕi(K

i
v))

Tvecv(ϕi(K
i
v))Mi−1

1 + vecv(ϕi(Ki
v))Mi−1vecv(ϕi(Ki

v))
T

.

(17)

The quantity Mivecv(ϕi(K
i
v))

T is called the ”Kalman Filter
Gain”, and γi−vecv(ϕi(K

i
v))si is called ’innovations’ since

it compares the difference between a data update and the
action given the last estimate. If the dimension of Ξi is
very large, computation of its inverse can be computationally
expensive, so one would like to have a recursion for the Mi+1

as in (17).
Theorem 1 (Convergence of Algorithm 1): Assume that

the linear quadratic problem (1)-(3) is solvable and has
a value under the state feedback information structure or
equivalently assume there exists a solution to the game’s
algebraic Riccati recursion (12). Then, iterating on (11)
(equivalent to iterating on (12)) with S0 = 0, K0

v = 0,
and K0

d = 0 converges with Si → S⋆ and equivalently
P i → P ⋆ where the matrix P ⋆ satisfies the following
Recatti equation:

P ⋆ = Rx +ATP ⋆A−
[
ATP ⋆B ATP ⋆L

][
Rv +BTP ⋆B BTP ⋆L

LTP ⋆B LTP ⋆L − γ2I

]−1 [BTP ⋆A
LTP ⋆A

]
. (18)

Proof: The proof can be found in [16]. The key idea of
the proof is to show Algorithm 1 follows Equation (12) in
each iteration, and then by using Lemma 4.1 and Theorem
4.2 in [17], it is shown that iterating on (12) with P0 = 0
converges to P ⋆.

B. Computational Complexity Analysis

Recall q = (m1 +m2 +m3)(m1 +m2 +m3 + 1)/2 as
the number of parameters to be estimated. In both clas-
sical Q-learning and the proposed algorithm, the number
of parameters being estimated is similar. For the sake of
comparison, assume q = q. for the initial iteration both
of the algorithms have a computational complexity of or-
der O(q3) while in the rest of the iterations, Algorithm
1 has a computational complexity of order O(q2), unlike
classical Q-learning that has O(q3) order of computational
complexity. In [7], [9]), to update the parameters of the critic
network, at least q data is required, and because there is a
batch of data in each iteration, a pseudo-inverse (with the
computational complexity of O(q3)) in each iteration must
be computed. In contrast, we emphasize sample complexity
and use only a single data to update the parameters of the
critic network. It is a huge advantage for systems that have
long time steps or when acquiring data is not trivial. On
the order of computational complexity, using the key equa-
tion si+1 = si+Mivecv(ϕi(K

i
v))

T
(
γi − vecv(ϕi(K

i
v))si

)
,

the computational complexity of Miq×qvecv(ϕi(K
i
v))

T
q×1

is O(q2) (considering γi − vecv(ϕi(K
i
v))si is a scalar).

The computational complexity of the key equation re-
duces to the computational complexity of calculating
Mi in (17). The computational complexity of calcu-
lating the column vector Mi−1q×q

vecv(ϕi(K
i
v))

T
q×1 and

the row vector vecv(ϕi(K
i
v))1×qMi−1q×q

are O(q2). Con-
sidering the computational complexity of the scalar
vecv(ϕi(K

i
v))1×qMi−1q×q

vecv(ϕi(K
i
v))

T
q×1 is O(q2), there-

fore, the computational complexity of calculating Mi is
O(q2), and consequently, the computational complexity of
calculating si+1 is O(q2).

Remark 1: In section III, we only have one index, i, since
in each iteration we use only a single data. Therefore, we do
not require the use of both subscript i and superscript t and
only use index i.

IV. AUTONOMOUS MOBILITY-ON-DEMAND (AMOD)
MODEL

In this section, a discrete-time linear dynamic model is
formulated for the AMoD system. We relax the model in
[18] by considering origin-destination demand. The linear
discrete-time time-delay dynamic system is as follows:

wrs (t+ 1) =wrs (t) + drs (t)− Urs (t) (19a)

pr (t+ 1) =pr (t)−
∑
s∈N

(Urs (t) +Rrs (t))

+
∑
q∈N

(
gqr (t)

Tqr

)
(19b)

grs (t+ 1) =

(
1− 1

Trs

)
grs (t) + Urs (t) +Rrs (t) ,

(19c)

for ∀ r, s ∈ N where state variable wrs denotes the waiting
customers at r aiming to go to s. State variable pr charac-
terizes the waiting or available vehicles at station r. State

6274

variable grs denotes vehicles moving along the link {r, s},
including both customer-carrying and rebalancing vehicles.
Control input Urs is the number of available vehicles at
station r with a customer that will be dispatched to link
{r, s}. Rrs is the number of available vehicles at station
r that will be dispatched to link {r, s} for rebalancing.
The term drs(t) represents the arrival of customers in a
time step given by the realization of a Poisson process of
parameter λrs. Model (19) is derived using a first-order
lag approximation of the time delays. It is assumed that
the number of vehicles exiting a link is proportional to the
number of vehicles on that link. In other word, at each time
instant t, the quantity grs (t) /Trs leaves the link {r, s}.
Therefore, Urs (t− Trs)+Rrs (t− Trs) can be replaced by
grs (t) /Trs.

This AMoD system is subject to some constraints that en-
force the non-negativity of state and control input variables.
The global system associated with graph G is represented as

xt+1 = Axt + Bvt + Ldt, (20)

where the vector of all state variables xt ∈ R2n2−n

is
[
w (t)

T
, p (t)

T
, g (t)

T
]T

and the vector of all con-

trol input variables v ∈ R2n(n−1) is defined as vt =[
U (t)

T
, R (t)

T
]T

. dt ∈ Rn(n−1) represents arriving cus-
tomers. Matrices A, B, and L can be written as below:

A =

In(n−1) 0 0

0 In EinT̃
−1

0 0 In(n−1) − T̃−1


B =

−In(n−1) 0
−Eout −Eout

In(n−1) In(n−1)

 , L =

In(n−1)

0
0

 . (21)

where Ein and Eout ∈ {0, 1}n×m are the in-neighbors and
out-neighbors matrices. If graph G is strongly connected and
drs = λrs for ∀ {r, s} ∈ Â, where λrs represents the Poisson
arrival rate for the link {r, s}, then equilibrium points of
system (20) are given by x̄ = (w̄, p̄, ḡ), where w̄ and p̄ can
be any arbitrary positive vector, ḡ = T̃

(
λ+ R̄

)
, Ū = λ, and

R̄ satisfies E
(
R̄+ λ

)
= 0. If the number of nodes, n, is

greater than 2, there will be an infinite number of equilibrium
points. Also, the desired equilibrium point that minimizes
the number of rebalancing, R̄⋆, can be found by solving the
following optimization problem:

min
R̄

∥∥∥T̃ 1
2 R̄

∥∥∥2
2

(22a)

s.t. E
(
R̄+ λ

)
= 0, R̄ ≥ 0. (22b)

where E = Ein−Eout is the incidence matrix. By changing
the coordinates of (20), we aim to regulate the AMoD system
around the desired equilibrium points.

V. SIMULATION STUDY

We first introduce a network for the test we perform. Then,
we apply Algorithm 1 developed in Section III to obtain
optimal control, disturbance actions, and the value function
parameters in time.

A. Studied Network

The University of Minnesota-Twin Cities (UMN) campus
network is considered as the site on which to perform the
test. The network we consider is partitioned into six zones.
Consequently, a digraph with n = 6 vertices and m = 30
links is produced by partitioning.

B. Case Study

A 12-hour historical trip dataset is considered for the case
study. We consider each time step equal to two minutes.
So, the number of iterations is 360. Some origin-destination
pairs are used more frequently than others, which implies
a significant imbalance in demand. The number of vehicles
is constant at each time step (including equilibrium) and is
equal to 1T

np (t)+1T
n(n−1)g (t) ([19], [18]). Therefore, M =

1T
n(n−1)ḡ = TT

(
λ+ R̄

)
can be considered a lower bound

for the fleet size. Initial conditions for the AMoD model
are x0 =

[
0Tn(n−1)

2

M
n 1Tn 0Tn(n−1)

2

]T
. The average queue

length, the average number of rebalancing vehicles, and the
average number of customer-carrying vehicles are the metrics
that we are interested in investigating using Algorithm 1. The
disturbance attenuation γ is selected to be 0.1. Let Wλ =
0.01I . Weights matrices Rx and Rv are chosen as Rx =λ̃ 0 0
0 0 0
0 0 0

 and Rv =

[
ρT̃ 0

0 ρT̃

]
, where ρ = 0.05. The

reference being tracked (λ, R̄⋆) is recomputed via Problem
(22) every 2 hours (60 iterations). Therefore, Rx will change
every 60 iterations. The recursive least-squares algorithm is
used to tune the parameters of the critic network online. The
parameters of the action networks are updated according to
(10a) and (10b).

The parameters of the critic and the action networks
are initialized to identity and zero, respectively. Based on
this initialization step, the system dynamics move forward
in time, and tuning the parameter structures is done by
observing the states online. In the RLS problems, the per-
sistency of the excitation condition required to converge the
recursive least-squares tuning, i.e., avoiding the parameter
drift problem, will hold. However, In Algorithm 1, the
persistency of the excitation condition is only required for
the initial iteration.

In Fig. 1a, the convergence of the critic network is
illustrated. Fig. 1b shows the convergence of the control
action network, while Fig. 1c depicts the convergence of the
disturbance action network.

VI. CONCLUSION

In this paper, we proposed a model-free, real-time, data-
efficient Q-learning-based algorithm to solve the H∞ control
of linear discrete-time systems and applied it to an AMoD
system modeled as an H∞ control of the linear discrete-time
system. The convergence of the algorithm was proved and
it was shown that the parameters of the actions and critic
networks converged to the optimal values. Numerical results
from an AMoD system control in a real case study showed

6275

0 10 20 30 40 50 60
Iterations

0

20

40

60

80

100

120

140

160

180

200

(a) Online convergence of P .

0 10 20 30 40 50 60
Iterations

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(b) Convergence of the control action network parameters (Kv).

0 10 20 30 40 50 60
Iterations

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(c) Convergence of the disturbance action network parameters (Kd).

Fig. 1: Convergence of the parameters of actions and critic
network.

that the proposed algorithm can be implemented in high-
dimension systems thanks to the quadratic computational
complexity O(q2) and using only a single data point for
updating the actor and critic networks in each iteration.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[2] Y. Abbasi-Yadkori, N. Lazic, and C. Szepesvári, “Model-free linear
quadratic control via reduction to expert prediction,” in The 22nd Inter-
national Conference on Artificial Intelligence and Statistics. PMLR,
2019, pp. 3108–3117.

[3] S. Dean, H. Mania, N. Matni, B. Recht, and S. Tu, “On the sample
complexity of the linear quadratic regulator,” Foundations of Compu-
tational Mathematics, vol. 20, no. 4, pp. 633–679, 2020.

[4] S. Tu and B. Recht, “Least-squares temporal difference learning for
the linear quadratic regulator,” in International Conference on Machine
Learning. PMLR, 2018, pp. 5005–5014.

[5] N. Matni, A. Proutiere, A. Rantzer, and S. Tu, “From self-tuning
regulators to reinforcement learning and back again,” in 2019 IEEE
58th Conference on Decision and Control (CDC). IEEE, 2019, pp.
3724–3740.

[6] M. Fazel, R. Ge, S. Kakade, and M. Mesbahi, “Global convergence
of policy gradient methods for the linear quadratic regulator,” in
International Conference on Machine Learning. PMLR, 2018, pp.
1467–1476.

[7] A. Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf, “Model-free q-
learning designs for linear discrete-time zero-sum games with appli-
cation to h-infinity control,” Automatica, vol. 43, no. 3, pp. 473–481,
2007.

[8] H.-N. Wu and B. Luo, “Neural network based online simultaneous
policy update algorithm for solving the hji equation in nonlinear
h∞ control,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 23, no. 12, pp. 1884–1895, 2012.

[9] B. Kiumarsi, F. L. Lewis, and Z.-P. Jiang, “H∞ control of linear
discrete-time systems: Off-policy reinforcement learning,” Automatica,
vol. 78, pp. 144–152, 2017.

[10] T. Baar and P. Bernhard, “If’-optimal control and related minimax
design problems,” Birkh/iuser,, 1995.

[11] A. Rantzer, “Minimax adaptive control for a finite set of linear
systems,” in Learning for Dynamics and Control. PMLR, 2021, pp.
893–904.

[12] K. Zhang, Z. Yang, and T. Basar, “Policy optimization provably
converges to nash equilibria in zero-sum linear quadratic games,”
Advances in Neural Information Processing Systems, vol. 32, 2019.

[13] F. L. Lewis, D. Vrabie, and K. G. Vamvoudakis, “Reinforcement
learning and feedback control: Using natural decision methods to
design optimal adaptive controllers,” IEEE Control Systems Magazine,
vol. 32, no. 6, pp. 76–105, 2012.

[14] A. Goel, A. L. Bruce, and D. S. Bernstein, “Recursive least squares
with variable-direction forgetting: Compensating for the loss of persis-
tency [lecture notes],” IEEE Control Systems Magazine, vol. 40, no. 4,
pp. 80–102, 2020.

[15] J. Sherman and W. J. Morrison, “Adjustment of an inverse matrix
corresponding to a change in one element of a given matrix,” The
Annals of Mathematical Statistics, vol. 21, no. 1, pp. 124–127, 1950.

[16] A. Aalipour and A. Khani, “Data-driven h-infinity control with
a real-time and efficient reinforcement learning algorithm:
An application to autonomous mobility-on-demand systems,”
arXiv:eess.SY/5117049, 2023.

[17] A. A. Stoorvogel and A. J. Weeren, “The discrete-time riccati equation
related to the h/sub/spl infin//control problem,” IEEE Transactions on
Automatic Control, vol. 39, no. 3, pp. 686–691, 1994.

[18] A. Carron, F. Seccamonte, C. Ruch, E. Frazzoli, and M. N. Zeilinger,
“Scalable model predictive control for autonomous mobility-on-
demand systems,” IEEE Transactions on Control Systems Technology,
2019.

[19] M. Pavone, S. L. Smith, E. Frazzoli, and D. Rus, “Robotic load
balancing for mobility-on-demand systems,” The International Journal
of Robotics Research, vol. 31, no. 7, pp. 839–854, 2012.

6276

