
REAL: Resilience and Adaptation using Large Language Models
on Autonomous Aerial Robots

Andrea Tagliabue∗, Kota Kondo∗, Tong Zhao∗, Mason Peterson∗, Claudius T. Tewari, Jonathan P. How

Abstract— Large Language Models (LLMs) pre-trained on
internet-scale datasets have shown impressive capabilities in
code understanding, synthesis and in processing extended
sequences of symbols, often presented in natural language. This
work aims to explore new opportunities in long-term reasoning,
natural language comprehension, and the available prior
knowledge of LLMs for increased resilience and adaptation in
autonomous mobile robots. We introduce REAL, an approach
for REsilience and Adaptation using LLMs. REAL interfaces
LLMs with the mission planning and control framework of
an autonomous robot. The LLM employed by REAL provides
(i) a source of prior knowledge to increase resilience for
challenging scenarios that the system has not been explicitly
designed for; (ii) a way to interpret natural language and other
log/diagnostic information available in the autonomy stack, for
mission planning; (iii) a way to adapt the control inputs using
minimal user-provided prior knowledge about the robot. We
integrate REAL in the autonomy stack of a real multirotor,
querying onboard an offboard LLM at about 1.0−0.1 Hz as
part of the robot’s mission planning and control feedback loops.
We provide a demonstration of capabilities by showcasing in
real-world experiments the ability of the LLM to reduce the
position tracking errors of a multirotor, and decision-making to
avoid potentially dangerous scenarios (e.g., robot oscillates) that
are not explicitly accounted for in the initial prompt design.

I. INTRODUCTION
Creating mission planning and control capabilities that

are adaptive and resilient to unexpected scenarios has been
a large area of research in recent years. Adaptive control
has enabled exceptional performance when addressing
specific failure modes, such as disturbances [1]–[3], incorrect
models/parameters [4]–[6], or poor controller tuning [7]–[9].
However, these approaches work best under a pre-defined set
of failure modalities, and/or leverage accurate models/prior
knowledge about the robot from the designer. Similarly,
complex missions for autonomous mobile robots have been
successfully managed through sophisticated state machines
and mission planners [10]–[15]. However, these planners
often need to reason over a pre-defined set of states and/or
observation models, identified through extensive efforts.

Recently, foundational models, and especially Large
Language Models (LLMs) pre-trained on internet-scale
datasets [16]–[18], have demonstrated impressive performance
on a variety of reasoning problems, including natural language
[19], [20] and mathematics [21]. This performance stems in
part from the large size of their internet-scale training data,

*Equal Contribution. The authors are with the Department of Aeronautics
and Astronautics, Massachusetts Institute of Technology, the correspond-
ing authors are {atagliab, kkondo, tzhao, masonbp, cttewari,
jhow}@mit.edu.

Work funded by the Air Force Office of Scientific Research MURI FA9550-
19-1-0386.

Planner &
Controller

ObjectiveMission
Planner

LLM

System Failure Codes and Logs

Intervention Tuning

Behavior

State Information
Natural Language Logs

Failure Codes
Predefined System

InputsInitial Prompt
with Risk
Aversion

Fig. 1: REAL explores the usage of a Large Language Model (LLM) for
adaptation across the different dynamics and components of an autonomous
system, from low-level control to mission-scale decision-making, providing
strategies to interface LLMs and existing autonomy solutions. We provide
flight demonstrations and system validations, showing that an LLM queried
from onboard the robot can reason about the current and desired state of the
robot, selecting corrective actions at the decision-making and control level.

which embeds a vast amount of prior knowledge into the
weights of the model. Additionally, their billion-of-parameters
model architectures enable reasoning over long sequences
of symbols, making them a natural choice for problems that
involve generating a sequence of symbols.

The embedded prior knowledge and extended sequential
reasoning capabilities have led to LLMs finding increased
application in task planning and motion planning for robotics.
In this context, the main focus of recent work has been
planning for manipulation [22]–[28], using human input as a
task specification and outputting calls to manipulator APIs that
produce actions in a quasi-static regime. However, their po-
tential has not been explored for combined adaptive low-level
control and mission planning/reasoning on agile autonomous
aerial robots. This new domain requires addressing important
challenges, such as (a) how to interface the LLM with the low-
level control stack, specifically accounting for the high control
rates requirements typical in UAVs, and (b) how to provide
information about the fast UAV (error/mission) dynamics
to the LLM. These requirements are in contrast with the
high latency and slow inference speed of LLMs (1.0-10.0s).
Last, open questions remain (c) on the level of performance
achievable under limited domain-specific prior knowledge and
human inputs, as required in uncertain autonomous missions.

Towards addressing these questions, this paper presents
REAL (Resilience and Adaptation using LLMs), a method
that explores the capabilities of LLMs for mission planning
and low-level adaptive control of an agile mobile robot, a
multirotor UAV. Our work studies strategies to use the LLM’s
embedded prior knowledge of the UAV’s controller to create
adaptation throughout the stack, including altering low-level

2024 IEEE 63rd Conference on Decision and Control (CDC)
December 16-19, 2024. MiCo, Milan, Italy

979-8-3503-1632-2/24/$31.00 ©2024 IEEE 1539

parameters, producing commands to better track trajectories,
and making mission-level decisions. REAL uses human-
crafted prompts (zero-shot prompting) to define minimal
robot specifications and task/controller API available to the
LLM. Then, during real-time deployment, REAL receives as
input a set of natural-language and numerical signals available
onboard the multirotor which capture mission-relevant infor-
mation at different timescales, including information about the
dynamics of the robot and its high-level mission objectives.
Then, based on these automatically generated robot prompts,
REAL chooses the most suitable control/mission planning
APIs that are executed by the robot. This feedback loop op-
erates at about 1.0−0.1 Hz, while the prompts are processed
remotely using the OpenAI GPT-4 API. We showcase the
feasibility of REAL via hardware demonstrations, exposing
our multirotor to a variety of performance-lowering conditions.
Some of these conditions require low-level adaptation (e.g., by
adjusting the commanded thrust), while others require mission-
level adaptation (e.g., by improving controller tuning or con-
ducting an emergency landing). Through these demonstrations,
we also highlight that the behavior of an LLM as an adaptive
controller can be modified by the use of natural language
cues (e.g. using stronger language when the instructions
given to the LLM are safety-related and important to follow).
Additionally, we show that although the LLM cannot be
queried at a high rate (up to 1 Hz), it can still process and
make suggestions in response to high-frequency information
by making use of algorithmically pre-processed information.
Contributions:

• We present REAL, an approach to integrate LLMs in
the autonomy stack of an aerial robot, specifically for
mission planning and low-level control, addressing how
to interface a slow, high-latency LLM with the fast
control rates required on a UAV. REAL enables us
to investigate the potential and benefits of leveraging
LLMs’ internet-scale priors for adaptation and resilience
on a UAV. We leverage zero-shot prompting, and we
show that our prompt requires minimal knowledge of
the robot’s model/dynamics and mission specifications.

• We validate our system design choices via hardware
demonstrations, showcasing adaptation and decision-
making capabilities using LLMs. To the best of our
knowledge, this is the first time that such capabilities
have been demonstrated on an aerial robot.

II. RELATED WORKS

A. Adaptation at Mission-Scale and Low-Level Control

Adaptive Control. There are two broad categories of methods
used for adaptive control: direct and indirect methods. Indirect
methods aim at explicitly estimating models or parameters,
which are leveraged in model-based controllers, such as MPC
[29], to improve performance. Model/parameter identification
include filtering techniques [30], [31], disturbance observers
[32]–[34], set-membership identification methods [35], [36]
or learning-based methods [5], [37]. Direct methods, instead,
develop policy updates that improve a certain performance

metric. These updates are often done to drive the behavior of
the system towards that of a reference model, with the updates
themselves involving changing the shallow layers of the DNN
policy [1], [38], [39]. Other strategies include learning a policy
update strategy offline using meta-learning [2], [40], or using
parametric adaptation laws such as L1 adaptive control [3].

While many adaptive control strategies are able to improve
low-level performance in real-world systems, these strategies
often fail when mission-level adaptation is required. LLMs,
like the one employed by REAL, provide opportunities to
simultaneously reason at low-level and mission-level scale.
Uncertainty-Aware Mission Planning. Mission-level adapta-
tion is usually achieved with robot autonomy. State-of-the-art
approaches to autonomy have involved the use of finite-
state machines and uncertainty-aware planners [13], [15],
[41], enabling autonomy on many systems, from a single
autonomous car [10] to multiple heterogeneous robots [11],
[12]. While these methods achieve impressive performance in
the coordination of multiple autonomous systems, they do not
leverage the internet-scale prior knowledge in LLMs that may
be helpful in making decisions under natural language-based
observations that are available at the system level (e.g., log),
nor they require to specify observations models/mission states.

B. Foundational Models in Robotics

Foundational models have quickly found a variety of
applications in robotics, with a focus on planning from natural
language instructions. [42] develops a holistic foundational
model that performs perception, planning, and control using
internet-scale datasets to train a multi-modal foundational
model that, given a goal described in natural language, can
use video feed to plan and execute a sequence of commands to
achieve that goal. [22] decodes an LLM weighted by skill af-
fordances [43] from value functions to generate feasible plans
for robots. [23]–[25] all translate a high-level instruction into
a plan expressed in code, which is then executed by the robot.
[26] uses an LLM to translate a natural language planning
problem into a domain-specific language, then runs a classical
planner to solve the problem. [28] uses an LLM to generate
a plan in natural language, then uses a similarity measure to
translate the plan from natural language into one executable
by the robot. [27] uses closed-loop environmental feedback to
improve the performance of using an LLM for planning and
control in manipulation tasks. While existing methods focus
on task-level planning for functioning in quasi-static scenarios
(especially for manipulation), our work uniquely leverages
LLMs for low-level adaptation combined with high-level
mission management on an agile aerial robot, demonstrating a
new domain of possible deployment of LLM-based reasoning.

III. APPROACH

A. Approach Overview

The objective of our work is to explore a decision-making
and adaptation mechanism that uses LLM reasoning to enable
successful and resilient mission execution in autonomous
systems despite the presence of uncertainties and potentially
unplanned/unexpected failures that may happen across

1540

different levels of the autonomy stack. The considered
autonomous system is a multirotor, whose objective consists
in reaching a desired position. During the mission, the robot
is subject to uncertainties, such as model errors or wind,
that may cause a critical mission failure. The robot needs to
understand how to mitigate the effect of those uncertainties
and autonomously decide whether to abort the mission
if the effects of those uncertainties cannot be corrected,
based on a natural-language specified risk tolerance. Our
approach, summarized in Fig. 1, leverages an LLM to trigger
adaptive/resilient behaviors in the mission planning and
control stack using the following inputs: available signals, pre-
defined error codes, and natural-language-based logs and error
messages. In the following sections, we define in detail the
interface between an existing autonomy stack and the LLM.

B. Autonomy Stack

1) Controller: We consider a multirotor controlled by
a cascaded position and attitude controller. The employed
position controlled is based on a Linear-Quadratic Regulator
(LQR) that uses a hover-linearized model of an attitude-
controlled robot. The model is described in detail in [44],
and has the form:

xt+1=Axt+But, (1)

where x ∈R8 is the state and u ∈R3 is the control input.
The state is:

x=[Wp⊤,Wv⊤,Iϕ,Iθ]
⊤, (2)

where Wp⊤ ∈ R3 and Wv⊤ ∈ R3 represent, respectively,
the position and velocity expressed in a world frame W .
The quantities Iϕ and Iθ denote the attitude of the robot,
expressed as roll and pitch Euler angles in a gravity-aligned,
yaw-fixed frame I , whose x-axis is aligned with the world
reference frame W .

Following [44], the control input u is:

u=[Iϕcmd,Iθcmd,δfcmd]
⊤, (3)

where δfcmd denotes the linearized commanded thrust, and
Iϕcmd and Iθcmd are the commanded roll and pitch. These
commands are executed by a cascaded attitude controller,
whose dynamics are assumed to correspond to a first-order
dynamical system. Yaw is controlled via a separate cascaded
PD controller, not shown here for brevity.

The control input is computed via:

ut= ūt+K(xt−xref
t)+δut, (4)

where ūt represents the nominal command at hover and xref
t

a desired reference trajectory computed by the mission-level
planner. K is a linear gain matrix, obtained by solving
the Discrete Algebraic Riccati Equation (DARE) using the
linearized model A, B and given positive-definite tuning
matrices R and Q. Key to this work, the additive control
input δut represents an adaptive term that will be controlled
by the LLM based on descriptions of the state of the system
(error codes, logs), enabling adaptation at low-level control.

2) Mission Planner: The mission is managed by a finite
state machine (FSM) that contains desired initial/terminal

position setpoints, and timed transitions between the desired
states. Once a desired position is selected, the FSM generates
reference trajectories (position, velocity) that are tracked via
the position controller Eq. (4). Every state inside the FSM
is connected to an emergency_landing action that leads
to a safe state (on the ground below the robot), which can
be triggered by the LLM upon seeing what it determines
is sufficient cause to terminate the mission.

C. Prompt Design And Interface with the Autonomy Stack

In this section, we present the strategy to interface the
control and mission/trajectory planning stack with the LLM.
We use an approach inspired by [23], i.e., we leverage
Python-based syntax to define the possible failure modes in
the autonomy stack, as well as the description of a set of
function callbacks (API) in our control framework available
to execute corrective actions. However, our approach differs
from [23], as we provide additional natural language
instructions to express mission-level goals and trade-offs,
i.e., the willingness to risk to continue the mission when
complications arise, versus aborting the mission. Additionally,
we limit the potentially dangerous execution of automatically
generated Python code by providing the LLM with the
instruction to call a set of pre-defined Python APIs. Last, in
our experiments, the LLM is connected in a closed feedback
loop with the rest of the autonomy stack, without human
intervention beyond the initial prompt design.

Code Color Convention: Note that throughout this work
we use the following convention: green denotes the initial
prompt to the LLM; this prompt is hand-crafted by a human
and is loaded at the start of the mission; grey denotes the query
automatically generated by the autonomous system, and blue
denotes the reply from the LLM, closing the feedback loop.

Our prompt begins with the following sentence:

Initial Prompt (Part 1)
Inside the codebase of my multirotor I found
the following python code:

This sentence introduces the LLM to the Python-based
syntax that will be used next to list possible mission
failures/issues, requirements, and actions available, and
additionally introduces the LLM to the type of platform
it needs to control. Next, we introduce a list of possible,
easy-to-monitor, state-based errors and failures:

Initial Prompt (Part 2)
list of possible issues/failures in mission planner/controller:
NO_ISSUE = 0
FLYING_TOO_HIGH = 3
FLYING_TOO_LOW= 4
FLYING_TOO_LARGE_POSITIVE_POSITION_ERROR_X = 7
FLYING_TOO_LARGE_NEGATIVE_POSITION_ERROR_X = 8
FLYING_TOO_LARGE_POSITIVE_POSITION_ERROR_Y = 5
FLYING_TOO_LARGE_NEGATIVE_POSITION_ERROR_Y = 6

These failures can be easily detected, and their correspond-
ing number is fed as input to the LLM. Additionally, we found
that the LLM is more easily able to interpret failures expressed
in natural language than failures expressed in numerical sig-
nals (i.e., current trajectory tracking errors). The correspond-
ing error codes are generated by comparing the current trajec-

1541

tory tracking error pt−pdes
t , and by triggering an issue on the

corresponding axis if the error exceeds a predefined threshold.
Next, we define a new fictitious Python variable and

function call that computes the possible failures:

Initial Prompt (Part 3)
check current failure using check_failure.
outputs a list of possible failures, for example [2, 3],
and a string with additional information.
The string may be empty.
Example current_failure:
([2, 3], ’position error = [0.1, -0.1, 1.5]’)
current_failures = check_failures()

As in [23], we make use of Python comments to provide
contextual information on the output of the function call and
describe additional inputs that we will be feeding into the
LLM, using the second term in tuple of current_failure.
This extra input can be used to provide descriptive error
messages or other information that is not known/does not
need to be specified a priori, providing additional flexibility
in the type of information that we can feed to the LLM.

Next, we provide the LLM with information about the
system-level actions (APIs) that the LLM can select:

Initial Prompt (Part 4)
possible failure mitigation strategies
from controller import (
modify control input
increase_thrust,
decrease_thrust,
accel_positive_x,
accel_negative_x,
accel_positive_y,
accel_negative_y,
Mission-level decisions
emergency_landing,
do_nothing,
Controller tuning – we use a LQR
tune_controller_by_decreasing_the_cost_of_actuation_usage,
tune_controller_by_increasing_the_cost_of_actuation_usage,
tune_controller_by_increasing_penalty_on_position_errors,
tune_controller_by_decreasing_penalty_on_position_errors,

)

Controller API Parameter/Change (Units)
increase_thrust δfcmd+=0.5(m/s2)
decrease_thrust δfcmd-=0.5(m/s2)
accel_positive_x Iθcmd+=0.3(rad)
accel_negative_x Iθcmd-=0.3(rad)
accel_positive_y Iϕcmd-=0.3(rad)
accel_negative_y Iϕcmd+=0.3(rad)

tune_controller_by_. . .
decreasing_cost_actuation_usage

Rdiag*=0.8

tune_controller_by_. . .
increasing_cost_actuation_usage

Rdiag*=1.2

tune_controller_by_. . .
increasing_penalty_pos_errors

Qdiag[0 :3]*=1.2

tune_controller_by_. . .
decreasing_penalty_pos_errors

Qdiag[0 :3]*=0.8

TABLE I: Mapping of specific control actions to parameter/amount changes.
Note that the parameter changes is expressed with the compact Python
syntax, e.g., δfcmd+=0.5 corresponds to δfcmd,k+1=0.5+δfcmd,k .

These actions correspond to pre-defined changes in
the control inputs or to events in the mission planner.
More specifically, increase_thrust and decrease_thrust
increase/decrease an adaptive term in the control input, while
accel_positive_... and accel_negative_... produce

accelerations along an axis by increasing/decreasing the extra
roll/pitch setpoints by a pre-specified amount. Additionally,
tune_controller_... updates the corresponding part of the
weight matrices R and Q of the position controller Eq. (4);
the corresponding DARE is solved onboard and the resulting
gain matrix updates K. The amount by which each parameter
is changed is fixed and is a hyperparameter of the approach.
The values used in our experiments are shown in Table I.

Towards the end of the prompt, we switch back to natural
language, and we provide task/mission specifications:

Initial Prompt (Part 5)
From now on, I provide you with the value of the variable
“current_failure”, and your output needs to be your best guess of
the function names in the python list
"list_of_function_names_to_be_executed_right_now".
For instance, your output: ["emergency_landing"],
"low_battery_voltage",
"because the drone can hardly move it is safer to land"
Try to think like a drone control engineer.

This prompt specifies the output that we expect from the
LLM (a list of names of functions the controller can execute).
It additionally includes two elements that can help the LLM
reason about its choice of actions, and a brief and long
explanation of the issue. Following best prompting practices,
we also encourage the LLM to role-play, i.e., thinking like
a "drone control engineer".

In addition, we discourage the LLM from outputting
planned future actions and encourage brevity in its expla-
nations, by adding the following lines in the initial prompt:

Initial Prompt (Part 6)
DO NOT output function names to be called in the future, but
account for past problems to come up with your guess of the functions
in "list_of_function_names_to_be_executed_right_now".

Last, we include sentences to further make the LLM
aware of the possibility of taking emergency landings.

Initial Prompt (Part 7)
If problems persist, do not hesitate to emergency land. if your actions
do not take the desired effect, you must perform an emergency landing.

We note that omitting these sentences was making the
LLM less prone to trigger an emergency landing, while
exaggerating the need to emergency land (e.g., using
"MUST" instead of "must") made the LLM more prone
to immediately trigger an emergency landing, potentially
providing a natural-language avenue to specify willingness
to take risks in an autonomous system.

Last, to provide information on rapidly changing signals
to the LLM, onboard the drone we implement a module
that stores a buffer of positions and uses a Fast Fourier
Transform (FFT) to evaluate the maximum amplitude of
any frequency content. If the maximum frequency content
is above a threshold, this information is outputted to the log
received by the LLM, which can take decision accordingly.

IV. EVALUATION

This section validates in real-time hardware demonstrations
the proposed architectural choices.

1542

A. Implementation Details

REAL is deployed on the MIT-ACL multirotor. Control
and state estimation (IMU data fused with poses from a
motion capture system) are executed onboard. The LLM is
queried from onboard and receives replies via the OpenAI
GPT-4 API. The UAV connects to the internet over Wi-Fi
and queries the LLM at the highest possible rate, about
1.0−0.1 Hz, depending on network latency and API usage.

B. Low-Level Adaptation and Controller Auto-Tuning

We begin by demonstrating the LLM’s ability to perform
low-level adaptive control and decision-making by adjusting
the UAV’s control inputs based on issues reported to the LLM.
To introduce tracking error, we deliberately use an incorrect
mass parameter during controller synthesis, deviating by
15% from the UAV’s true mass. This deviation results in
a significant altitude error. We then deploy the UAV in a
mission that consists of taking off, following a figure-eight
trajectory, and then landing. We repeat the experiment two
times, with the difference that in the first experiment, to
study the choice that the LLM would make absent this
parameter, we removed the tune_controller_by_.. in
Initial Prompt (Part 4) that API call.

x [m]

0
1

y [m]

−3
−2

−1
0

1
2

z
[m

]

1

2

Desired Traj.

Actual Traj.

0

20

40

60

80

T
im

e
[s

]

x [m]

0
1

y [m]

−3
−2

−1
0

1
2

z
[m

]

1

2

Desired Traj.

Actual Traj.

0

20

40

60

80

T
im

e
[s

]

(a) Trajectory Tracking without Control Gain K Tuning

x [m]

0
1

y [m]

−3
−2

−1
0

1
2

z
[m

]

1

2

Desired Traj.

Actual Traj.

0

20

40

60

80

T
im

e
[s

]

x [m]

0
1

y [m]

−3
−2

−1
0

1
2

z
[m

]

1

2

Desired Traj.

Actual Traj.

0

20

40

60

80

T
im

e
[s

]

(b) Trajectory Tracking with Control Gain K Tuning.

Fig. 2: REAL’s successful altitude (z-axis) adaptation during a figure
eight (0.25m/s) with an incorrect mass parameter in the controller (15%
error from nominal). Top: experiment performed when the API calls
tune_controller_by_... removed from the initial prompt. Bottom: same
experiment with the tune_controller_by_... APIs added back. REAL
successfully interprets the system-provided error messages, and calls useful
APIs. Specifically, in the first scenario (top) REAL achieves adaptation by
calling the increase_thrust API, successfully converging to the desired
altitude. In the second scenario (bottom), REAL calls a combination of
tune_controller_by_... and increase_thrust APIs, triggering changes
in the controller matrix K. This results in faster/better convergence to the
desired trajectory.

Fig. 2 (top) shows the result without tuning the API call
tune_controller_by_.. in Initial Prompt (Part 4),
highlighting that throughout the mission, REAL succeeds at
improving the altitude through the duration of the experiment
(about 100 s) by repeatedly calling the increase_thrust in
Initial Prompt (Part 4), obtaining an altitude tracking
error within 30 cm. Fig. 2 (bottom) shows the results on
the same trajectory, but with the tune_controller_by_..
in Initial Prompt (Part 4) added back to the prompt. In
this experiment, the LLM calls both commands, as shown
by the conversation (Conversation 1) between the LLM and
the robot during the experiment:

Conversation 1

t = 3.92s: Prompt ([0], ”)
t = 3.92s: Response list_of_function_names_to_be_executed_right_now:

["do_nothing"], "no_issue", "Since there are currently
no issues detected with the drone, no corrective

actions are needed at this time."
t = 8.47s: Prompt ([4, 6], ’z error is -0.14, y error is -0.44, ’)
t = 8.47s: Response list_of_function_names_to_be_executed_right_now:

["increase_thrust", "accel_positive_y"],
"flying_too_low_and_negative_y_position", "The drone
is currently flying too low and also has a negative
error in the Y-axis. Increasing thrust will correct
the altitude issue, and accelerating in the positive Y
direction will correct the positional error."

t = 14.03s: Prompt ([4, 6], ’z error is -0.63, y error is -1.18, ’)
t = 14.03s: Resp. list_of_function_names_to_be_executed_right_now:

["increase_thrust", "accel_positive_y",
"tune_controller_by_increasing_penalty_on_position_
errors"], "flying_too_low_and_large_negative_y
_position", "The drone is flying significantly too low
and has a large negative error on the Y-axis. It’s
necessary to increase thrust and accelerate in the
positive Y direction to correct these issues.
Additionally, the large errors suggest it may be
beneficial to tune the controller to penalize
position errors more severely."

t = 19.0s: Prompt ([4, 5, 7], ’z error is -0.30, y error is 0.15, x
error is 0.12, ’)

t = 19.0s: Resp. list_of_function_names_to_be_executed_right_now:
["increase_thrust", "accel_negative_y",
"accel_negative_x"], "flying_too_low_and_positive_
position_errors", "The drone is below the desired
altitude and has minor positive errors in both X and Y
axis. To correct these, it should increase thrust to
gain altitude, and decelerate in Y and X directions."

The altitude tracking error resulting from this experiment
is within only 10 cm. This shows that the LLM is capable
of selecting multiple mission-relevant low-level control APIs,
without providing detailed prior instructions on its choice,
and whose usage is beneficial at improving the outcome of
the mission.

Now, we consider a more challenging scenario that
highlights REAL’s ability to correct for unmodeled dynamics.
To test this, we place a large extra mass on the end of
one of the multirotor’s arms, creating an unmodeled torque
disturbance. For brevity, the prompt is not shown, but
adaptation is triggered by repeatedly selecting the expected
API calls: increase_thrust, accel_negative_y and
accel_negative_x. Fig. 3 shows the hardware experiment
results of the LLM successfully reasoning how to eliminate
error along each of its axes. Note that in this earlier
experiment, roll and pitch torque function names were
used in the prompt to control acceleration along the y

1543

and x axes respectively. We later found that the LLM was
more consistent when using the commands for requesting
acceleration in x and y directions directly.

0.5

1.0

1.5

x
[m

]

actual

desired

−3

−2

y
[m

]

0 20 40 60

Time [s]

1.0

1.5

z
[m

]

Fig. 3: REAL reduces position errors across the x, y, and z axes under
unmodeled dynamics. In this experiment, an additional weight of 210 g was
added to one of the UAV’s arms, representing a 15% increase in mass,
which introduced a significant unmodeled external torque, affecting both
attitude and position control. REAL successfully identifies the appropriate
APIs to mitigate this error, although convergence is slowed due to the limited
frequency at which the API can be invoked.

1

2

x
[m

]

actual

desired

−3.0

−2.5

−2.0

y
[m

]

0 20 40 60

Time [s]

1.0

1.5

z
[m

]

emergency_landing called

Fig. 4: REAL’s position adaptation combined with its ability to trigger
emergency landing automatically. In this experiment, the UAV was configured
with a 15%-less mass model. Initially, REAL successfully adjusted its
control inputs to this discrepancy. Subsequently, we artificially introduced
oscillations by pulling a cable attached to the UAV. Upon receiving a natural-
language log that informs REAL of these oscillations, the LLM invokes
the emergency_landing API. This experiment highlights REAL’s ability to
handle both lower-level control adaptations and higher-level mission-critical
decisions such as terminating the mission for safety reasons.

C. Mission-scale Decision Making via Unsafe State
Detection and Automatic Mission Termination

The purpose of this demonstration is two-fold: (1) show
the LLM’s ability to make critical mission-level decisions
in the event that unforeseen circumstances cause the UAV
to lose control and (2) show the LLM’s ability to process
additional information that was not in the original prompt.

Since the LLM is only able to make adaptive corrections
at a slow rate, we would expect it to call for an emergency
landing in the event of loss-of-control. To simulate a loss-of-
control event, we apply large external disturbances to the robot
by pulling it via a rope, causing large oscillations along the
y axis, as seen in Fig. 4. The information warning provided
by the onboard FFT tool are shown in the conversation
history in Conversation 2. Although the LLM was not told it
would receive any information about oscillations nor what to
do if it did receive this information, it was able to make the
critical decision to select the emergency_land API when
it recognized that the UAV was in a dangerous condition via
the provided log message "DANGEROUS oscillations...".
Fig. 4 additionally highlights the LLM’s ability to correct
the altitude errors of the UAV, caused by an additional 15%
mass mismatch, as visible before the interaction begins.

Conversation 2

t = 6.07s: Prompt ([0], ”)
t = 6.07s: Response list_of_function_names_to_be_executed_right_now:

["do_nothing"] reason: The reported information indicates
that there are currently no discernible issues with the
drone. Therefore, no actions are necessary at this time.

t = 13.95s: Prompt ([4, 6, 8], ’z error is -0.69, y error is -0.62,
x error is -0.40, ’)

t = 13.95s: Response list_of_function_names_to_be_executed_right_now:
["increase_thrust", "tune_controller_by_decreasing_the_
cost_of_actuation_usage", "accel_positive_y",
"accel_positive_x"] reason: The drone is flying too low
and has negative position errors in both X and Y
directions, hence, increasing thrust is the first step,
along with acceleration in positive X and Y directions
to correct the position errors. Besides, the cost of
actuation usage should also be decreased to ensure a
higher rate of control input changes for faster
response. It’s preferable to decrease the cost of
actuation usage to make the drone respond more swiftly
to the control inputs, as there are multiple issues
happening simultaneously.

t = 57.48s: Prompt ([6, 8], ’y error is -0.65, x error is -0.28, VERY
DANGEROUS oscillations on y-axis. Frequency is 0.67 [Hz],
amplitude is 0.19 [m].’)

t = 57.48s: Response list_of_function_names_to_be_executed_right_now:
["emergency_landing"] reason: The drone has large errors
in both X and Y directions, and additionally, is
exhibiting dangerous oscillations on the Y-axis. This
indicates unstable flight dynamics which could be
detrimental to the safety of the operation. An immediate
emergency landing should be executed to prevent potential
damage or hazards.

V. DISCUSSION

This work has presented a strategy to interface an LLM with
different parts of the autonomy stack of an UAV, specifically
focusing on control and decision making, and has explored
new opportunities in terms of low-level adaptation and
mission-level decision making on UAVs provided by LLMs.
Although our demonstrations of capability focused on simple

1544

mission scenarios, within the capabilities of existing state-of-
the-art adaptive controllers and decision making algorithms,
REAL has show for the first time that LLMs can be suc-
cessfully integrated and deployed within critical components
of the autonomy stack. This capability enables access to
LLM’s prior knowledge and ability to process long sequences,
providing new opportunities for decision making and control.

In addition, while our work has leveraged the general
purpose OpenAI GPT-4.0 LLM, requiring ad-hoc prompt
design strategies, it has demonstrated that an off-the-shelf
LLM can correctly identify relevant functions, obtaining inter-
esting behaviors, without requiring human inputs, unlike prior
existing work. In the future, we believe that improvements in
performance and simplifications in prompt design can be fur-
ther obtained by fine-tuning the LLM on mission-specific data.

Last, despite the high latency and the slow inference speed
of existing LLMs, we have demonstrated techniques that
successfully parse high-frequency signals (such as fast oscil-
lations) into LLM-usable inputs, and strategies that enable the
slow LLM output to alter control signals that require fast rates.

VI. CONCLUSIONS
We have presented REAL, a method that explores the usage

of LLMs for zeros-shot cross-stack adaptation and autonomy
on agile aerial robots. The method works by leveraging the
LLM’s natural language understanding, its ability to reason
over long sequences, and its embedded prior knowledge
of the robot’s model/dynamics. Our evaluation in hardware
experiments has validated our system design, and has demon-
strated promising first steps towards low-level adaptation and
improvements in mission-level resilience. In the future, we
would like to further extend this framework to more complex,
multi-robot autonomous systems, where more advanced
reasoning is required to diagnose and recover from failures.

REFERENCES

[1] G. Joshi and G. Chowdhary, “Deep model reference adaptive control,”
in 2019 IEEE 58th Conference on Decision and Control (CDC).
IEEE, 2019, pp. 4601–4608.

[2] S. M. Richards, N. Azizan, J.-J. Slotine et al., “Adaptive-control-
oriented meta-learning for nonlinear systems,” Robotics: Science and
Systems (RSS), 2021.

[3] N. Hovakimyan, C. Cao, E. Kharisov et al., “L1 adaptive control
for safety-critical systems,” IEEE Control Systems Magazine, vol. 31,
no. 5, pp. 54–104, 2011.

[4] L. Ljung, “System identification,” in Signal analysis and prediction.
Springer, 1998, pp. 163–173.

[5] A. Kumar, Z. Fu, D. Pathak et al., “Rma: Rapid motor adaptation
for legged robots,” Robotics: Science and Systems (RSS), 2021.

[6] S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Sparse identification
of nonlinear dynamics with control (sindyc),” IFAC-PapersOnLine,
vol. 49, no. 18, pp. 710–715, 2016.

[7] A. Loquercio, A. Saviolo, and D. Scaramuzza, “Autotune: Controller
tuning for high-speed flight,” IEEE Robotics and Automation Letters,
vol. 7, no. 2, pp. 4432–4439, 2022.

[8] A. Marco, P. Hennig, J. Bohg et al., “Automatic lqr tuning based on
gaussian process global optimization,” in 2016 IEEE international con-
ference on robotics and automation (ICRA). IEEE, 2016, pp. 270–277.

[9] F. Berkenkamp, A. P. Schoellig, and A. Krause, “Safe controller
optimization for quadrotors with gaussian processes,” in 2016 IEEE
international conference on robotics and automation (ICRA). IEEE,
2016, pp. 491–496.

[10] A. Furda and L. Vlacic, “Towards increased road safety: Real-time de-
cision making for driverless city vehicles,” in 2009 IEEE International
Conference on Systems, Man and Cybernetics, 2009, pp. 2421–2426.

[11] M. Tranzatto, M. Dharmadhikari, L. Bernreiter et al., “Team cerberus
wins the darpa subterranean challenge: Technical overview and lessons
learned,” 2022.

[12] A. Agha, K. Otsu, B. Morrell et al., “Nebula: Quest for robotic
autonomy in challenging environments; team costar at the darpa
subterranean challenge,” 2021.

[13] A.-A. Agha-Mohammadi, S. Chakravorty, and N. M. Amato, “Firm:
Sampling-based feedback motion-planning under motion uncertainty
and imperfect measurements,” The International Journal of Robotics
Research, vol. 33, no. 2, pp. 268–304, 2014.

[14] S. Omidshafiei, A.-A. Agha-Mohammadi, C. Amato et al., “Decentral-
ized control of partially observable markov decision processes using
belief space macro-actions,” in 2015 IEEE international conference
on robotics and automation (ICRA). IEEE, 2015, pp. 5962–5969.

[15] A. Bouman, M. F. Ginting, N. Alatur et al., “Autonomous spot:
Long-range autonomous exploration of extreme environments with
legged locomotion,” in 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2020, pp. 2518–2525.

[16] OpenAI, “Gpt-4 technical report,” 2023.
[17] H. Touvron, T. Lavril, G. Izacard et al., “Llama: Open and efficient

foundation language models,” arXiv preprint arXiv:2302.13971, 2023.
[18] H. Touvron, L. Martin, K. Stone et al., “Llama 2: Open foundation

and fine-tuned chat models,” 2023.
[19] I. Drori, S. Zhang, R. Shuttleworth et al., “A neural network solves,

explains, and generates university math problems by program synthesis
and few-shot learning at human level,” Proceedings of the National
Academy of Sciences, vol. 119, no. 32, p. e2123433119, 2022. [Online].
Available: https://www.pnas.org/doi/abs/10.1073/pnas.2123433119

[20] A. Lewkowycz, A. Andreassen, D. Dohan et al., “Solving quantitative
reasoning problems with language models,” 2022.

[21] K. Cobbe, V. Kosaraju, M. Bavarian et al., “Training verifiers to solve
math word problems,” 2021.

[22] M. Ahn, A. Brohan, N. Brown et al., “Do as i can and not as i
say: Grounding language in robotic affordances,” in arXiv preprint
arXiv:2204.01691, 2022.

[23] J. Liang, W. Huang, F. Xia et al., “Code as policies: Language model
programs for embodied control,” in 2023 IEEE International Confer-
ence on Robotics and Automation (ICRA). IEEE, 2023, pp. 9493–9500.

[24] S. Huang, Z. Jiang, H. Dong et al., “Instruct2act: Mapping multi-
modality instructions to robotic actions with large language model,”
2023.

[25] J. Wu, R. Antonova, A. Kan et al., “Tidybot: Personalized robot
assistance with large language models,” 2023.

[26] B. Liu, Y. Jiang, X. Zhang et al., “Llm+p: Empowering large language
models with optimal planning proficiency,” 2023.

[27] W. Huang, F. Xia, T. Xiao et al., “Inner monologue: Embodied
reasoning through planning with language models,” in arXiv preprint
arXiv:2207.05608, 2022.

[28] W. Huang, P. Abbeel, D. Pathak et al., “Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents,” arXiv
preprint arXiv:2201.07207, 2022.

[29] F. Borrelli, A. Bemporad, and M. Morari, Predictive control for linear
and hybrid systems. Cambridge University Press, 2017.

[30] J. Svacha, J. Paulos, G. Loianno et al., “Imu-based inertia estimation
for a quadrotor using newton-euler dynamics,” IEEE Robotics and
Automation Letters, vol. 5, no. 3, pp. 3861–3867, 2020.

[31] V. Wüest, V. Kumar, and G. Loianno, “Online estimation of geometric
and inertia parameters for multirotor aerial vehicles,” in 2019
International Conference on Robotics and Automation (ICRA). IEEE,
2019, pp. 1884–1890.

[32] A. Tagliabue, A. Paris, S. Kim et al., “Touch the wind: Simultaneous air-
flow, drag and interaction sensing on a multirotor,” in RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 1645–1652.

[33] A. Tagliabue, M. Kamel, R. Siegwart et al., “Robust collaborative
object transportation using multiple MAVs,” The International
Journal of Robotics Research, vol. 38, no. 9, pp. 1020–1044, 2019.

[34] C. D. McKinnon and A. P. Schoellig, “Unscented external force and
torque estimation for quadrotors,” in 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2016,
pp. 5651–5657.

[35] B. T. Lopez, “Adaptive robust model predictive control for nonlinear sys-
tems,” Ph.D. dissertation, Massachusetts Institute of Technology, 2019.

[36] J. P. How, B. Lopez, P. Lusk et al., “Performance analysis of adaptive
dynamic tube MPC,” p. 0785, 2021.

1545

[37] A. Saviolo, J. Frey, A. Rathod et al., “Active learning of discrete-time
dynamics for uncertainty-aware model predictive control,” arXiv
preprint arXiv:2210.12583, 2022.

[38] G. Joshi, J. Virdi, and G. Chowdhary, “Design and flight evaluation
of deep model reference adaptive controller,” in AIAA Scitech 2020
Forum, 2020, p. 1336.

[39] S. Zhou, K. Pereida, W. Zhao et al., “Bridging the model-reality gap
with lipschitz network adaptation,” IEEE Robotics and Automation
Letters, vol. 7, no. 1, pp. 642–649, 2021.

[40] M. O’Connell, G. Shi, X. Shi et al., “Neural-fly enables rapid learning
for agile flight in strong winds,” Science Robotics, vol. 7, no. 66, p.
eabm6597, 2022.

[41] S. Omidshafiei, A.-A. Agha-Mohammadi, C. Amato et al.,

“Decentralized control of multi-robot partially observable markov
decision processes using belief space macro-actions,” The International
Journal of Robotics Research, vol. 36, no. 2, pp. 231–258, 2017.

[42] A. Brohan, N. Brown, J. Carbajal et al., “Rt-2: Vision-language-action
models transfer web knowledge to robotic control,” in arXiv preprint
arXiv:2307.15818, 2023.

[43] A. Zeng, “Learning visual affordances for robotic manipulation,” Ph.D.
dissertation, Princeton University, 2019.

[44] M. Kamel, M. Burri, and R. Siegwart, “Linear vs nonlinear
mpc for trajectory tracking applied to rotary wing micro aerial
vehicles,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 3463–3469,
2017, 20th IFAC World Congress. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2405896317313083

1546

