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Abstract— An improved proportional-integral observer (PIO)
based fault-tolerant control problem is addressed for multi-
agent systems (MASs) with disturbance under unbounded false
data injection attack (FDIA) over an undirected graph. The
FDIAs are modeled as a class of unbounded attack signals. No-
tably, an augmented descriptor system is formulated by letting
the FDIA be an auxiliary state vector. Then, an improved PIO is
constructed to achieve the estimation of process faults and FDIA
simultaneously. A compensation term is incorporated into the
PIO to attenuate the effects of external disturbances and thus
improving the accuracy of the PIO. Besides, an improved PIO-
based fault-tolerant secure control scheme against unbounded
FDIA is developed to achieve consensus even in the presence
of process faults. Finally, the effectiveness and advantages of
the proposed control strategy is verified through a simulation
result.

I. INTRODUCTION
Nowadays, multi-agent systems (MASs) have attracted

keen interests in the control community and achieved practi-
cal applications in smart-grid [1], smart cities [2], unmanned
aerial vehicles [3], etc. Nevertheless, in real applications,
because of the use of open network, MAS is vulnerable to
cyberattacks, including false-data-injection attacks (FDIAs),
denial-of-service (DoS) attacks, and replay attacks, [4]–[6].
Different from DoS and replay attacks, FDIAs pose greater
harm by tampering with transmitted information, damaging
the integrity of data [4]. MASs may be subject to FDIAs
in an open network environment. Hence, secure consensus

This work was supported in part by Beijing Natural Science Foundation
under Grant No. 4232060; in part by the National Natural Science Foun-
dation of China under Grants No. 62173028 and 62233015; in part by the
High-End Foreign Experts Recruitment Plan of the Ministry of Science
and Technology China under Grant G2022105026L; and in part by the
Fundamental Research Funds for the Central Universities of USTB under
Grant No. 230201606500061. The work of Jian-Liang Wang was supported
in part by the National Natural Science Foundation of China under Grant
62173024, and in part by the Zhejiang Natural Science Foundation under
Grant LD21F030001.

Bo-Qun Wang is with School of Automation and Electrical Engineering,
University of Science and Technology Beijing, Beijing 100083, China, and
also with Shunde Graduate School of University of Science and Technology
Beijing, Foshan 528000, China. 1741879427@qq.com

Xiang-Gui Guo is with the School of Beijing Engineering Re-
search Center of Industrial Spectrum Imaging, School of Automation
and Electrical Engineering, University of Science and Technology Bei-
jing, Beijing 100083, China, and is also with Autonomous Intelli-
gent Systems Department, Hangzhou Innovation Institute of Beihang
University, Hangzhou 310051, China. guoxianggui@163.com;
guoxianggui@ustb.edu.cn

Jian-Liang Wang is with Autonomous Intelligent Systems Department,
Hangzhou Innovation Institute of Beihang University, Hangzhou 310051,
China. wjl-180@hotmail.com

Da-Wei Ding and Heng Wang are with School of Automa-
tion and Electrical Engineering, University of Science and Technolo-
gy Beijing, Beijing 100083, China. dingdawei@ustb.edu.cn;
hengwang@ustb.edu.cn

issues for MASs subject to FDIAs is a very important
research topic. Consensus and fault detection problems under
stochastic FDIAs have already been studied in [4]. Control
laws with FDIA compensation have been designed to achieve
the uniformly-ultimately-bounded secure consensus in unsafe
network environments [7], [8]. It should be noted that FDIA
dynamics introduced in the above literatures requires that the
sensor attack signals or their derivatives be bounded, which
is beneficial to constructing the sensor attack compensation.
Nevertheless, in real-world applications, to maximize their
damage for sensor networks, instead of launching sabotaged
measurement data, tricky hackers can launch unbounded
FDIA to the agents [9]. In addition, the measured system
states is usually required while only the output information is
available in practical applications [10]–[12]. In recent years,
due to its excellent robustness, proportional-integral observer
(PIO) has been applied to various practical systems [13]. But
to the best knowledge of the authors, the design of PIO in
unsafe network environment is still in its infancy. Hence,
how to construct a PIO-based consensus control strategy
when MASs are subjected to unbounded sensor FDIA is an
objective of this paper.

On the other hand, because the interconnection among
MAS agents, control performance deterioration and even in-
stability might appear when faults happen. The fault-tolerant
control problem of MAS has been widely investigated [14]–
[16]. Nonetheless, fault-tolerant control performance will
degrade more when process noises and disturbances exist.
Therefore, how to achieve fault-tolerant control for MASs
with process noises and disturbances is another objective of
this paper.

Inspired by the aforementioned analysis, the improved
PIO-based fault-tolerant control problem for MASs under
unbounded FDIA is studied in this paper. The main contri-
butions of this paper are exhibited as following:
1) An improved PIO: In contrast to [21], an improved PIO

is constructed for attenuating the influence of process
noise or external disturbance. Unlike the scheme based
on disturbance observer in [17], the drawback caused by
the unmeasurable states is removed and the accuracy of
the state estimate is improved.

2) An improved PIO-based fault-tolerant control strategy:
In order to defend against unbounded sensor FDIAs
and achieve fault-tolerant control simultaneously, an
improved PIO is designed to estimate system states,
process faults, and sensor FDIA signals simultaneous-
ly. Different from bounded sensor FDIAs in [7], [8],
unbounded sensor FDIAs are considered in this paper.
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Based on the improved PIO, the fault-tolerant consensus
is achieved with uniform-ultimate-boundedness in finite
time, even in the presence of process faults, unbounded
sensor FDIAs, and external disturbances.

Notation: Table I sums up the notations in this paper.

TABLE I
NOTATION SUMMARY

Rm×n m× n-order real matrix

IN the N -order identity matrix

diag{·} a diagonal matrix

col{·} a column vector

⊗ the Kronecker product

Q > 0 A symmetric matrix Q is positive definite

λmax(Q) the maximal eigenvalue of the matrix Q > 0

QT the transpose of matrix Q

1N the N -dimensional column vector with all
elements being 1

Q† the pseudo-inverse of matrix Q

II. SYSTEM INTRODUCTION AND PRELIMINARIES

A. Graph Theory

The MAS communication is presumed to be an undirect-
ed communication topology G = (V, E) in which V =
{1, · · · , N} and E ⊆ V × V are the node and the edge
sets, respectively. Each node corresponds to an agent. Let
Ni = {j ∈ V|(j, i) ∈ E , j 6= i} denote the set of
neighbor nodes of the ith node, and the adjacency matrix
is represented as A = [aij ] ∈ RN×N . In an undirected
communication topology graph G, if node i and node j are
mutually neighbors (namely (j, i) ∈ E), nodes i and j can
exchange information with each other (i.e. aij = aji = 1);
otherwise, aij = 0. Furthermore, define the degree matrix
D = diag{d1, . . . , dN} ∈ RN×N with di =

∑
j∈Ni

aij ; and
the Laplacian matrix L is denoted by L = D −A.

B. System Model

Consider a class of MASs consisting of agents 1-N and
the dynamics for the agent i is modeled by{

ẋi(t) =Axi(t) +Bui(t) +Dfi(t) + Edi(t),

yi(t) =Cxi(t) + Fθi(t), i = 1, · · · ,N,
(1)

where xi(t) ∈ Rn, ui(t) ∈ Rb, fi(t) ∈ Rp, di(t) ∈ Rr,
yi(t) ∈ Rq , and θi(t) ∈ Rs (q ≥ s) denote the system state,
controller input, process fault, process noises/disturbances,
system output, and sensor FDIA, respectively. It is worth
mentioning that the FDIA θi(t) can be unbounded. Further-
more, A, B, C, D, E, and F are constant matrices with
compatible dimensions.

Assumption 1: (A,B) is controllable and (A,C) is ob-

servable, and condition rank
[
In 0
C F

]
= n+ s holds.

Assumption 2 ( [15]): The process fault signal fi(t) is a
class of abrupt fault and satisfies ḟi(t) = 0.

Assumption 3: The noise/disturbance di(t) is norm
bounded, i.e., ‖di(t)‖ ≤ d̄i, and d̄i ≥ 0 is known.

Lemma 1 ( [19]): For matrices R1 and R2 of appropriate
dimensions, under Assumption 1, the equation [R1 R2]×[
In 0
C F

]
=In+s can be solved and the solution is given by

R1 =

[
In 0
C F

]† [
In

0p×n

]
,R2 =

[
In 0
C F

]† [
0n×p
Ip

]
.

Lemma 2 ( [20]): For a continuous function V (t) > 0
with V (0) being of boundedness, if it satisfies

V̇ (t) ≤ −γ1V (t) + γ2,

where γ1 and γ2 are positive constants, then, V (t) is of
boundedness in finite time.

III. MAIN RESULTS

A. Improved PIO-based fault-tolerant control strategy
To estimate system state xi(t) and sensor attack θi(t)

in unison for MAS (1), an augmented descriptor system is
formulated as{

S ˙̆xi(t) =Ăx̆i(t) +Bui(t) +Dfi(t) + Edi(t),

yi(t) =C̆x̆i(t), i = 1, · · · ,N,
(2)

where x̆i(t) = [xTi (t) θi
T (t)]T ∈ Rn+s, S = [In 0n×s],

Ă = [A 0n×s], and C̆ = [C F ].
Based on Assumption 1 and Lemma 1, MAS (1) can be

transformed into the following form
˙̆xi(t) =R1Ăx̆i(t) +R1Bui(t) +R1Dfi(t)

+R1Edi(t) +R2ẏi(t),

yi(t) =C̆x̆i(t), i = 1, · · · ,N,
(3)

noting that R1S+R2C̆ = In+s from Lemma 1. Inspired by
[21], an improved PIO for (3) can be constructed as

~̇i(t) =R1Ăˆ̆xi(t) +R1Bui(t) + L(yi(t)− ŷi(t))
+R1Df̂i(t) +R1EJi(t),

ˆ̆xi(t) =~i(t) +R2yi(t),

˙̂
fi(t) =H(yi(t)− ŷi(t)),
ŷi(t) =C̆ ˆ̆xi(t), i = 1, · · · ,N.

(4)

where ˆ̆xi(t), f̂i(t), and ŷi(t) represent the estimation of
x̆i(t), fi(t), and yi(t), respectively; H and L are the gain
matrices to be designed; the specific form of the compensa-
tion term Ji(t) is as follows

Ji(t) = d̄i
M1eyi(t)

‖M1eyi
(t)‖+ r1

, (5)
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where M1 is a matrix that enables the improved estimate of
the PIO observer under process fault and sensor unbounded
FDIA and the output estimation error is defined as eyi(t) =
yi(t)− ŷi(t).

Remark 1: Different from bounded sensor FDIAs in [7],
[8], unbounded sensor FDIAs are considered in this article.
Notably, the construction in (4) avoids the appearance of
ẏi(t) which is difficult to obtain in practice.

Remark 2: Unlike the PIO observer in [21] where
noise/disturbance is not considered, the compensation term
Ji(t) introduced into the above PIO compensates the adverse
effects of the noise/disturbance, hence increases the accuracy
of the PIO observer (4). Besides, different from the scheme
based on disturbance observer in [17], output (rather than
state) information is used for feedback control.

For convenience of subsequent description, define

ξi(t) =
∑
j∈Ni

(xi(t)− xj(t)),

x̄(t) =
1

N

N∑
i=1

xi(t),

and consensus error

δi(t) = xi(t)− x̄(t).

It is not difficult to see that

δ(t) , col{δ1(t), · · · , δN (t)} = (U ⊗ In)x(t)

where

U=IN −
1

N
1N1TN .

In addition, we have LU = UL = L. Then, we have that

ξ(t)=(L ⊗ In)δ(t)

where

ξ(t) , col{ξ1(t), · · · , ξN (t)}.

Next, based on improved PIO (4), the control law for the
agent i is designed as

ui(t) = µKxξ̂i(t)−Kaf̂i(t), (6)

where µ is a positive constant, Kx and Ka are the control
input gains, and ξ̂i(t) ,

∑
j∈Ni

(x̂i(t)− x̂j(t)).

B. Consensus Analysis
First of all, estimation errors of system state and sensor

attack signals are defined by

x̆e,i(t) =x̆i(t)− ˆ̆xi(t), (7)

and

fe,i(t) =fi(t)− f̂i(t). (8)

Note that

R1Sx̆i(t)− ~i(t)
=R1Sx̆i(t) +R2yi(t)− ˆ̆xi(t)

=x̆i(t)− ˆ̆xi(t) = x̆e,i(t). (9)

Using (3) and (4), the error dynamic of x̆e,i(t) is given by

˙̆xe,i(t) = ˙̆xi(t)− ˙̂
x̆i(t)

=(R1Ă− LC̆)x̆e,i(t) +R1Dfe,i(t)−R1Ji(t).
(10)

Then, combining Assumption 2 and (4), the error dynamic
of fe,i(t) is given by

ḟe,i(t) =−H(yi(t)− ŷi(t))
=−HC̆x̆e,i(t). (11)

Combining (1) and (6), the dynamics of the state can be
described as follows

ẋi(t) =Axi(t) + µBKxξ̂i(t) +Dfi(t)−Df̂i(t)
=Axi(t) + µBKxξ̂i(t) +Dfe,i(t). (12)

Hence, the consensus error δ(t) is given by

δ̇(t) =[IN ⊗A]δ(t) + [U ⊗ µBKx]ξ̂(t) + [U ⊗D]fe(t)

+ [U ⊗ E]d(t), (13)

where ξ̂(t) = col{ξ̂1(t), · · · , ξ̂N (t)}, d(t) = col{d1(t), · · · ,
dN (t)}, and fe(t) = col{fe,1(t), · · · , fe,N (t)}. Next, the
main results are given as follows.

Theorem 1: Under Assumptions 1-3, the proposed con-
troller (6) with the observer (4) can ensure that the consensus
error δ(t), the estimation errors x̆e,i(t) and fe,i(t) of the
MAS (1) with process faults, unbounded sensor FDIA, and
process disturbances are of uniform-ultimately-boundedness
in finite time, if there exist symmetric positive definite
matrices Q1, Q2, Q3 and matrices Kx, Ka, L, H , and M1

satisfying π11 0 π13
∗ π22 π23
∗ ∗ π33

 ≤ 0, (14)

D = BKa, (15)

Q2R1E = C̆TMT
1 , (16)

where

π11 =IN ⊗ [Q1A+ATQ1] + IN ⊗ (µ2Q1Q1)

+ [U ⊗ (Q1Q
T
1 )] + L2 ⊗ (2KT

x B
TBKx),

π13 =IN ⊗ (Q1D),

π22 =IN ⊗ (Q2Y + Y TQ2) + L2 ⊗ 2

[
KT

x B
TBKx 0
0 0

]
,

π23 =IN ⊗ (Q2R1D −Q3HC̆).
Proof: Let

Y =R1Ă− LC̆,
d̄ =col{d̄1, · · · , d̄N},
Q̃ =diag{Q1, Q2, Q3},

ℵi(t) =col{δi(t) x̆e,i(t) fe,i(t)},
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ℵ(t) =col{ℵ1(t), · · · ,ℵN (t)},
x̆e(t) =col{x̆e,1(t), · · · , x̆e,N (t)},

and define the Lyapunov function V (t) as

V (t) =

N∑
i=1

ℵTi (t)Q̃ℵi(t) = ℵT (t)[IN ⊗ Q̃]ℵ(t). (17)

From (10), (11), and (13), it can be derived that

V̇ (t) =

N∑
i=1

δ̇Ti (t)Q1δi(t) +

N∑
i=1

˙̆xTe,i(t)Q2x̆e,i(t)

+

N∑
i=1

δTi (t)Q1δ̇i(t) +

N∑
i=1

x̆Te,i(t)Q2
˙̆xe,i(t)

+

N∑
i=1

ḟTe,i(t)Q3fe,i(t) +

N∑
i=1

ḟTe,iQ3fe,i(t)

=δT [IN ⊗ (Q1A+ATQ1)]δ(t)

+ 2δT (t)[U ⊗ µQ1BKx]ξ̂(t)

+ 2δT (t)[U ⊗Q1D]fe(t) + 2δT (t)[U ⊗ E]d(t)

+ x̆Te (t)[IN ⊗ (Q2Y + Y TQ2)]x̆e(t)

+ 2x̆Te (t)[IN ⊗Q2R1E]

[
d(t)− d̄ V1ey(t)

‖V1ey(t)‖+ r1

]
+ 2x̆Te (t)[IN ⊗Q2R1D]fe(t)

− 2fTe (t)[IN ⊗ C̆THTQ3]x̆e(t). (18)

From Young’s inequality [4], it can be derived that

2δT (t)[U ⊗ µQ1BKx]ξ̂(t)

≤δT (t)[U ⊗ (µ2Q1Q
T
1 ) + L2 ⊗ (2KT

x B
TBKx)]δ(t)

+ x̆Te (t)

[
L2 ⊗ 2

[
KT

x B
TBKx 0
0 0

] ]
x̆e(t), (19)

and

2δT (t)× [U ⊗Q1E]d(t)

≤δT (t)[U ⊗ (Q1Q
T
1 )]δ(t) + dT (t)[U ⊗ (EET )]d(t)

≤δT (t)[U ⊗ (Q1Q
T
1 )]δ(t) + d̄T [U ⊗ (EET )]d̄(t). (20)

Further,

2x̆Te (t)[IN ⊗Q2R1E]

[
d(t)− d̄ M1ey(t)

‖M1ey(t)‖+ r1

]
=−2x̆Te (t)

[
IN ⊗

d̄Q2R1EM1C̆

‖M1ey(t)‖+ r1

]
x̆e(t)

+ 2x̆Te (t)[IN ⊗Q2R1E]d(t) ≤ 0, (21)

where (16) has been used. Then, combining (19)−(21) into
(18), V̇ (t) can be collated as

V̇ (t) ≤

 δ(t)x̆e(t)
fe(t)

T π11 0 π13
∗ π22 π23
∗ ∗ 0

 δ(t)x̆e(t)
fe(t)


+ d̄T [U ⊗ (EET )]d̄(t). (22)

Then, condition (14) and Lemma 2 ensure the uniform-

Fig. 1. Communication topology.

ultimate-boundedness of ℵ(t). The proof is complete.

C. Improved PIO and Controller Synthesis

Because it is difficult to solve the nonlinear matrix in-
equality constraint (14), linear matrices equation constraints
(15) and (16) by applying the LMI toolbox, Theorem 2 is
proposed to convert them into LMIs.

Theorem 2: Under Assumptions 1-3, for given positive
parameters µ and the small constant `, the matrix parameters
Kx, Ka, H and L can be obtained, if there exist symmetric
positive definite matrices Q1, Q2, Q3, Q4, and M1 satisfying
the LMI conditions:[

`I D −BKa

∗ `I

]
< 0, (23)

[
`I Q2R1E − CTMT

1

∗ `I

]
< 0, (24)


Π11 Π12 Π13 Π14 Π15 0
∗ −I 0 0 0 0
∗ ∗ −I 0 0 0
∗ ∗ ∗ Π44 Π45 Π46

∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ 0

 < 0, (25)

where

Π11 =Q1A+ATQ1,

Π12 =(λmax(U) + µ2)Q1,

Π13 =
√

2λmax(L)KT
x B

T ,

Π14 =Q1D,

Π44 =Q2R1Ă+ ĂTRT
1Q2 −Q4C − CTQ4,

Π45 =
√

2λmax(L)

[
KT

x B
T

0

]
,

Π46 =Q3HC̆ −Q2R1D.

Proof: Firstly, with the support of Schur complement
lemma, (15) and (16) are transformed into (23) and (24).
Secondly, let Q4 = Q2L. Then, we can derive (25) by
applying the Schur complement lemma. This completes the
proof.

IV. NUMERICAL EXAMPLES

Consider a MAS consisting of 5 agents with the topology
graph shown in Fig. 1, and dynamics as in (1) with
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A =


0 1 0 0

−48.6 −1.24 48.6 0
0 0 0 1

19.5 0 −22.85 0

 , B = D =


0

21.6
0
0

 ,

C =

1 1 0 0
0 1 1 0
0 0 1 0

 , F =

1
1
0

 , E =


0

0.2
0
0

 .
In addition, the parameters for (5), (6) and ` in Theorem 2
are r1 = 0.00001, µ = 0.02, and ` = 0.000001, respectively.
Then, from Fig. 1, it can be obtained that λmax(L) = 4.3028.

By solving the LMI conditions (23), (24) and (25), the
gain matrices in improved PIO observer (4) and control law
(6) are obtained as

Ka = 1,

Kx =
[
0.0005 0.0011 −0.0005 0.0002

]
,

and

H =
[
1.4228 −1.6360 0.8620

]
,

M1 = 106 ∗
[
−0.1354 0.4334 −1.2932

]
,

L =


1.3533 −1.1982 0.5110
−20.8133 11.9494 41.7307

1.7102 −2.1056 3.3671
20.2445 −21.3587 2.9737
19.8011 −10.2544 −43.7662

 ,
respectively.

To test the performance of the proposed control scheme
in this paper, the actuator faults and the unbounded sensor
FDIAs are given by

fi(t) =

{
0.7, t > 1s,
0, 0 < t < 1,

and

θi(t) =

{
1.5e0.5t, t > 12s,
0, 0 < t < 12.

Consider that the disturbance d1(t) = 0.7 sin(t) and d2(t) =
0.5 cos(3t + 2) acting on agent 1 and agent 2, and there
exist no disturbances on agents 3-5. Fig. 2 displays the
state estimation errors of the five agents. Fig. 3 shows the
process fault signals, sensor unbounded FDIAs, and their
estimates, from which it is obvious that the improved PIO
(4) can achieve accurate estimation even in the presence
of disturbances. Compared to Fig. 3, the poorer estimation
performance of the observer without Ji(t) is shown in Fig.
4, which indicates that the accuracy of the PIO observer can
be improved by applying the disturbance compensation term
Ji(t).

Define the consensus error as W (t) =

1
N

√
N∑
i=1

‖xi(t)− x̄(t)‖2. To demonstrate the superiority and

effectiveness of our proposed scheme, comparisons with the
fault-tolerant strategy [15] are given in Fig. 5. From Fig. 5,
we observe that the consensus error W (t) for the control
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Fig. 2. State estimation errors of five agents.
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(b) θ1(t)
Fig. 3. The estimation performance of the improved PIO of Agent 1

strategy in [15] cannot converge due to the existence of the
unbounded FDIA. However, the scheme of this paper can
achieve better consensus performance even in the presence
of the FDIAs and external disturbances. Therefore, better
consensus performance is obtained by using the scheme of
this paper.

V. CONCLUSION

In this article, the improved PIO based fault-tolerant
control problem for MASs subject to unbounded sensor
FDIAs is studied. The improved PIO is designed to estimate
the system state and process actuator fault simultaneously
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Fig. 4. The estimation performance of the improved PIO without J1(t)
of Agent 1
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(b) Method in [15]
Fig. 5. Comparison between our method and method in [15]

without being affected by the sensor unbounded FDIA.
Moreover, a compensation term is introduced to compensate
the adverse effects of the noise/disturbance, increasing the
accuracy of the PIO observer. An improved PIO-based fault-
tolerant control strategy is constructed to achieve secure
consensus under disturbances and unbounded FDIAs. The
controller and PIO gains are solved by MATLAB LMI tool-
box. In the end, a numerical example shows the superiority
and effectiveness of our proposed scheme. Noted that only
undirected communication topology is considered currently.
Generalization of the results to directed topology and time-
varying topology is the focus of our future research. More-
over, fast consensus problems with finite-time or predefined-
time will also be an important future research direction.
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