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Abstract— This paper proposes a distributionally robust ap-
proach to regret optimal control of discrete-time linear dynam-
ical systems with quadratic costs subject to a stochastic additive
disturbance on the state process. The underlying probability
distribution of the disturbance process is unknown, but assumed
to lie in a given ball of distributions defined in terms of
the type-2 Wasserstein distance. In this framework, strictly
causal linear disturbance feedback controllers are designed to
minimize the worst-case expected regret. The regret incurred
by a controller is defined as the difference between the cost it
incurs in response to a realization of the disturbance process
and the cost incurred by the optimal noncausal controller which
has perfect knowledge of the disturbance process realization
at the outset. Building on a well-established duality theory
for optimal transport problems, we derive a reformulation of
the minimax regret optimal control problem as a tractable
semidefinite program. Using the equivalent dual reformulation,
we characterize a worst-case distribution achieving the worst-
case expected regret in relation to the distribution at the center
of the Wasserstein ball. We compare the minimax regret optimal
control design method with the distributionally robust optimal
control approach using an illustrative example and numerical
experiments.

I. INTRODUCTION

There is growing interest in utilizing regret-based per-
formance metrics, originally proposed in [1], to design
controllers for uncertain dynamical systems. Loosely speak-
ing, regret measures the loss in performance incurred by a
causal controller relative to a clairvoyant controller that has
complete knowledge of the underlying system dynamics and
disturbance process at the outset. The regret minimization
paradigm has been used to address a variety of estimation
and decision problems, including robust estimation [2], [3],
multi-armed bandits [4], online convex optimization [5], and
adaptive control [6].

In the context of linear quadratic (LQ) control problems
with unknown state and input matrices, [7] and [8] design
learning-enabled controllers that achieve expected regret
rates which scale optimally with the control horizon. More
recently, [9] and [10] introduced the framework of regret
optimal control for LQ problems, where the disturbance
acting on the system is assumed to be adversarial in na-
ture. Using operator-theoretic techniques from robust control,
controllers in state-space representation are synthesized to

This work was supported in part by The Nature Conservancy, in part by
the Cornell Atkinson Center for Sustainability, and in part by the Natural
Sciences and Engineering Research Council of Canada.

The authors are with the School of Electrical and Computer Engi-
neering, Cornell University, Ithaca, NY, 14853, USA. Emails: Feras Al
Taha (foa6@cornell.edu), Shuhao Yan (sy499@cornell.edu), Eilyan Bitar
(eyb5@cornell.edu).

minimize the worst-case regret over all possible disturbances
with bounded energy. Building on this framework, [11] and
[12] synthesize regret optimal controllers subject to state and
input constraints. Using the system level parameterization
[13], they provide equivalent reformulations of the resulting
minimax regret optimal control problems as semidefinite
programs (SDPs). While the resulting controllers are robust
with respect to the worst-case disturbance realization, they
may be conservative if the underlying disturbance is actually
stochastic in nature.

Taking a probabilistic view, we propose an alternative
approach to regret optimal control, where controllers are
designed to minimize the worst-case expected regret over all
probability distributions in a given ambiguity set specified in
terms of the type-2 Wasserstein distance. In this setting, the
expected regret is defined as the difference between an ex-
pected cost incurred by a causal controller and the expected
cost incurred by the optimal noncausal controller with perfect
knowledge of the disturbance trajectory at the outset. The
proposed approach can also be thought of as an alternative
to distributionally robust optimal (DRO) control, see, i.e.,
[14]–[16] and references therein. A potential drawback of
the DRO control approach, which aims to minimize the
worst-case expected cost across a given ambiguity set of
distributions, is that resulting controllers may incur a large
expected regret for certain distributions in the ambiguity set.
In contrast, by minimizing the worst-case expected regret,
the approach proposed in this paper ensures that resulting
controllers have uniformly small regret for all distributions
in the given ambiguity set. In Section III, we provide a
motivating example that clearly illustrates some of the trade-
offs inherent to these two methods.

Summary of contributions: In this paper, we propose a
new framework for regret optimal controller synthesis using
distributionally robust optimization methods. The control
problem is formulated as a minimax optimization problem,
involving a worst-case expectation problem over a Wasser-
stein ball of distributions. Utilizing duality for distribu-
tionally robust optimization problems [17], we obtain an
equivalent convex reformulation of the worst-case expec-
tation problem, which facilitates the reformulation of the
minimax regret optimal control problem as a SDP. Our result
extends a number of related results on the exact reformula-
tion of worst-case expectation problems involving quadratic
objective functions [18], [19]. We also provide an explicit
characterization of a worst-case distribution achieving the
worst-case expectation in relation to the central distribution
in the ambiguity set.
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The remainder of this paper is organized as follows. In
Section II, we formulate the minimax regret optimal control
problem for linear disturbance feedback control policies.
In Section III, we provide a stylized example that clearly
illustrates some of the strengths and limitations of our
proposed approach. In Section IV, we derive an equivalent
reformulation of the minimax regret optimal control problem
as a SDP. In Section V, we present numerical experiments
which show that the proposed approach can significantly out-
perform the distributionally robust optimal control approach
in certain settings. We conclude the paper in Section VI.

Notation: Let R and R+ denote the set of real numbers
and nonnegative real numbers, respectively. Let Sn denote
the set of all symmetric matrices in Rn×n. Denote the
cone of n×n real symmetric positive definite (semidefinite)
matrices by Sn++ (Sn+). Denote the Euclidean norm of a
vector x ∈ Rn by ∥x∥. Given matrices A,B ∈ Sn, the
relation A ≻ B means A−B ∈ Sn++, and the relation A ⪰ B
means A − B ∈ Sn+. Denote the maximum and minimum
eigenvalues of a matrix A ∈ Rn×n by λmax(A) and λmin(A),
respectively. Given a matrix A ∈ Sn+, the matrix A

1
2 denotes

the (symmetric) positive semidefinite square root of A. Let
M(Rn) be the collection of Borel probability measures on
Rn with finite second moments.

II. PROBLEM FORMULATION

A. System Model

We consider discrete-time, linear time-varying systems
evolving over a finite horizon t = 0, . . . , T − 1, with
dynamics

xt+1 = Atxt +Btut + wt, (1)

where xt ∈ Rn is the system state, ut ∈ Rm is the control
input, and wt ∈ Rn is the disturbance acting on the system at
time t. We assume perfect state feedback, and that the system
matrices At ∈ Rn×n and input matrices Bt ∈ Rn×m for t =
0, . . . , T −1 are known at the outset. Both the initial system
state x0 and the disturbances w0, . . . , wT−1 are assumed to
be random variables whose joint distribution P is unknown
but assumed to lie in a given compact set P , termed the
ambiguity set.

We denote the state, input, and disturbance trajectories by

x := (x0, . . . , xT ) ∈ RNx ,

u := (u0, . . . , uT−1) ∈ RNu ,

w := (x0, w0, . . . , wT−1) ∈ RNx ,

where Nx := n(T+1) and Nu := mT . To simplify notation,
we have included the initial state x0 as the first term in the
disturbance trajectory w. With these definitions, the dynam-
ics (1) can be expressed in terms of the following causal
linear mapping from the input and disturbance trajectories
to the state trajectory:

x = Fu+Gw, (2)

where F ∈ RNx×Nu and G ∈ RNx×Nx are block lower-
triangular matrices. These matrices are straightforward to

construct from the given state and input matrices (At, Bt),
where t = 0, . . . , T − 1.

The cost incurred by an input trajectory u and disturbance
trajectory w is defined as

J(u, w) := x⊤Qx + u⊤Ru, (3)

where Q ∈ SNx
+ and R ∈ SNu

++.

B. Linear Disturbance Feedback Controllers

In this paper, we consider the design of strictly causal
linear disturbance feedback controllers1 of the form

ut =

t∑
k=0

Kt,kwk−1, ∀ t = 0, . . . , T − 1. (4)

Here, we have used the notational convention w−1 := x0.
The controller (4) can be expressed as a linear mapping from
the disturbance trajectory to the input trajectory given by

u = Kw, K ∈ K, (5)

where K ⊆ RNu×Nx denotes the space of all block lower tri-
angular matrices that correspond to the disturbance feedback
parameterization specified in (4).

It is important to note that the family of strictly causal
linear disturbance feedback controllers is equivalent to the
family of causal linear state feedback controllers [20]. In
particular, given a strictly causal disturbance feedback con-
troller K ∈ K, the change of variables2 L := (I +
KG−1F )−1KG−1 induces an equivalent causal state feed-
back controller L that satisfies Lx = Kw for all w ∈
RNx [22]. However, from an optimization standpoint, the
disturbance feedback parameterization is preferred over the
state feedback parameterization, because the cost function
J(Kw, w) resulting from the disturbance feedback param-
eterization is guaranteed to be convex with respect to the
controller K [20].

C. Minimax Regret Optimal Control

We seek controllers belonging to the family K that mini-
mize the worst-case expected regret across all probability dis-
tributions in the given ambiguity set P . The regret incurred
by a causal controller is defined as the difference between the
cost it incurs and the cost incurred by the optimal noncausal
controller (which knows the full disturbance trajectory at the
outset). Formally, the regret incurred by a causal controller
K ∈ K in response to a disturbance w is defined as

R(K, w) := J(Kw, w) − J(u⋆(w), w), (6)

1It is straightforward to extend the results of this paper to allow for the
optimization over affine disturbance feedback policies. We forgo this more
general treatment to streamline the presentation in this paper.

2This invertible nonlinear transformation is related to the well-known
Youla parameterization in linear systems [21]. The matrix G is invertible
since it is a lower triangular matrix with ones along its diagonal, and the
matrix I +KG−1F is invertible since KG−1F is a block strictly lower
triangular matrix.
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where u⋆ : RNx → RNu denotes the optimal noncausal
controller, which is defined as

u⋆(w) := argmin
u∈RNu

J(u, w). (7)

With these definitions in hand, the minimax regret optimal
control (MROC) problem can be formulated as

inf
K∈K

sup
P∈P

EP [R(K, w)] . (8)

To solve the MROC problem, an explicit characterization
of the optimal noncausal controller cost is needed. It is
well known that the optimal noncausal controller exists, is
unique, and is linear in the disturbance trajectory w (among
all possible nonlinear controllers) [12], [23]. To see why
this is true, note that J(u, w) is a strictly convex quadratic
function of u. It follows that the unique optimal noncausal
controller can be obtained by solving the optimality condition
∇uJ(u, w) = 0, which yields

u⋆(w) = K⋆w,

where K⋆ := −(R + F⊤QF )−1F⊤QG. Using the above
identity, the cost incurred by the optimal noncausal controller
can be expressed as

J(K⋆w, w) = w⊤G⊤(Q−QFD−1F⊤Q)Gw,

where D := R + F⊤QF is a positive definite matrix.
Furthermore, by substituting (2) into (3), and completing the
square in (3) with respect to u, the cost function J(u, w)
can be rewritten as

J(u,w) = (u−K⋆w)⊤D(u−K⋆w) + J(K⋆w, w). (9)

Notice that the first term in (9) represents the regret incurred
by the control trajectory u in response to the disturbance w.
Using the identity in (9), the MROC problem can be recast as

inf
K∈K

sup
P∈P

EP

[
w⊤(K −K⋆)⊤D(K −K⋆)w

]
. (10)

From (10), it can be seen that the expected regret incurred
by a controller K ∈ K under a distribution P ∈ P only
depends on the distribution through its second moment.

D. Distributionally Robust Optimal Control

In Sections III and V, we compare the minimax regret
optimal (MRO) controllers proposed in this paper with
distributionally robust optimal (DRO) controllers, which are
defined as solutions to the following optimization problem:

inf
K∈K

sup
P∈P

EP [J(Kw, w)] . (11)

DRO controllers minimize the worst-case expected cost
across all distributions in a given ambiguity set P .

III. MOTIVATING EXAMPLE

Before delving into the main results of this paper, we first
analyze a simple system that sheds light on the behavior of
MRO and DRO controllers and the nature of the adversarial
distributions they hedge against.

Method Control Policy Expected Cost

Optimal Noncausal −
(

1

1 + c

)
(x0 + w0) J⋆

Optimal Causal −
(
1 + ρ

1 + c

)
x0 J⋆ +

1− ρ2

1 + c

MRO −
(

1

1 + c

)
x0 J⋆ +

1

1 + c

DRO −
(

2

1 + c

)
x0 J⋆ + 2

(
1− ρ

1 + c

)
TABLE I: Comparison of different control design methods
applied to the specific system described in Section III for
c ≥ 1. The expected cost incurred by the optimal noncausal
policy is given by J⋆ := 2c(1 + ρ)/(1 + c).

A. System Description

Consider a one-dimensional (n = 1) system that operates
for a single time period (T = 1):

x1 = x0 + u0 + w0.

In this setting, there is a single control input u0, and the
disturbance trajectory w = (x0, w0) is comprised of the
initial state x0 and initial disturbance w0, which are assumed
to have known marginal distributions with zero mean and
unit variance. The correlation coefficient between the initial
state and disturbance is assumed to be unknown. Given
these assumptions, the ambiguity set of distributions can be
expressed as

P :=

P ∈ M(R2)

∣∣∣∣∣∣ EP [w] = 0, EP [ww
⊤] =

[
1 ρ
ρ 1

]
ρ ∈ [−1, 1] for w ∼ P

 ,

where ρ denotes the correlation coefficient between x0 and
w0. We consider a cost function that penalizes the terminal
state and control input according to

J(u0, w) = x2
1 + cu2

0,

where c ≥ 1 is a given parameter.
We examine four different controllers: (i) the optimal

noncausal controller defined in (7), (ii) the MRO controller
defined in (8), (iii) the DRO controller defined in (11),
and (iv) the optimal causal controller, which minimizes the
expected cost given complete knowledge of the underlying
distribution P ∈ P . For the causal control design methods
(ii)-(iv), we restrict our attention to linear policies of the
form:

u0 = −kx0,

where k ≥ 0 denotes the control gain. Closed-form expres-
sions for the optimal controllers and their expected costs are
provided in Table I. Due to space limitations, the derivation
of these expressions is left as an exercise for the reader.
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Fig. 1: Expected cost incurred by different controllers as a
function of the correlation coefficient ρ for c = 3/2.

B. Discussion

In Fig. 1, we plot the expected cost of each controller
as a function of the correlation coefficient ρ. The expected
cost of the DRO controller is greatest at ρ = 1, i.e., when the
initial state x0 and the disturbance w0 are perfectly positively
correlated. This is unsurprising since heightened correlation
between the initial state and the disturbance requires greater
control effort to minimize the expected cost. Unlike the
DRO controller, which minimizes the expected cost against
the worst-case distribution in the ambiguity set, the MRO
controller is found to strike a balance in compensating for
both “favorable” distributions (ρ = −1) and “unfavorable”
distributions (ρ = 1) in the ambiguity set, i.e., distributions
that result in lower and higher expected costs, respectively. In
fact, the MRO controller is equivalent to the optimal causal
controller corresponding to the correlation coefficient ρ = 0.
Thus, although the MRO controller incurs a greater expected
cost than the DRO controller in the worst case, it strictly
outperforms the DRO controller for all distributions in the
ambiguity set with correlation coefficients ρ ∈ [−1, 1/2).
Moreover, the MRO controller achieves a constant expected
regret of 1/(1 + c) over the ambiguity set, while the DRO
controller exhibits a worst-case expected regret of 4/(1+ c)
for distributions with ρ = −1.

IV. TRACTABLE CONVEX REFORMULATION

A primary challenge in solving the MROC problem (10)
is that the inner maximization involves a supremum over an
ambiguity set of distributions that may be nonconvex and
infinite dimensional. To address this challenge, we consider
ambiguity sets that are defined as the set of all distributions
that are close to a nominal distribution with respect to the
Wasserstein distance. The Wasserstein distance between two
distributions can be interpreted as the minimum “work” or
transportation cost required to move the probability mass
from one distribution to the other. By defining the ambi-
guity set in this manner, we are able to draw on a well-

established duality theory for optimal transport problems to
reformulate the inner maximization in (10) as a tractable
finite-dimensional convex optimization problem [17], [24].
As one of our main contributions in Theorem 4, we provide
an exact reformulation of the MROC problem (10) as a SDP.
In Theorem 3, we also provide a structural characterization
of a worst-case distribution achieving the supremum in the
inner maximization in (10).

A. Strong Duality for Worst-Case Expectation Problems
Before presenting our main results, it is necessary to

introduce some additional notation and define the type-2
Wasserstein distance between probability measures.

Definition 1 (Type-2 Wasserstein Distance). The type-2
Wasserstein distance between two distributions P1, P2 ∈
M(RNx) is defined as

W2(P1, P2)
2 := inf

π∈Π(P1, P2)

∫
RNx×RNx

∥z1 − z2∥2π(dz1, dz2),

where Π(P1, P2) denotes the set of all joint distributions in
M(RNx × RNx) with marginal distributions P1 and P2.

Given a nominal distribution P0 ∈ M(RNx), we define
the ambiguity set P as the set of all distributions whose
type-2 Wasserstein distance to P0 is at most r ≥ 0, i.e.,

P := {P ∈ M(RNx) |W2(P, P0) ≤ r}. (12)

The radius of the ambiguity set, r, reflects the degree of
uncertainty surrounding the accuracy of the nominal distribu-
tion. For example, when the central distribution is estimated
from independent and identically distributed (i.i.d.) data, the
radius of the ambiguity set can be selected to ensure that the
ambiguity set contains the data-generating distribution with a
desired confidence level, e.g., using the techniques described
in [25]. If the radius of the ambiguity set is decreased to zero,
then the ambiguity set collapses to a singleton set that only
contains the nominal distribution, and the MROC problem
(8) reduces to a conventional (ambiguity-free) stochastic
optimal control problem given by infK∈KEP0

[J(Kw, w)].
To solve the MROC problem (10), one must contend with

the inner maximization (worst-case expectation) over the
type-2 Wasserstein ball of distributions. Recently, it has been
shown that strong duality holds for such infinite-dimensional
maximization problems for a large family of objective func-
tions [17], [24], [25]. In particular, the following known
result from the literature provides conditions under which
strong duality is guaranteed to hold, along with a useful
characterization of the dual problem as a one-dimensional
convex minimization problem.

Theorem 1 (Strong Duality, [17]). Let r > 0 and consider
a family of worst-case expectation problems given by

sup
P∈P

EP [f(w)],

where f : RNx → R is a Borel-measurable function such
that EP0 [|f(w)|] < ∞. Then, strong duality holds, and

sup
P∈P

EP [f(w)] = inf
γ≥0

{
γr2 − EP0

[ϕ(γ, w)]
}
, (13)
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where the function ϕ : R×RNx → R∪{−∞} is defined as

ϕ(γ, w) := inf
z∈RNx

{γ∥z − w∥2 − f(z)}.

Additionally, if inf{γ ≥ 0 |EP0
[ϕ(γ, w)] > −∞} < ∞,

then the primal and dual optimal values in (13) are finite.

Building on Theorem 1, we provide conditions which
enable the reformulation of worst-case expectation problems
involving general quadratic objective functions as SDPs. We
rely on the following assumption.

Assumption 1 (Nominal Distribution). The nominal dis-
tribution P0 is absolutely continuous with respect to the
Lebesgue measure on RNx .

Theorem 2 (Strong Duality for Quadratic Objectives). Let
r > 0 and Assumption 1 hold. Consider a family of worst-
case expectation problems given by

sup
P∈P

EP [w
⊤Cw], (14)

where the matrix C ∈ SNx is assumed to satisfy λmax(C) ̸=
0. Then, the optimal value of (14) is finite and equal to the
optimal value of the following convex program:

inf
γ≥0

{γ(r2 − Tr (M0)) + γ2 Tr
(
M0(γI − C)−1

)
| γI ≻ C},

(15)

where M0 := EP0
[ww⊤].

Proof. For any matrix C ∈ SNx , the function z 7→ z⊤Cz
is Borel measurable, and satisfies EP0

[|w⊤Cw|] < ∞ since
the nominal distribution P0 has a finite second moment by
assumption. Then, by Theorem 1, it holds that

sup
P∈P

EP [w
⊤Cw] = inf

γ≥0

{
γr2 − EP0

[ϕ(γ, w)]
}
, (16)

where

ϕ(γ, w) = inf
z∈RNx

{
z⊤(γI − C)z − 2γw⊤z

}
+ γ∥w∥2.

Also, by Theorem 1, the primal and dual optimal values in
(16) are finite if inf{γ ≥ 0 |EP0 [ϕ(γ, w)] > −∞} < ∞.
Under the conditions stated in Theorem 2, we shall prove
that EP0

[ϕ(γ, w)] > −∞ if and only if γI − C ≻ 0. The
implication in the “if” direction is clear.

We prove the implication in the “only if” direction using
contraposition, i.e., we shall prove that EP0

[ϕ(γ, w)] = −∞
if γI − C ⊁ 0. To streamline notation, let Cγ := γI − C.
Additionally, let v ∈ RNx denote an eigenvector of the matrix
Cγ associated with the smallest eigenvalue λmin(Cγ).

Note that Cγ ⊁ 0 is equivalent to λmin(Cγ) ≤ 0. If
λmin(Cγ) < 0, then infz∈RNx

{
z⊤Cγz − 2γw⊤z

}
= −∞

for any w ∈ RNx , which implies that EP0 [ϕ(γ, w)] = −∞.
If λmin(Cγ) = 0, then

inf
z∈RNx

{
z⊤Cγz −2γw⊤z

}
≤ inf

θ∈R

{
(θv)⊤Cγ(θv)− 2γw⊤(θv)

}
= inf

θ∈R

{
−2γw⊤(θv)

}

= inf
θ∈R

{
−2λmax(C)w⊤(θv)

}
= −∞ P0-almost surely.

The first equality follows from the assumption that v
is an eigenvector of Cγ associated with the eigen-
value λmin(Cγ) = 0. The second equality follows from
λmin(Cγ) = 0, which is equivalent to γ = λmax(C). The
final equality follows from the assumption that λmax(C) ̸= 0
and Assumption 1 (which implies that w⊤v ̸= 0 P0-almost
surely). This proves that EP0 [ϕ(γ, w)] > −∞ if and only if
Cγ ≻ 0. It follows that

inf{γ ≥ 0 |EP0
[ϕ(γ, w)] > −∞} = inf{γ ≥ 0 |Cγ ≻ 0}

= max{λmax(C), 0}
< ∞,

proving finiteness of the primal and dual optimal values in
(16).

We complete the proof by showing that the right-hand side
of (16) is equal to (15). From previous arguments, it follows
that

inf
γ≥0

{
γr2 − EP0 [ϕ(γ, w)]

}
= inf

γ≥0

{
γr2 − EP0

[ϕ(γ, w)] |Cγ ≻ 0
}
,

which leads to (15) as infz∈RNx

{
z⊤Cγz − 2γw⊤z

}
=

−γ2w⊤C−1
γ w under the condition Cγ ≻ 0.

Together with Assumption 1, the condition λmax(C) ̸= 0
ensures that the dual optimal value (15) is finite. While
this condition permits a variety of quadratic objective func-
tions, including definite and indefinite quadratic functions, it
does exclude negative semidefinite quadratic functions with
λmax(C) = 0.

We also note that Theorem 2 extends a number of related
results in the literature [18], [19] by expanding the family of
nominal distributions under which the worst-case expectation
problem (14) is guaranteed to admit an equivalent convex
reformulation as (15). In particular, the convex reformulation
provided in [19, Theorem 16] relies on the assumption that
the nominal distribution is a (possibly degenerate) elliptical
distribution, while Assumption 1 only requires that the
nominal distribution be absolutely continuous with respect
to the Lebesgue measure on RNx . While the family of
probability distributions satisfying Assumption 1 is quite
broad, it does rule out nominal distributions supported on
lower dimensional manifolds (e.g., degenerate distributions),
and distributions supported on finite sets. For a comprehen-
sive treatment of nominal distributions supported on finite
sets, we refer the reader to [25], which provides tractable
convex reformulations for an array of worst-case expectation
problems over type-1 Wasserstein balls centered at empirical
distributions.

B. Worst-Case Distribution Characterization

Using the dual reformulation of the quadratic worst-
case expectation problem (14) provided in Theorem 2, we
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now characterize a worst-case distribution which attains the
optimal value of the worst-case expectation problem (14).

Theorem 3 (Worst-Case Distribution). Let the assumptions
of Theorem 2 hold and let γ⋆ ≥ 0 satisfy γ⋆I ≻ C and be
a solution to the algebraic equation

Tr
((
γ(γI − C)−1 − I

)2
M0

)
= r2. (17)

Let P ⋆ ∈ M(RNx) denote the distribution of

w⋆ := γ⋆(γ⋆I − C)−1w, (18)

where w ∼ P0. Then, the distribution P ⋆ belongs to the
ambiguity set P and it attains the optimal value of the worst-
case expectation problem (14).

Proof. To prove the desired result, we need to show that P ⋆

is both feasible and optimal in (14). To streamline notation,
let Cγ := γI − C.

First, we show that the distribution P ⋆ belongs to the
ambiguity set P by verifying that it satisfies W2(P

⋆, P0) ≤
r. To achieve this, let π ∈ Π(P ⋆, P0) be the joint distribution
of w⋆ and w. Then, we have that

W2(P
⋆, P0)

2

≤ Eπ

[
(w⋆ − w)⊤(w⋆ − w)

]
= Tr

(
EP⋆

[
w⋆w⋆⊤]− 2Eπ

[
ww⋆⊤]+ EP0

[
ww⊤])

(a)
= Tr

(
γ⋆2C−1

γ⋆ M0C
−1
γ⋆ − 2γ⋆C−1

γ⋆ M0 +M0

)
= Tr

((
γ⋆C−1

γ⋆ − I
)2
M0

)
(b)
= r2,

where (a) holds by (18) and (b) holds by (17). Hence, P ⋆ ∈
P and is feasible for (14).

Next, we prove that the distribution P ⋆ is optimal for the
worst-case expectation problem (14). Let g : R+ → R denote
the dual objective function in (15). It can be expressed as

g(γ) = γ(r2 − Tr (M0)) + γ2 Tr
(
M0C

−1
γ

)
.

The function g is strictly convex on the interval
(λmax(C), ∞) since its second derivative satisfies

d2g(γ)

dγ2
= 2Tr

(
M0C

2C−3
γ

)
> 0

for all γ ∈ (λmax(C), ∞). Also, note that g goes to infinity
as γ tends to infinity or approaches λmax(C) from the right.
Consequently, the dual function g has a unique minimizer
γ⋆ in the interval (λmax(C), ∞). Hence, the first order
optimality condition is a necessary and sufficient condition
for optimality on the interval (λmax(C), ∞). This condition
is given by

dg(γ)

dγ
= r2 − Tr

(
M0 − 2γC−1

γ M0 + γ2C−2
γ M0

)
= 0,

which can be rewritten as (17).
By Theorem 2, the optimal value of the primal problem

(14) is finite and equal to the optimal value of the dual
problem (15). Hence, to prove that P ⋆ attains the supremum

of (14), it suffices to show that EP⋆ [w⋆⊤Cw⋆] = g(γ⋆). It
holds that

g(γ⋆)
(a)
= γ⋆Tr

((
γ⋆C−1

γ⋆ − I
)2
M0 −M0 + γ⋆C−1

γ⋆ M0

)
= γ⋆Tr

((
− γ⋆C−1

γ⋆ + γ⋆2C−2
γ⋆

)
M0

)
= γ⋆2Tr

(
C−1

γ⋆ M0

(
− I + γ⋆C−1

γ⋆

))
(b)
= Tr

(
γ⋆2C−1

γ⋆ M0C
−1
γ⋆ C

)
(c)
= EP⋆ [w⋆⊤Cw⋆],

where (a) follows from plugging (17) into g(γ⋆); (b) holds
since −I+γ⋆C−1

γ⋆ = −C−1
γ⋆ Cγ⋆ +γ⋆C−1

γ⋆ = C−1
γ⋆ C; and (c)

follows from (18). Therefore, P ⋆ is optimal and the desired
result holds.

In Theorem 3, the proposed worst-case distribution P ⋆ is
given by the push-forward measure of P0 through the linear
transformation z 7→ γ⋆(γ⋆I − C)−1z. It is also possible to
show that P ⋆ is an extremal distribution in the ambiguity set
P . In particular, by using a well-known lower bound on the
type-2 Wasserstein distance due to Gelbrich [26, Theorem
2.1], one can show that W2(P

⋆, P0) ≥ r.

C. Semidefinite Programming Reformulation

Building on Theorem 2, we now show how to reformulate
the MROC problem (8) as a SDP in Theorem 4.

Theorem 4 (SDP Reformulation of MROC Problem). Let
r > 0 and suppose that K⋆ /∈ K and Assumption 1
holds. Then, the MROC problem (8) can be equivalently
reformulated as the following SDP:

inf γ(r2 − Tr (M0)) + Tr (X) (19a)

s.t. K ∈ K, γ ≥ 0, X ∈ SNx
+ ,[

γI (K −K⋆)⊤

K −K⋆ D−1

]
≻ 0, (19b) X γM

1
2
0 0⊤Nu×Nx

γM
1
2
0 γI (K −K⋆)⊤

0Nu×Nx K −K⋆ D−1

 ⪰ 0, (19c)

where 0Nu×Nx
denotes a Nu-by-Nx matrix of all zeros and

the decision variables are K, γ and X .

Proof. To streamline notation, define the matrix

CK := (K −K⋆)⊤D(K −K⋆).

The condition K⋆ /∈ K ensures that λmax(CK) > 0 for all
K ∈ K. This, together with Assumption 1, allows us to apply
Theorem 2 to reformulate the MROC problem as

inf
K∈K

sup
P∈P

EP [w
⊤CKw]

= inf
K∈K,γ≥0

{
γ(r2 − Tr (M0))

+ γ2 Tr
(
M0(γI − CK)−1

)
| γI ≻ CK

}
. (20)

Since D ≻ 0, it follows from the Schur complement theorem
that the constraint γI ≻ CK is equivalent to the linear
matrix inequality (19b). Now, observe that the second term
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γ2 Tr
(
M0(γI − CK)−1

)
in the right-hand side of (20) can

be expressed as

min
X⪰0

{
Tr (X)

∣∣X ⪰ γM
1
2
0 (γI − CK)−1γM

1
2
0

}
.

Once again, using the Schur complement theorem, we can
reformulate the constraint X⪰γM

1
2
0 (γI − CK)−1γM

1
2
0 as[

X γM
1
2
0

γM
1
2
0 γI − CK

]
⪰ 0, (21)

since γI−CK ≻ 0. To prove equivalence between the matrix
inequality (21) and (19c), it is helpful to rewrite (21) as[

X γM
1
2
0

γM
1
2
0 γI

]
−

[
0⊤Nu×Nx

(K −K⋆)⊤

]
D

[
0⊤Nu×Nx

(K −K⋆)⊤

]⊤
⪰ 0.

Since D ≻ 0, it follows from the Schur complement
theorem that the above constraint is equivalent to (19c). This
proves that problem (20) is equivalent to the SDP (19) and
completes the proof.

Note that the assumption K⋆ /∈ K is without loss of
generality. If the optimal noncausal controller K⋆ happens
to be causal, i.e., K⋆ ∈ K, then the minimax regret optimal
controller is just u = K⋆w, which avoids the need to solve
problem (8).

The size of the SDP in (19) grows polynomially with the
state dimension n, input dimension m, and time horizon
T . Although SDPs can be solved with arbitrary accuracy
in polynomial time using interior point methods, in practice
they are expensive to solve in high dimensions. To improve
scalability, one can exploit sparsity in the problem data [27],
[28], or employ approximations of the positive semidefinite
cone [29], [30].

V. NUMERICAL EXPERIMENTS

In this section, we compare the MRO and DRO control
design methods within the context of data-driven control. We
consider a one-dimensional (n = 1) controlled random walk
with dynamics given by

xt+1 = xt + ut + wt

for t = 0, ..., T − 1. In our experiments, we consider a time
horizon of T = 10 and take the cost matrices to be Q, R = I .
The disturbance trajectory w is assumed to have a Gaussian
distribution given by N (µ, I).

We assume that the controllers have access to N i.i.d.
samples w(1), . . . , w(N) of the disturbance trajectory, but do
not know the underlying distribution from which the data is
generated. Using these data, we consider an ambiguity set P
that is centered at a nominal distribution P0 ∈ M(RNx)
whose second moment matrix is given by the empirical
estimate:

M0 =
1

N

N∑
i=1

w(i)w(i)⊤. (22)

Note that the SDP reformulations of the MROC and DROC
problems only depend on the second moment matrix of the
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Fig. 2: These plots depict the expected cost (averaged over
100 trials) incurred by the MRO and DRO controllers under
the true data-generating distribution N (µ, I) versus the
ambiguity set radius r. The shaded regions depict the range
between the corresponding 20th and 80th empirical quantiles.

nominal distribution, so only specifying its second moment
suffices. In our experiments, we vary the radius r of the
ambiguity set to investigate its effect on the performance of
the resulting MRO and DRO controllers.

We examine two different data-generating distributions:
one that has a zero mean vector (µ = 0) and one that has a
constant nonzero mean vector of all ones (µ = 1). For each
distribution, we conduct 100 independent trials. In each trial,
we draw N = 50 i.i.d. samples of the disturbance trajectory
from the underlying distribution N (µ, I). We vary the radius
of the ambiguity set from zero to three and compute the MRO
controller for each radius value by solving the SDP (19). We
compute the DRO controller by solving a SDP reformulation
of (11) that follows from Theorem 4.

In Fig. 2, we plot the expected costs (averaged over
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100 trials) incurred by the MRO and DRO controllers as
a function of the ambiguity set radius. In each case, the
expectations are calculated with respect to the true data-
generating distribution.

When the radius r of the ambiguity set is equal to
zero, the MRO and DRO control problems are identical
to the ambiguity-free stochastic control problem given by
infK∈KEP0

[J(Kw, w)]. This can be interpreted as a cer-
tainty equivalent approach to data-driven control. For small
values of r, we observe that both the MRO and DRO
controllers improve upon the performance of the certainty
equivalent controller. In the zero-mean case (Fig. 2a), the
MRO controller strictly outperforms the DRO controller
for all radii in the specified range. In the nonzero-mean
case (Fig. 2b), the MRO controller outperforms the DRO
controller for small radius values, while the DRO controller
outperforms the MRO controller for larger radii. This reveals
that, in some settings, the choice of ambiguity set radius
r can have an important effect on the superiority of one
method over the other. That said, for both distributions, the
MRO controller achieves the smallest expected cost over the
specified radius range, compared to the DRO controller.

VI. CONCLUSION

In this paper, we propose a distributionally robust approach
to synthesizing minimax regret optimal controllers for linear
discrete-time systems subject to stochastic additive distur-
bances whose probability distribution is only known to lie
in a type-2 Wasserstein ball of distributions. Building on
existing strong duality results for Wasserstein distributionally
robust optimization problems, we provide an equivalent
reformulation of the minimax regret optimal control problem
as a tractable semidefinite program. As a direction for future
research, it would be interesting to generalize the framework
proposed in this paper to enable the design of minimax regret
optimal controllers with partial state feedback.
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