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Abstract—This paper introduces an efficient distributed de-
ployment strategy for a network of mobile and stationary
sensors with nonidentical sensing and communication radii.
A collaborative distributed multi-agent deep reinforcement
learning method is proposed to find the best moving direction
and step size for each sensor, considering the coverage priority.
The gradient of the local coverage function is used to generate a
fast-converging solution as well as a learning-inspired arbitrary
input to enable the network to avoid the local optima. The
sensors use their partial observation of the network and field to
iteratively relocate themselves to explore the field and learn the
optimal policy to increase their local coverage. The efficiency
of the proposed strategy in different scenarios is demonstrated
by simulations.

I. INTRODUCTION

Wireless sensor networks (WSNs) are composed of mul-
tiple sensor nodes capable of gathering data from the en-
vironment and forwarding it through the underlying com-
munication network to the sink node(s). They are becoming
increasingly popular in various applications, including en-
vironmental monitoring and traffic surveillance [1], [2]. A
major challenge in employing WSNs is ensuring adequate
coverage over the region of interest (ROI) while maintaining
sensors’ energy consumption at a low level.

In the absence of a communication infrastructure, it is ben-
eficial to deploy WSNs using distributed strategies that rely
on locally available information to determine the movements
and actions of each sensor node, maximizing coverage. These
strategies typically involve partitioning the sensing field into
regions, using the Voronoi diagram [3], for instance, and
assigning a node to each region. Different approaches can
then be employed to find a candidate moving point inside
the assigned Voronoi regions to enhance the covered area
by the WSN. In virtual-force-based algorithms, each sensor
is driven to a new point by a combination of attractive and
repulsive forces [4]–[6], modelling the interactions between
sensors and their environment.

Under more realistic assumptions, there may be obstacles
in the sensing field, or the sensors may be nonidentical, i.e.,
they may have different mobility, sensing, and communica-
tion specifications, making the WSN heterogeneous. Some
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of these challenges have been addressed in [7]–[9] by using
the multiplicatively-weighted Voronoi diagram [10].

Another category of deployment strategies for maximizing
coverage in dynamic WSNs involves leveraging the gradient
of the sensing field to determine the optimal moving direction
and step size for each sensor. Gradient-based approaches
offer a crucial advantage by integrating environmental and
operational constraints, such as obstacles, prioritized cov-
erage areas, or energy consumption, into the optimization
process. This capability enables a broader problem formula-
tion and facilitates necessary adjustments to the strategy. For
instance, a gradient descent algorithm is proposed in [11] that
is tailored to a range of utility functions encoding optimal
coverage and sensing policies. Moreover, [12] employs a
distributed nonlinear optimization method, utilizing iterative
information exchange between neighbouring sensors to iden-
tify target points to move to for maximizing local coverage.
A modification of this algorithm is introduced in [13] that
can address the additional challenges posed by combining
the mentioned variations of the coverage problem altogether.

Although Voronoi-based partitioning of the sensing field
facilitates the design and implementation of distributed de-
ployment strategies, it may have some disadvantages. For
instance, due to the iterative nature of such strategies, re-
stricting the operational domain of each sensor to its Voronoi
region may lead to a local optima in the solution and lower
the WSN’s overall performance. In the last decade, AI-based
methods have proved effective in solving the complex prob-
lems in WSNs. Particularly, utilizing reinforcement learning
(RL) and Q-learning demonstrates potential in routing, cov-
erage optimization, and management of performance param-
eters. Using RL principles, sensor agents can learn and adjust
their actions according to received rewards, thereby facilitat-
ing optimal decision-making within dynamic network con-
ditions [14], [15]. Moreover, the application of multi-agent
deep reinforcement learning (MADRL) can revolutionize
the performance of WSN distributed deployment algorithms.
There has been a notable focus on employing this approach
in resource allocation and coverage optimization problems in
wireless communication networks [16], [17]. The similarities
between such problems and the present one motivate the
development of distributed DRL-based deployment strategies
for WSNs. Finally, integrating the networked communication
between sensors into the learning approach enables one
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to account for heterogeneous agents with different reward
functions and reduce the coordination cost by considering
neighbour-to-neighbour communication, facilitating the de-
sign of decentralized MADRL algorithms [18], [19].

In this paper, the weighted coverage optimization problem
in a heterogeneous WSN is considered via a distributed
MADRL strategy under a combination of operational specifi-
cations and constraints. These include heterogeneity (sensors
with different sensing and communication capabilities), hy-
bridity (both mobile and stationary sensors), the prioritized
sensing field, as well as power supply management. In the
proposed algorithm, the sensors exchange their current state
with their neighbours over synchronous communication and
use the locally available information to find the best moving
direction and acceleration during each iteration interval. Due
to the unsupervised learning method, each sensor acts as an
agent, exploring the environment and interacting with other
agents until it learns the optimal policy for achieving the
maximal coverage with the least energy consumption.

This paper is organized as follows. The coverage problem
formulation in a WSN and the key definitions from the
RL theory are presented in the next section. In Section III,
the coverage maximization problem is presented in a stan-
dard distributed multi-agent reinforcement learning (MARL)
framework. The gradient-based RL-Max deployment strategy
is proposed in Section IV and its performance in various sce-
narios is demonstrated by simulations in Section V. Finally,
Section VI summarizes the results of the paper and provides
suggestions for future research directions.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Network and Coverage

Consider a network of n sensors denoted by
S = {s1(x1, rs1 , rc1), s2(x2, rs2 , rc2), . . . , sn(xn, rsn , rcn)},
tasked with covering a 2D sensing field F , where xi, rsi ,
and rci are, respectively, the position, sensing radius, and
communication radius of sensor si, i ∈ Nn := {1, 2, . . . , n}.
It is assumed that each sensor follows a deterministic
sensing model, i.e., si has perfect sensing over the points
within the radius rsi , and no sensing coverage beyond
this range. Similarly, the communication of the sensors is
described by a deterministic model. In other words, each
sensor can broadcast its information only to the sensors
within its communication radius rci . Define the set of all
neighbours of a sensor si, denoted by Ni, as the set of all
sensors whose communication ranges reach si, from which
si can receive information. The network is assumed to be
heterogeneous, i.e., the sensing and communication radii of
different sensors are not necessarily identical. In addition,
the WSN is hybrid too, which means sensors s1, s2, . . . , sm
are mobile, and the remaining n−m are stationary. Let the
movement of all mobile sensors in the 2D field be modelled
by double-integrator dynamics described by

ẍi = ui, (1)

where ui ∈ R2 is the control action vector applied to the
i−th sensor. The sensing field is prioritized with respect to

coverage importance, meaning that the relative significance of
coverage at any point q = (q1, q2) in the field, is represented
by a priority function φ(q) : F → R+, where R+ is the
set of all non-negative real numbers. A point with a higher
value of the priority function is more important to cover
compared to points with a lower value. To formulate the
weighted coverage problem, let the sensing disk of a sensor
be defined as follows.

Definition 1. The sensing disk of the sensor S (x, rs , rc) is
defined as D(x) = {q ∈ F|d(x, q) ≤ rs}, where d(x, q) is
the Euclidean distance between points q and x in F .

Problem Definition: Given a WSN with an initial configu-
ration and a priority function defined over the sensing field, it
is desired to find sensor locations from which the weighted
coverage over the ROI is maximized. The global coverage
maximization problem is formulated as follows:

max
{xi}m

i=1

∫
F∩(

⋃n
i=1 D(xi))

φ(q)dq. (2)

Here, the overall weighted coverage is defined as the surface
integral of the priority function over regions in the field F
that are covered by at least one sensor, either stationary or
mobile. Note that in this formulation, only mobile sensors
are capable of improving the overall coverage by moving to
proper points.

B. Reinforcement Learning

In RL strategies, learning agents interact with an environ-
ment to solve iterative decision-making problems modelled
by Markov Decision Processes (MDP) [20]. The definition
of MDPs can be generalized to networked multi-agent set-
tings with agents having partial observation of the environ-
ment [18].

Let n be the number of agents interacting in an environ-
ment, S be the state space, and Ai and Oi, respectively,
denote the action space and observation space of the i−th
agent for i ∈ Nn. Define A = A1 × · · · × An and
O = O1 × · · · × On as the joint action and observation
spaces of all agents, respectively. Then, networked partially
observable MDPs (NPO-MDP) over a network of sensors S
can be defined as (S, S,A, P,R, γ), where γ is the discount
factor and P : S × A × O → [0, 1] is the observation
function providing the probability P (o|a, s′) of the agents
observing o = {oi}i∈Nn

∈ O after executing a joint action
a = {ai}i∈Nn

∈ A and moving to the new state s′ ∈ S.
Also, R = {Ri}i∈Nn

where the i−th agent’s reward function
Ri : S × A × S → R specifies the immediate reward it
receives. In a distributed NPO-MDP, each agent is supposed
to take action solely based on its local observation oi, which
may include part of the observations of its neighbouring
agents. This enables the agents to team up with their neigh-
bours and collaborate to maximize the overall reward.

Given the observation oi, the next action to be taken (or
the probability distribution over the agent’s action space) is
determined by the agent’s policy denoted by πi : Oi → Ai.
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Fig. 1. General framework of a distributed multi-agent DRL problem with
partial observability

Each agent tends to find its optimal policy π∗
i that maximizes

its benefit in the long term. Then, the joint policy of all
agents, on the other hand, can be defined as π = {πi}i∈Nn

.
The value function of the i−th agent is then given by:

V π
i = E

[ ∞∑
t=0

γtRi(s
t,at, st+1)

∣∣∣∣∣at ∼ π
(
ot
)
, s0 = s

]
.

(3)
RL methods like Q-learning are impractical where the

action space and the states are continuous. In such cases,
the policy and/or the returned values can be approximated
by deep neural networks (DNN). The advancements in the
DNN models enable deep reinforcement learning (DRL) al-
gorithms, including proximal policy optimization (PPO) [21]
and actor-critic methods [22], to handle more complex state
spaces and environments. PPO, in particular, is known for
its stability and reliability during training, which are crucial
in complex and dynamic environments including WSNs.
Moreover, in continuous action spaces, gathering data can
be especially costly. PPO, being an on-policy algorithm,
is relatively sample-efficient for such a method. In other
words, it can learn effective policies with fewer interactions
with the environment than most of the existing on-policy
algorithms, resulting in lower power consumption during
the training. Finally, its approach to policy updates allows
for a more gradual adaptation of the agents to not only
the environment but also the behaviours of other agents
in a MARL framework. Fig. 1 demonstrates the general
framework of a multi-agent DRL problem in which each
agent learns the optimal policy of its own.

III. NETWORK COVERAGE PROBLEM IN MULTI-AGENT
REINFORCEMENT LEARNING FRAMEWORK

In this section, the local coverage maximization problem is
reformulated in a distributed MARL framework. To do so, let
S be a WSN with n sensors, including m mobile sensors, as
described previously. The environment E = (F ,S) is defined
as the combination of the sensor field (F) and sensors (S)
operating as a network. The exact state of E at any time
instant can be described by the configuration of the WSN in
the sensing field. The mobile sensors are the agents acting
based on their partial observations of the environment states,
and the extent of their access to the states is determined by the
flow of information between them. Thus, partial observation

Fig. 2. Local coverage area of s1 where N1 = {2, 3, 4}.

of E by the i−th agent is oi =
{

sj(xj , rsj , rcj )
}
j∈Ni

, for
i ∈ Nm. On the other hand, the action set of an agent consists
of any modifiable variable for the control strategy generating
the vector ui.

Lastly, defining the reward function is the key step to
achieving a high-performance collaboration between the
agents. Since having a central control unit is not tractable
in most real-world applications where WSNs consist of
large numbers of sensors with limited-range communication
capabilities scattered over a wide area, it is desirable to find
a distributed strategy that can maximize the overall coverage
to be as close as possible to the globally-optimal solution.

In an alternative distributed cooperative approach, the mo-
bile sensors move step-by-step under an iterative algorithm
until the network coverage reaches a steady state. As the first
step in reformulating the global optimization problem (2), the
local coverage of a sensor s(x, rs , rc) sensor with its set of
neighbouring sensors denoted by N can be defined as:

F =

∫
F∩
(
D(x)∪

⋃
j∈N

D(xj)

) φ(q)dq. (4)

The above integral provides the weighted coverage over the
areas that are covered either by the sensor itself or by any
of its neighbours. As a simple illustrative example, in Fig. 2,
the region locally covered by sensor s1 in a network of five
sensors is depicted in yellow, as this sensor is only within
the communication range of sensors s2, s3, and s4.

In addition to the coverage, every sensor is required to
manage its limited power supply during the deployment. To
this end, the reward function must be intricately designed
to promote energy conservation and maximize the coverage
simultaneously. A positive reward is attributed to a sensor
node when its local coverage given by (4) increases compared
to the previous iteration. Conversely, penalties are introduced
when nodes fail to increase their coverage. Also, sensors are
penalized proportionally to the energy they consume during
the time between consecutive iterations. This incentivizes the
network to self-organize and adapt to changing conditions
to prolong its operational lifespan while maintaining high
performance. The major source of energy consumption in
hybrid sensor networks is mobility. This includes the energy
a mobile sensor consumes during each iteration, i.e., starting
to move from a stationary position, continuing to move, and
returning to a stationary position. This implies that the total
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energy consumption of the i−th sensor’s movement from
iteration t to iteration t+ 1 can be expressed as:

Et
i = Emoved

(
xt
i, x

t+1
i

)
+ Et

i,stop + Et
i,start, (5)

for all i ∈ Nn, where Et
i,start is the energy required for

sensor i ∈ Nm to start moving from a complete stop at the
beginning of the iteration (at time t), which is assumed to be
a fixed value Estart, and Emove is the energy required for
the sensors to move for one meter. Similarly, Et

i,stop is the
energy required for the sensor to make a complete stop at
the end of the iteration (at time t+ 1), which is also a fixed
value Estop. Note that the constants values Estart, Emove,
and Estop are assumed to be the same for all sensors.

To consider the two objectives together, given the joint
action at applied to the agents, resulting in the transmission
of the states from st to st+1, the reward received by the i−th
sensor is defined as a weighted linear combination of local
coverage and energy as below:

Ri(s
t,at, st+1)|at = λ(F t+1

i − F t
i )− (1− λ)αEt

i , (6)

where α is a normalization coefficient that brings the re-
ward and penalty to roughly the same scale, preventing
the one with the larger scale from dominating the other.
Moreover, the weight λ determines the relative importance
of the coverage versus energy consumption. This formulation
facilitates the exploration of different trade-offs between the
two objectives in a continuous and flexible manner.

IV. DISTRIBUTED RL-MAX COVERAGE DEPLOYMENT
STRATEGY

With the required foundation introduced in the previous
section, we develop a distributed RL gradient-based cover-
age maximization deployment strategy for a heterogeneous
hybrid WSN. Sensors’ movements are to be appropriately
coordinated to maximize the weighted coverage over the
sensing field. It is shown in [13] and [12] that moving
the sensors in the direction of the gradient of the weighted
coverage function can efficiently increase the coverage. How-
ever, in the existing approaches, the local coverage of the
sensor inside a Voronoi region is considered the objective
function, which may trap the WSN in a local optimum.
One can use the local coverage function in (4) instead
of the Voronoi-based coverage area to address this hurdle.
The following lemma provides the gradient of the above-
mentioned objective function.

Lemma 1. Let the local coverage of a sensor s(x, rs , rc) be
given by (4). Then, the gradient of the local coverage w.r.t.
the location of the sensor can be approximated by

∇xF =
2πrs
N

N∑
k=1

qk∈Θ

[
cos θk
sin θk

]
φ(qk), (7)

for a sufficiently large integer N . Here, θk = 2(k − 1)π/N
(k ∈ NN ), qk = x+ rs [cosθk, sinθk]

T , and Θ is part of the
boundary of D (x) not inside D (xj) for any j ∈ N .

Proof. The proof follows the same reasoning in [12]. ■

Lemma 1 states that the gradient of a sensor’s local cov-
erage can be approximated by a finite summation and that it
only depends on the points not covered by any neighbouring
sensors. This is illustrated by an example in Fig. 2. Note
also that the result of the above lemma only applies when
the neighbours of a mobile sensor remain unchanged and do
not move. Such an assumption holds from the viewpoint of
a sensor when its displacement is sufficiently small.

A candidate moving direction is to be introduced for each
sensor to increase its local coverage. Finding the best moving
step is essential in this process. On the other hand, by simply
following the gradient direction, the WSN may get stuck in a
local optimum or in a resonating state in which sensors move
periodically between a set of points, causing power depletion.
To overcome this problem, an additional perturbation input
vector up ∈ R2 is introduced for each sensor. Moreover, a
braking force is modelled for the sensor, proportional to but
in the opposite direction of the sensor’s velocity. As a result,
the control input ui at time t is designed as follows:

ut
i = kt1,i∇xiF

t
i + ut

p,i + kt2,iẋsi , (8)

where kt1,i > 0 determines the relative importance of the
gradient direction compared to the other terms at each
iteration. As a result, the set of actions for the i−th sensor
agent at time step t is ati = (kt1,i, k

t
2,i, u

t
p,i).

According to (8) and on noting the formulation in Sec-
tion III, the actions and observations of the agents are all
continuous variables. Thus, we use DRL methods to learn the
optimal policy for each agent. Due to its advantages, PPO is
implemented along with DNNs to approximate the optimal
policy and the value function. Although using DNN provides
the means to address the problem’s complexities, it is crucial
to avoid high-dimensional models unsuitable for the limited
processing and power capabilities of typical sensor nodes in
WSNs, introducing another trade-off in the strategy design.

The policy and value functions of each agent are modelled
by convolutional neural network (CNN) architectures con-
sisting of initial convolutional layers that efficiently extract
local patterns from observation matrices. This choice of
architecture is crucial given the spatial interdependencies
inherent to WSN environments. Subsequent fully connected
layers integrate the extracted features, translating them into
a comprehensive representation that informs the action prob-
abilities. The architecture’s depth and the dimensionality of
each layer are carefully calibrated to balance the model’s
expressiveness with computational tractability, keeping the
model sufficiently complex to capture the environment’s dy-
namics without being computationally prohibitive. Moreover,
the missing observations corresponding to sensors absent in
the neighbourhood of a given sensor are compensated by zero
padding.

Finally, since the proposed RL-Max strategy is an iter-
ative algorithm in the learning and test stages, the choice
of sampling time and stopping criteria significantly affects
the final results. Choosing a small sampling time results
in smooth trajectories for the mobile sensors, letting them
interact with their neighbours in a timely manner. A choice
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of large sampling time, on the other hand, causes large
steps in the sensors’ trajectories, which may lead to non-
smooth and periodic movements and consequently, longer
convergence time. As for the termination condition, a sensor
stops moving when the absolute value of the change in the
local coverage between two consecutive time steps is less
than a prescribed threshold ϵ > 0. Eventually, the learning
episodes and the deployment procedure end if all sensors
satisfy the termination condition. Similar to the sampling
time, the choice of ϵ is made based on a trade-off between the
steady-state coverage precision and the convergence speed of
the network. The distributed RL-Max deployment strategy is
presented in Algorithm 1.

Algorithm 1 The distributed RL-Max coverage deployment
strategy for a hybrid heterogeneous WSN

1: Inputs: A WSN S with an initial configuration, a trained
joint policy π, sampling time Ts, and coverage increase
threshold ϵ.

2: Initialize t = 0.
3: Initialize ∆F = ϵ and calculate F t

i from (4) for i ∈ Nm.
4: while ∆F > ϵ do
5: Update the states st and the partial observations ot

according to the WSN configuration.
6: Sample a joint action at ∼ π (ot).
7: Calculate ∇xi

F t
i and ut

i for i ∈ Nm using (7) and (8).
8: Move the sensors according to (1) given Ts.
9: Calculate F t+1

i using (4) for i ∈ Nm.
10: Update ∆F = max{F t+1

i − F t
i }i∈Nm .

11: Update t = t+ 1.
12: end while

V. SIMULATION RESULTS

In this section, the performance of the RL-Max strategy
is investigated in different scenarios. Given the maximum
coverage problem’s complexity and nonlinearity, identifying
the globally optimal sensor arrangement is infeasible using
some of the existing methods. Therefore, the strategy’s per-
formance is assessed through Monte Carlo simulations. The
communication radius of each sensor is assumed to be four
times its sensing radius and the sensing field is a square
region of 10m×10m in all examples. The parameter values
and bounds used in this section are presented in Table I.

Example 1. In this example, the performance of the
proposed strategy is evaluated for a hybrid heterogeneous
WSN in a sensing field with a uniform coverage priority
function. A WSN with 20 mobile and 10 stationary sensors
is randomly dispersed in the sensing field. The sensing

TABLE I
PARAMETER VALUES USED IN THE EXAMPLES

Parameter Value Parameter Value (interval)
Ts 0.1 second α 0.1

Estart 33.072 J [23] k1 [0,1]
Emove 8.268 J/m [23] k2 [-1,0]
Estop 8.268 J [23] up [-1,1]×[-1,1]

Fig. 3. The initial and final configurations of a WSN under RL-Max strategy
for different values of λ

radii of the sensors are chosen randomly between 1.5m and
2.5m. For this scenario, the optimal policy is trained with
a discount factor of γ = 0.86 to balance each agent’s
priority between the immediate reward and the long-term
goal. The termination threshold is chosen as ϵ = 0.01m2.
A sample implementation of this case is shown in Fig. 3.
The figure demonstrates the strategy’s ability to relocate
the mobile sensors to a configuration in which the overall
coverage of the network is increased by avoiding unnecessary
overlap between the sensing disks of the adjacent sensors.
The efficiency of the method in maximizing the overall
coverage is investigated through Monte Carlo simulations run
on 50 random initial configurations. The coverage efficiency
is measured by the coverage factor, defined as the ratio of the
network’s overall (weighted) coverage to the weighted area
of the sensing field.

To investigate the performance of the strategy in sensor
power supply management, the test is repeated for different
values of λ. The average final coverage factors, energy con-
sumptions, and termination times are summarized in Table II.
The results demonstrate that as λ decreases, the sensors
become more hesitant to move to improve the local coverage,
resulting in lower energy consumption. In contrast, a larger
value of λ results in a higher final coverage factor achieved
at the cost of more energy consumption. Also, the test results
for high and low values of λ show a faster convergence
time due to smoother and shorter travelling distances in such
cases compared to those with medium λ values, which is also
confirmed by Fig. 3.

Example 2. In this example, the performance of the
proposed strategy is studied in a sensing field with a non-
uniform priority function. The priority function is given by
φ(q) = exp(−0.1d2(q, (7, 7)) which has a peak value at
the focal point q = (7, 7), and exponentially decays as
moving farther from it. The darker spots in Fig. 4 indicate
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TABLE II
AVERAGE PERFORMANCE OF THE RL-MAX STRATEGY OVER 50 TESTS

λ 0.2 0.4 0.6 0.8 1
Final coverage factor (%) 74.72 75.17 77.31 78.09 78.54
Energy usage by a mobile
sensor (J)

185.7 214.2 228.1 276.9 311.1

Termination time (sec) 5.9 6.5 11.7 10.12 8.4

Fig. 4. Performance of the RL-Max strategy in a sensing field with
exponential priority function

more important points to cover. The network consists of 20
mobile sensors with sensing radii randomly chosen between
0.25m and 0.75m. In this scenario, the sensors need to keep
moving to maximize the weighted coverage collaboratively.
In prioritized sensing fields, the WSN is more prone to
getting stuck in a local optimum, which is a result of
not considering the long-term rewards. This issue can be
addressed by setting the discount factor to 0.95, promoting
long-term planning.

As shown in Fig. 4, the sensors are initially deployed
randomly and move towards the focal point by tracking the
direction of the weighted coverage gradient vector. In such
cases, the perturbation force helps the network get out of
the local optimum point where the gradient of the local
coverage is almost zero. This is observed from the trajectories
of the sensors which are smooth until they get closer to
other sensors, at which point they exhibit minor and abrupt
shifts in their direction. Note that due to the small values of
the priority function in areas far from the focal point, the
termination threshold is reduced to ϵ = 0.001 so that the
sensors can detect smaller changes in the coverage reward.

VI. CONCLUSIONS

A distributed reinforcement learning strategy is presented
in this work to optimize coverage in hybrid heterogeneous
sensor networks. By integrating MADRL with a gradient-
based deployment strategy, the proposed approach effectively
utilizes the individual capabilities of mobile and stationary
sensors, adjusted to their distinct sensing and communication
radii. The framework demonstrates improvements in network
coverage and exhibits adaptability and efficiency across vari-
ous deployment scenarios. The sensors autonomously evolve
their strategies through iterative learning and interaction,
optimizing coverage while conservatively managing their
energy resources. Simulations underscore the efficacy of the
method compared to existing results.
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