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Abstract— Coordination in a large number of networked robots
is a challenging task, especially when robots are continuously moving
around the environment and there are malicious attacks within the
network. Various approaches in the literature exist for detecting
malicious robots, such as message sampling or suspicious behavior
analysis. However, these approaches require every robot to sample or
observe every other robot in the network, leading to a slow detection
process that degrades team performance. This paper introduces a
method that significantly decreases the detection time for legitimate
robots to identify malicious robots in a scenario where legitimate
robots are randomly moving around the environment. Our method
leverages a concept that we refer to as “Dynamic Crowd Vetting,”
whereby, by utilizing observations from random encounters in
combination with trusted neighboring robots’ opinions, legitimate
robots can quickly improve the accuracy of detecting malicious
robots. The key intuition is that as long as each legitimate robot
accurately estimates the legitimacy of at least some fixed subset of
the team, the second-hand information they receive from trusted
neighbors is enough to correct any misclassifications and provide
accurate trust estimations of the rest of the team. We show that
the size of this fixed subset can be characterized as a function of
fundamental graph and random walk properties. Furthermore,
we formally show that the detection time remains constant with
respect to team size for a fixed ratio of legitimate to malicious robots.
We develop a closed form expression for the critical number of
time-steps required for our algorithm to successfully identify the true
legitimacy of each robot to within a specified failure probability. Our
theoretical results are validated through simulations demonstrating
significant reductions in detection time when compared to previous
works that do not leverage trusted neighbor information.

I. INTRODUCTION

Multi-robot teams can cooperate to solve a plethora of tasks
that a singular robot could not achieve alone [1], [2] such as
coverage or persistent surveillance [3], [4], efficient exploration
of a large area [5], and flocking [6], among others. However,
whenever a task requires the coordination of multiple robots for
successful task completion, there exists potential for malicious,
or non-cooperating robots, to hinder the team’s performance.
Recent works have leveraged the concept of “observing” robots,
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and gathering information in order to identify robots that are
potentially untrustworthy [7], [8], [9], [10]. This information,
hereafter referred to as a trust observation, centers on the principle
that gathering more information, or multiple trust observations,
can improve the accuracy of this inter-robot trust [11], [12].

Previous works have taken a controls perspective to gathering
trust observations by developing strategies that favor frequent
encounters between robots. For example, the work in [13] designs
specific routes for the team to follow as they patrol an environment
that strategically increases the inter-robot interaction opportunities.
However, this requires that robots cooperate and follow their pre-
defined routes. The papers [14], [15], [16] consider environments
that are discretized into regions, called sites, where robots provide
persistent surveillance by patrolling while maintaining a desired
distribution of robots over sites. In our previous work [14], we
present a strategy that reduces the detection time by encouraging
frequent encounters between robots using a stochastic site transi-
tion rule akin to a random walk. However, this strategy requires
that every robot encounters every other robot many times in order
to develop an accurate trust estimation, which can be a significantly
long process, especially as the number of robots or sites increases.

A recent algorithm called Crowd Vetting [11] exploits opinion
dynamics [17], where the opinions of trusted neighbors can be
used to fortify a robot’s opinion of another. In the Crowd Vetting
algorithm, legitimate robots share opinions, which is shown to
improve their trust estimation while requiring fewer observations
than if robots rely solely on their own direct observations.
However, the existing Crowd Vetting algorithm is limited to static
networks where each robot observes the same subset of robots
over time. While dynamic networks increase the diversity of

Fig. 1. Depiction of the Dynamic Crowd Vetting algorithm. In Phase 1 robots
transition across sites while collecting trust observations of other robots they
encounter which are stored in a local trust vector. In Phase 2 robots share their
trust vector with trusted neighbors in order to improve their probability of correctly
classifying the trustworthiness of others.
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robot’s encounters, thus alluding to a greater benefit from using the
opinions of trusted neighbors, it becomes increasingly difficult to
regulate the number of trust observations every pair of robots has of
each other. This introduces new challenges, since every robot can
have a different number of observations of every other, and thus the
information shared between robots comes with different levels of
accuracy, making it difficult to arrive at any analytical performance
guarantees regarding the trust estimation. Furthermore, a naive
usage of indirect information from untrustworthy sources gives
the potential for errors to propagate through the team.

The main contribution of this paper is the development of an
algorithm, called Dynamic Crowd Vetting (DCV), that significantly
reduces the detection time by allowing legitimate robots to leverage
second-hand (indirect) opinions of trusted neighbors in dynamic
networks. Our DCV algorithm computes the trust estimation in
two phases. In Phase 1, robots transition between sites to estimate
the trustworthiness of the team, which they store in a vector called
a trust vector. The goal in Phase 1 is to accurately classify at least
some fixed subset of the team correctly. Then, in Phase 2, robots
continue transitioning between sites, while this time sharing their
opinions about other robots, i.e., their trust vector. Finally, we show
that a relatively simple majority rule algorithm for deciding trust
from shared information is enough to correct misclassifications
and stem the propagation of wide-scale misinformation as long as
each legitimate robot classifies a sufficient proportion of the team
correctly in Phase 1. Furthermore, we show that the sufficient
proportions can be characterized as a function of fundamental
graph and random walk properties. Additionally, we formally show
that as the number of robots in the team increases, the detection
time remains constant if the proportion of legitimate and malicious
robots remains constant. This is in contrast to the logarithmic
growth in the number of time-steps seen by an alternative Direct
Protocol, where robots do not leverage neighboring opinions.

II. PROBLEM FORMULATION

Consider a team of NR robots, R={1,2,...,NR}, that move
through a discrete environment composed of regions, also called
sites. The environment is a topological map modeled as an
undirected graph G=(V,E), where the vertices V={1,2,...,NV}
represent the sites, and the edges E ⊆ V × V represent paths
between sites, where the operator × represents the Cartesian
product of two sets. A robot can move from site ι to site ω if there
is an edge (ι,ω)∈E. Furthermore, robots can always remain at
a current site, i.e., (ι,ι)∈E for all ι∈V. We assume the graph G
is connected, so that there always exists a path between any pair
of sites. Robots can communicate or observe each other if they
are at the same site. The neighborhood of a robot i, denoted
by Ni(t), consists of all robots j∈R that robot i can observe at
time-step t. For the sake of analysis, we include each robot i in its
own neighborhood Ni(t). A time-step is defined as an opportunity
for a robot to make a transition between adjacent sites and observe
the robots at that site, i.e., any robot can transition to a new site
and gather new observations any time-step.

A. Background

1) Gathering Trust Observations in Dynamic Networks: In this
paper, we are interested in the class of problems where an unknown

subset of the team may be malicious, denoted by M⊂R, and
legitimate robots L =R\M, can validate information and the
legitimacy of neighboring robots by utilizing observations of one
another, which we call trust observations. A trust observation of
robot j by robot i, denoted by αi,j(t)∈ [0,1], represents a noisy,
imperfect measurement of the legitimacy of robot j. 1 We assume
that trust observations are independent for any pair (i,j) and at
any time t, and that robots can only gather observations of one
another when they are neighbors, i.e., j ∈ Ni(t). Furthermore,
while we do not make any assumptions on the distributions of
the trust observations, we impose particular assumptions on their
expectation for analytical purposes. Similar to the works in [7],
[11], [12], we assume the trust observations satisfy

E[αi,j(t) | j∈L]≥1/2+εα,

E[αi,j(t) | j∈M]≤1/2−εα,
(1)

where the value εα ∈ (0, 1/2] represents the quality of the
observation. A low value εα ≈ 0 means the observation is
completely ambiguous, while an observation with εα ≈ 1/2
gives almost certain information about the legitimacy of the
transmitting robot. The quality of the observation εα can be found
experimentally, as was done in [14] and [18], which we will
use later in Section V. In [14], each robot keeps a trust vector,
denoted by x̃i(t). The goal of the trust vector is to store the correct
legitimacy of every other robot in the team, where a 1 in the jth

entry of vector x̃i(t), denoted by [x̃i]j(t), represents that robot i
believes robot j to be trustworthy, and [x̃i]j(t) = 0 otherwise.
Since the trust observations αi,j(t) are assumed to be noisy, each
robot requires multiple observations of their neighbors in order
to arrive at some confidence in the validity of their trust vector. In
[14] the specific number of observations required by every robot
of every other is denoted by nα, and is assumed to be an arbitrary,
but given quantity. In this paper we will analytically determine the
proper number of observations nα that yields a desired success
probability 1−δ/NR when our proposed algorithm is used, for
some user-defined failure probability δ. We seek to minimize the
number of trust observations needed, as well as the time window T
required to gather them, using the Crowd Vetting Algorithm.

2) The Crowd Vetting Algorithm: The Crowd Vetting algorithm
[11] utilizes opinion dynamics and offers a way for robots to
share their trust vectors with their trusted neighbors in order to
not only reach an agreement between all legitimate neighbors
on their trust vectors, but also improve the probability that the
agreed upon trust vector is correct. However, the Crowd Vetting
algorithm in its current form is limited to the case where all robots
communicate with the same set of neighbors each time-step (static
communication network). Define the ground truth trust vector,
x∗
i , for robot i where for every robot j∈R,

[xi]
∗
j =

{
1, if j∈L,
0, if j∈M.

(2)

The goal of Crowd Vetting is for all legitimate robots to reach an
agreement on a final trust vector, xi, such that xi=x∗

i with some

1One example of such observations comes from the works in [7], [11], [12]. In
these works, the trust observations are stochastic and are determined from physical
properties of wireless transmissions.
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characterizable probability. To do so, each robot i∈L will gather
nα trust observations of every other robot and form an interim trust
vector from those observations. Then, each robot shares its interim
trust vector with its trusted neighbors, and uses majority rule
between its own and its trusted neighbors’ opinions to determine
whether or not to trust the other robots. In this paper, we extend
the Crowd Vetting algorithm to scenarios where the robots move,
and thus potentially encounter different robots each time-step.

3) Random Walks on Graphs: In this paper, our results
partially depend on the topology of the site graph, and the random
walk done by the legitimate robots as they transition between
sites. Robots performing random walks over the environment,
such as what is done in this paper, can be applicable to persistent
surveillance-type tasks where robots need to constantly visit
many different areas of the environment. Additionally, there
exists methods to control the motion of robots, i.e., no longer use
random walks, once all malicious robots are detected, such as the
work in [14]. We define a trajectory of a legitimate robot i by a
set of states, denoted χi(1),χi(2),...,χi(tf) corresponding to the
site that the robot occupied at each time-step from some arbitrary
starting time t=1 to some arbitrary finishing time t=tf . The
trajectory of a robot depends on the random walk that it performs
over the site graph. We assume that the random walks performed
by the robots are irreducible and aperiodic, leading them to have
a unique stationary distribution π. We represent the time required
for robots to gather trust observations of each other as a function
of the meeting time of the graph, denoted by Tmeet, the hitting time
of the graph, denoted by Thit, and the mixing time of the graph,
denoted by Tmix. See [19] for an intuition about these quantities.
The meeting time is defined as Tmeet=maxι,ωTmeet(ι,ω), where
Tmeet(ι,ω) is the expected time it takes for random walks starting
on nodes ι and ω to meet. We say two random walks done by
robots i and j meet if χi(κ)=χj(κ) for some time κ. The hitting
time is defined as Thit =maxι,ωThit(ι,ω), where Thit(ι,ω) is the
expected time it takes for a random walk starting on node ι to
reach node ω. The meeting time and hitting time are well-studied
Markov Chain quantities and the interested reader can find
bounds for common graphs in [20, page 169]. Additionally we
compute the hitting time and meeting time for the graphs used
in our simulations using [21, Theorem 3.1] and [22, Theorem 1],
respectively. Finally, the mixing time Tmix is the time required
for the distribution of the sites each robot occupies over time to
approximately converge to the stationary distribution π.

B. Problem Statement

In this paper we extend the Crowd Vetting algorithm to support
dynamic scenarios where a robot’s set of neighbors may change
with time. When the graph modeling the site transitions, G, is
connected, it was shown in [23] that all robots i∈L will eventually
visit every site in the graph G. This implies that any robot will
encounter all the other robots given a long enough time window,
t={t0,t0+T}, characterized by the length of time T from some
arbitrary initial time t0, since each of them will visit every site.

Problem 1. Given a desired failure probability δ and trust
observations αi,j(t) satisfying (1), design an algorithm that
reduces the length T of the time window t∈{t0,t0+T} required

for all robots i∈L to return the correct final trust vector xi with
probability at least 1−δ/NR.

III. ALGORITHMS

In order to extend the Crowd Vetting algorithm to support
dynamic scenarios we first introduce the concept of time-window
neighborhoods that capture the history of encounters between
robots over a time window T .

Definition 1 (Time-window neighborhood). A time-window
neighborhood of a robot i is defined as the union of its set of
neighbors over a time-window, T , i.e., NT

i (t)=
⋃t

κ=t−TNi(κ),
for any t>T .

In a time-window neighborhood, since the neighbors of each
robot may change each time-step, it is difficult to ensure that a
robot gathers trust observations of all others a sufficient number
of times. Next, we describe the process for estimating trust vectors
solely using each robot’s individual (direct) observations of other
robots, which we call the Direct Protocol.

A. Direct Protocol
In our previous work [14], when the robots need to estimate

the legitimacy of their neighbors, they gather trust observations
by transitioning frequently between sites, which is called the fast
transition state. In this work, we focus our analysis on this state,
and denote the transition matrix used by a robot i, by Pi. We
define the fast transition state as a lazy random walk

[Pi]ι,ω :=


1
2 , ι=ω,

1
2|{ω′|(ι,ω′)∈E}| , ι≠ω,(ι,ω)∈E,
0, otherwise,

(3)

where [Pi]ι,ω represents the (ι,ω) entry of matrixPi. We note that
other choices of transition matrices are also valid as long as the
Markov Chain is positive recurrent and aperiodic. Additionally, we
note that the transition matrix Pi is the same for all robots i∈L
since they are all performing random walks on the same site graph,
but we include the index i to clarify that it is the transition matrix
used by robot i since our later analysis is often done from the
perspective of a particular robot i∈L. Furthermore, any robot j∈
M does not necessarily use the transition matrix designed in (3).

As the robots move throughout the environment, they gather
trust observations of their neighbors. Let the vector oi,j be a
ηi,j(t)×1 vector that consists of every trust observation gathered
by robot i of robot j over the time window T , where ηi,j(t)≤T
represents the total number of observations gathered for the pair
up to time t. Then, robot i determines a value βi,j(t), known as
the trust function, from the vector oi,j as follows:

βi,j[t]=

ηi,j(t)∑
κ=1

(
[oi,j]κ−

1

2

)
, (4)

where [oi,j]κ ∈ [0,1] is the κth entry in vector oi,j ∈ [0,1]ηi,j(t).
From (1), we know thatαi,j(t)<

1
2 in expectation if j∈M, and so

over the summation in (4) we have by the linearity of expectation
[12], that βi,j(t) < 0 in expectation. Similarly, βi,j(t) > 0 in
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expectation if j ∈L. Therefore, each robot i∈L develops their
interim trust vector, x̃i(t), using the trust function βi,j(t) where

[x̃i]j(t)=

{
1, if βi,j(t)≥0,

0, if βi,j(t)<0.
(5)

The full process for estimating the legitimacy of each robot
using individual trust observations is described in Algorithm 1.
The algorithm requires robots to transition between sites for
τd =

4log(2N3
R/δ)

ε2α
Tmeet time-steps, using the transition matrix Pi

in (3), with the goal of gathering at least nα observations for every
other robot. Robots that do not gather at least nα observations
choose to not trust each other by default. We derive this time
duration τd and the number of observations nα, and show that
it leads to a success probability of 1−δ/NR in Section IV.

Algorithm 1 Direct Protocol for a robot i (Direct)
Input: time window τd (Theorem 1), transition matrix Pi in (3),
number of observations nα (Theorem 1)
Output: trust vector x̃i(t)

1: Using the fast transition matrix Pi in (3), gather trust
observations of neighboring robots for τd time-steps. Keep
track of the number of total observations ηi,j(t), gathered for
each robot j∈R over that time.

2: Compute the trust vector x̃i(t) ∈ {0, 1}NR: For every
j ∈ R compute the entry [x̃i]j(t) using (5) if the number
of observations gathered of robot j is at least nα, otherwise
[x̃i]j(t)=0. Set [x̃i]i(t)=1.

B. Dynamic Crowd Vetting Algorithm

The DCV algorithm seeks to utilize trusted neighboring
opinions in order to reduce the time τd required to achieve a
success probability of at least 1−δ/NR by requiring the robots to
only transition long enough to gather nα observations of a subset
of the network, rather than the entire network. Define the trusted
neighborhood of a robot i at time t as the set

ΘT
i (t):={j∈NT

i (t) | [x̃i]j(t)=1}. (6)

The process for running the DCV algorithm is described in
Algorithm 2. Similarly to the Direct Protocol, the algorithm
requires that every legitimate robot use transition matrix Pi

in (3). This time, the robots transition between sites for
τ=min

{
f(NR,|L|,δ)Thit,

4log(4N3
R/δ)

ε2α
Tmeet

}
time-steps in

two phases, with the goal of gathering at least nα trust
observations of a large subset of the overall team, where
f(NR,|L|,δ)= 26

(1−1/e)2nα, nα=
8

0.1ε2α
log

(
e2eNR
0.1δ|L|

)
, and e is

the Euler constant. We derive the time duration τ and number
of observations needed nα, and show that it leads to a success
probability of 1−δ/NR in Section IV.

Algorithm 2 has the robots arrive at the final trust vector faster
by running the Direct Protocol for a shorter length of time in
Phase 1, and then utilizing trusted neighboring opinions to fortify
their own in Phase 2. In this way, robots do not need to sufficiently
observe the trustworthiness of every other robot since they can
rely on trusted neighbors to give them information about robots
they have not encountered enough.

IV. ANALYSIS

We organize this section similarly to Section III. First, we
provide our theoretical analysis regarding the time required
for robots to estimate the true legitimacy of all other robots
using the Direct Protocol (Algorithm 1). Then, we provide
analysis regarding the time required for robots to estimate the
true legitimacy of all others using our proposed DCV algorithm
(Algorithm 2) and show the reduction in the time required
compared to the Direct Protocol (based on previous work [14]).

A. Direct Protocol

We start by deriving the time required for the Direct Protocol
to return the correct final trust vector x̃i(t) for all i∈L.

Theorem 1. Given a user-specified failure probability δ>0, site
topology G with meeting time Tmeet, and trust observations αi,j(t)
satisfying (1). If all legitimate robots i ∈ L use the Direct
Protocol (Algorithm 1) with the transition matrix Pi in (3),
τd=

4log(2N3
R/δ)

ε2α
Tmeet time-steps, and nα=log(2N3

R/δ)/(2ε2α)

observations of every other robot, then the trust vector x̃i(t) will
be correct, i.e., x̃i(t)=x∗

i in (2), for all i∈L with probability at
least 1− δ

NR
.

Proof: Consider any legitimate robot i∈L. By Lemma 2
in Appendix A, robot i will correctly classify another
robot j with probability at least 1−δ/(2N3

R) if it gathers
nα=log(2N3

R/δ)/(2ε2α) trust observations of robot j.
If j∈M, then there are two cases: 1) if robot i meets robot j

at least nα times, then the probability of correctly classifying
robot j is at least 1−δ/(2N3

R). 2) if robot i meets robot j
fewer times, then by default, robot i will correctly decide to
not trust robot j. Taking the Union bound [24] over all pairs of
robots in L×(L∪M) gives a probability of failure of at most
|L×(L∪M)|· δ

2N3
R

.
It remains to argue that robot i will meet any robot j ∈L at

least nα times in 4log(2N3
R/δ)

ε2α
Tmeet time-steps. The probability of

robot i and robot j meeting after 2Tmeet time-steps is at least 1/2
by Markov’s inequality [25, Chapter 3.1], regardless of the sites
that they start on. The expected number of meetings µ after

Algorithm 2 Dynamic Crowd Vetting (DCV) for a robot i
Input: time window τ (Proposition 1), transition matrix Pi in (3),
number of observations nα (Proposition 1)
Output: final trust vector xi

Phase 1:
1: Compute the interim trust vector x̃i(t) ∈ {0,1}NR using

Direct(τ , Pi, nα)

Phase 2:
2: Transition for another τ time-steps while gathering the

interim trust vector x̃j(t) from all trusted neighbors
j∈{Ni(t)|[x̃i]j(t)=1}.

3: Compute the final trust vector xi ∈ {0, 1}NR: Assign
each entry [xi]k by majority rule, i.e., [xi]k = 1 if(∑

j∈Θτ
i (t)

[x̃j]k(t)
)
≥ |Θτ

i (t)|
2 , and [xi]k=0 otherwise.
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4log(2N3
R/δ)

ε2α
Tmeet=8nαTmeet time-steps is at least µ≥2nα. Thus,

by the Chernoff bound (Proposition 2 in Appendix A) setting
γ=1/2, we get that for the number of meetings, X,

P[X≤(1−γ)µ]=P[X≤nα]≤e−
γ2µ
2 ≤e−

nα
4 ≤ δ

2N3
R
. (7)

Taking the Union bound over all pairs of legitimate robots gives
a failure probability of at most |L×L|· δ

2N3
R

.
Summing the failure probabilities corresponding to

misclassifying a robot and gathering an insufficient number of trust
observations gives |L×(L∪M)|· δ

2N3
R
+|L×L|· δ

2N3
R
≤ δ

NR
.

We note that the bound of Theorem 1 is tight in the following
sense: there exists an infinite class of graphs such that the required
time for all pairs of robots to meet Ω(logNR) times is at least
Ω(Tmeet logNR). An example of this is the line graph over
different numbers of sites.

B. Dynamic Crowd Vetting algorithm

Next we present the main result of this paper, which is the time
required for the DCV algorithm to return the correct final trust
vector xi for all i∈L. First, let

q=
δρ1
e2e

|L|
NR

, nα=
8

ρ1ε2α
log

(
1

q

)
, (8)

f(NR,|L|,δ)= 26

(1−1/e)2
nα. (9)

Theorem 2. Given a user-specified failure probability δ > 0,
site topology G with hitting time Thit and meeting time Tmeet,
and trust observations αi,j(t) satisfying (1). If all legitimate
robots i ∈L use DCV (Algorithm 2) with the transition matrix
Pi in (3) and nα observations given in (8), then the final trust
vector xi will be correct, i.e., xi=x∗

i in (2), for all i∈L in time
O(min{Thit log(

NR
δ|L|),Tmeet log(

NR
δ )}) with probability at least

1− δ
NR

.

To prove Theorem 2, we start by defining an event E which,
when it holds, implies that all final trust vectors are correct
deterministically. The event E consists of four conditions where
a certain proportion, denoted by ρ1,ρ2,ρ3,ρ4∈(0,1], of the
legitimate robots satisfies the condition. Let E be the event that for
every legitimate robot i∈L, all of the following properties hold:

1) Robot i meets at least (1 − ρ1)|L| legitimate robots at
least nα times in Phase 1.

2) Robot i misclassifies at most ρ2|L| legitimate robots in
Phase 1.

3) Robot i misclassifies at most ρ3|L| malicious robots in
Phase 1.

4) Robot i meets at least (1−ρ4)|L| legitimate robots at least
once in Phase 2.

The four properties of event E are visually depicted in Fig. 2. We
prove Theorem 2 by proving that when event E holds, all final
trust vectors are correct, which we prove in Lemma 1, and the
probability that event E holds is at least 1− δ/NR, which we
prove in Proposition 1.

Lemma 1. Assume that event E holds and that 1>3ρ2+ρ3+ρ4,
where ρ2, ρ3, ρ4 ≥ 0. If the DCV algorithm is used with

parameter τ=min
{
f(NR,|L|,δ)Thit,

4log(4N3
R/δ)

ε2α
Tmeet

}
where

f(NR,|L|,δ) is given in (9), then any legitimate robot i classifies
any other robot j correctly.

Proof: We analyze the process that robot i ∈ L uses to
determine the trustworthiness of another robot j by taking
information from each trusted neighbor k ∈ Θτ

i (t)\{j}. We
distinguish between two cases for any robot j.

For the first case, assume robot j is legitimate. Let FL+
i be

the number of legitimate robots that robot i∈L trusts, that also
trust robot j, and that robot i met in Phase 2. This represents the
number of legitimate robots that advocate for robot i’s correct
classification of robot j after Phase 2. For a legitimate robot k not
to be counted in FL+

i , one of three things must have happened:
1) robot i misclassified robot k, 2) robot k misclassified robot j,
or 3) robot k did not meet robot i in Phase 2. We have, by Union
bound, FL+

i ≥|L|−2ρ2|L|−ρ4|L|=(1−2ρ2−ρ4)|L|.
Let FL−

i be the number of legitimate robots that robot i trusts,
that do not trust robot j, and that robot i met in Phase 2. This
represents the number of legitimate robots that advocate for
robot i’s incorrect classification of robot j after Phase 2. We have,
by Union bound, FL−

i ≤ρ2|L|.
Finally, let FM−

i be the number of malicious robots that robot i
trusts that claim that robot j is malicious. This represents the num-
ber of malicious robots that advocate for robot i’s incorrect classi-
fication of robot j after Phase 2. We can assume that no malicious
robot communicates that it trusts robot j. We have FM−

i ≤ρ3|L|.
The sufficient condition for robot i to classify robot j correctly

would be for the number of robots giving robot i the correct
information to be greater than the number of robots giving robot i
the wrong information, i.e., FL+

i >FL−
i +FM−

i . It follows
that we have FL+

i >FL−
i +FM−

i as long as 1>3ρ2+ρ3+ρ4.
Hence, robot i classifies robot j correctly for any valid choice
of ρ2, ρ3, and ρ4. The process of trusted robots k ∈Θτ

i (t)\{j}
sharing information with robot i to help robot i make a decision
about robot j is depicted in Fig. 3.

For the second case, assume that robot j is malicious. Let FL+
i

Fig. 2. Depiction of the regions specified by event E. Of all legitimate and mali-
cious robots, the proportion that robot i meets at least nα times during Phase 1 are
represented by Property 1 in purple. Robot i will misclassify some of the legitimate
robots after Phase 1, represented by Property 2 in green. This can happen if robot i
misclassifies another robot having met it at least nα times, or by classifying it as
malicious by default having not met it at least nα times. Additionally, robot i will
misclassify some of the malicious robots after Phase 1, represented by Property 3
in orange. Property 4 corresponds to the robots that robot i meets in Phase 2, which
is similar to the region represented by Property 1 in purple, with the distinction
that robots only need to meet once in Phase 2 to be included in that region.
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Fig. 3. The robots k share information with robot i about their opinion of robot j
to help robot i determine the trustworthiness of robot j. Among the robots k,
some number of them (FL+

i ) will be legitimate and give robot i the correct
information, some number (FL−

i ) will be legitimate but misclassify robot j, and
therefore give the wrong information, and some number (FM−

i ) will be malicious
and purposely share the wrong information. Classification is done correctly if
FL+
i >FL−

i +FM−
i .

be the number of legitimate robots that robot i trusts, that classify
robot j as malicious, and that robot i met in Phase 2. We have,
FL+
i ≥|L|−2ρ2|L|−ρ4|L|=(1−2ρ2−ρ4)|L|.
Let FL−

i be the number of legitimate robots that robot i trusts,
that classify robot j as legitimate, and that robot i met in Phase 2.
We have, FL−

i ≤ρ2|L|.
Finally, let FM−

i be the number of malicious robots that robot i
trusts that claim that robot j is legitimate. We have FM−

i ≤ρ3|L|.
Clearly, we have FL+

i >FL−
i +FM−

i as long as
1>3ρ2+ρ3+ρ4. Hence, robot i classifies robot j correctly for
any valid choice of ρ2, ρ3, and ρ4.

Proposition 1. Let |L| ≥ 1, and choose ρ1,ρ2,ρ3,ρ4≥0
such that 1>3ρ2+ρ3+ρ4 and ρ2,ρ3≥2ρ1. Given trust
observations αi,j(t) satisfying (1), if all legitimate robots i∈L use
the transition matrix Pi in (3), then, running DCV (Algorithm 2)
with parameters τ=min

{
f(NR,|L|,δ)Thit,

4log(4N3
R/δ)

ε2α
Tmeet

}
,

and nα, where f(NR,|L|,δ) is given in (9) and nα is given in (8),
ensures that event E holds with probability at least 1− δ

NR
.

Remark: Before we prove the proposition, note that
if |M|=O(|L|), then the first term of τ is O(Thit) since
NR/|L| = O(1), whereas the second term, regardless of the
fraction of legitimate robots, is O(Tmeetlog(NR)).

Proof: Without loss of generality, we will assume that the
first term of τ (the one that is a function of the hitting time) is the
minimum. Otherwise, the proof trivially follows from Theorem 1
with success probability 1−δ/(2NR). Consider the trajectory of
any legitimate robot i given by χi(1),χi(2),...,χi(tf) from some
arbitrary starting time t=1 to some arbitrary finishing time t=tf .
We show that each property of event E holds with probability
at least 1−δ/(4NR). By doing so, a Union bound over all 4
properties yields a total success probability of at least 1−δ/NR.
We start with Property 1.

a) Property 1: We start by claiming that any other legitimate
robot j meets robot i after 4Tmix+Thit time-steps with probability
at least (1 − 1/e)2, where e is the Euler constant. To show
this, note that, by [26, Lemma A.5] after 4Tmix time-steps, the
random walk done by robot j follows the stationary distribution π
with probability at least 1− 1/e. Then, by Lemma 3 after Thit

time-steps robot j does not meet robot i with probability at
most (1−1/Thit)

Thit ≤1/e, where we used that (1+x/n)n≤ex

for n≥1,|x|≤n. This proves the claim.
Now, we can divide time into periods of length 4Tmix+Thit and

repeat this trial noting that for each trial we have independence.
By, Eq. (10.35) in [27], we have 4Tmix + Thit ≤ 13Thit.
Let X be the number of meetings between two legitimate
robots. After f(NR, |L|, δ)Thit time-steps, the expected
number of meetings between two legitimate robots is
µ≥(1−1/e)2f(NR,|L|,δ)/13=2nα. By the Chernoff bound
(Proposition 2 in Appendix A) setting γ = 1/2, we get that
the probability that there are fewer than nα meetings between
legitimate robots is at most

P[X≤nα]≤P
[
X≤ µ

2

]
≤e−γ2µ/2

≤exp

(
−2nα

8

)
≤q2/ρ1.

(10)

Let Yj be the indicator variable that is 1 if legitimate robot j
meets legitimate robot i less than nα times. It is important
to realize that for any j,k ≠ i and j ≠ k that Yj and Yk are
independent since we have fixed the trajectory of robot i
ahead of time. Using this crucial independence, we can bound
Y =

∑
j∈L\{i}Yj, i.e., the number of legitimate robots that meet

robot i fewer than nα times. To do so, we apply Proposition 3 (c.f.
Appendix A) with p=q2/ρ1 . Note that we can apply Proposition 3
since p≤ρ21/exp(2e(1−ρ1)). We have

P[Y ≥ρ1|L|]≤pρ1|L|/2=q|L|≤ δ

4|L|·NR
, (11)

by Lemma 4 (c.f. Appendix A). Taking the Union bound over
all legitimate robots |L| proves that Property 1 of event E holds
with probability at least 1−δ/(4NR).

b) Property 2: Let L1 be the set of legitimate robots that
met robot i at least nα times. By Lemma 2, since each robot j∈L1

met robot i at least nα times, each robot j∈L1 will classify robot i
correctly with probability at least 1−q16/ρ1 . Now let p=q16/ρ1 .
In order for ρ2|L| legitimate robots to be misclassified it must
hold that at least ρ1|L| robots among the |L1| are misclassified.

The probability that more than ρ1|L| are misclassified, by
Proposition 3 applied with ρ = ρ1|L|

|L1| and n = |L1|, with
p≤ρ21/exp(2e(1−ρ1)), is, by Lemma 4, at most

pρ1|L|/2=q8|L|≤ δ

4|L|·NR
. (12)

Therefore, of all the successful meetings of Property 1:
only ρ1|L| of them are misclassified with probability at
least 1−δ/(4|L|·NR). Thus, the total number of robots that
misclassified robot i are the ones that met robot i fewer than
nα times, and the ones that met robot i at least nα times but
misclassified it. This gives us ρ1|L|+ρ1|L|=ρ2|L|. Taking the
Union bound over all |L| robots yields Property 2 with probability
at least 1−δ/(4NR).

c) Property 3: To maximize the number of malicious robots
that are classified as legitimate, we can assume without loss of
generality that each robot j∈M meets robot i at least nα times.
By Lemma 2, robot i will misclassify each malicious robot j∈M
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with probability at most p=q16/ρ1 . Without loss of generality,
assume |M|≥1. We can apply Proposition 3 with ρ=ρ3|L|/|M|
and n= |M|, with p≤ρ21/exp(2e(1−ρ1)). Therefore, we get that
the probability that more than ρ3|L|=ρ3

|L|
|M| |M|malicious robots

are misclassified is at most pρ3|L|/2=q16|L|≤δ/(4|L|·NR), by
Lemma 4. Taking the Union bound over all |L| legitimate robots
completes the proof of Property 3.

d) Property 4: The proof of Property 4 is the same as
Property 1 since nα≥1. Taking a Union bound over all 4
properties yields a total success probability of at least 1−δ/NR.

From Lemma 1, we have that event E leads to all legitimate
robots returning the final trust vector correctly. Furthermore, from
Proposition 1, we have that event E holds with probability at
least 1−δ/NR, thus proving Theorem 2. Note that the bound of
Theorem 2 is tight in the following sense: there exists an infinite
class of graphs for which the required time matches the required
time of Theorem 2 up to constants. In some graphs, e.g., a star
of sufficient size NV , it requires Ω(Tmeet logNV) = Ω(logNV)
rounds to meet. On the other side, on an NV × NV grid for
example, it requires Ω(Thit)=Ω(N2

V) rounds.
It is also worth noting that after O(Thit) time steps, the

probability of failure is exponentially small in |L|. Since we take
the minimum of Thit and Tmeet multiplied with logNR, we cannot
hope to always get an exponentially small failure probability.

V. SIMULATIONS

To evaluate our proposed algorithm, we include simulation
studies that investigate the time saved for determining the correct
trust vectors by utilizing trusted neighboring opinions in our
proposed method compared to the Direct Protocol. We adapt
the model for trust observations shown in (1), and use εα=0.35
which was found experimentally in [14]. In Fig. 4, we varied
the number of robots from 4 to 128 and checked the average
number of time-steps required for legitimate robots using the
Direct Protocol (grey) and our proposed DCV protocol (blue)
to determine the correct trust vectors. We set |L|= |M|=NR/2
for each simulation, and ran the simulation 100 times for each
value of NR. We also tested with different topologies, shown in
the top left of each plot in Fig. 4 using 9 sites for each topology.
The top left plot used a grid site topology, and the top right used
a line topology. The bottom left plot considered a random graph
generated using the Barabási-Albert model where k<NV sites
begin connected in a line, and the remaining sites are added one at
a time with edges connecting them to up to k of the previous sites,
chosen at random with k=3. The bottom right plot considered
a random graph generated using the Erdös-Rényi model where an
edge is assigned between each pair of sites with probability 0.2.

Regardless of the site topology, our proposed DCV algorithm
takes significantly fewer time-steps to achieve success compared
to the Direct Protocol. It can also be seen that the difference
between the number of time-steps required for each protocol
increases as the number of robots increases, showing that the DCV
algorithm performs better compared to the Direct Protocol as the
team size is scaled up. We note that in the left-most plots (for the
grid and Barabási-Albert topologies) the number of time-steps
required in simulation using the DCV algorithm actually decreases
slightly as the number of robots increases. This is due to the fact

Fig. 4. Number of time-steps required for robots to find the correct final trust
vectors using our proposed DCV protocol in simulation (blue) compared to the
Direct Protocol (grey) and what we predict by theory for the DCV algorithm
(purple). The number of robots is varied along 4 different site topologies each
consisting of 9 sites: grid (top left), line (top right), Barabási-Albert (bottom left),
and Erdös-Rényi (bottom right). As the number of robots increases, the ratio of
legitimate to malicious robots remains constant.

that we terminate simulations when the correct final trust vector is
found. In Theorem 2 we show that it takes constant time to find the
correct trust vectors using DCV as the number of robots increases,
but that the probability of finding the correct trust vectors increases
as the number of robots increases. This phenomenon can cause the
decreases evident in the two left-most plots in Fig. 4. Additionally,
we include lines that show the time-steps required that is predicted
by our theory (purple), i.e., from Theorem 2 using δ=0.1. The
hitting time for different site topologies was computed using [21,
Theorem 3.1], and the meeting time was computed using [22,
Theorem 1]. The hitting and meeting times for each of the 100
topologies generated using the random graph generation models
(Barabási-Albert model and Erdös-Rényi model) were averaged
in order to compute the time required predicted by our theory for
those cases. From Fig. 4 it can be seen that the time-steps required
that is predicted by theory closely matches (up to constants) the
actual number found in simulation.

In Fig. 5, we varied the number of sites in a grid topology (left),
and the number of legitimate versus malicious robots (right). The
left plot used NR=32 robots, with |L|= |M|=NR/2. The right
plot used a grid site topology with NV =9 sites, and a constant
NR=32 robots, but varied the number of legitimate robots from
|L|=2 to |L|=30 with |M|=NR−|L|. Both plots show that the
benefits of the DCV algorithm over the Direct Protocol increase
as the number of sites increases (left) and the ratio of legitimate
to malicious robots increases (right).

VI. CONCLUSION

In this paper, we presented an algorithm for utilizing the
opinions of trusted neighbors to quickly and effectively determine
the true legitimacy of neighboring robots using trust observations.
We show that not only does our algorithm help legitimate robots
reach an agreement on their trust vectors, but it also reduces the
time required to determine the trust vectors correctly by reducing
the total number of time-steps that each robot has to individually
gather observations for.
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Fig. 5. Number of time-steps required for robots to find the correct final trust
vectors using our proposed DCV protocol in simulation (blue) compared to the Di-
rect Protocol (grey) and what we predict by theory for the DCV algorithm (purple).
The number of sites is varied along a grid site topology (left), and the number of
legitimate and malicious robots is varied using a fixed grid with NV=9 (right).
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APPENDIX

A. Auxiliary Claims

Lemma 2 (Upper bound [11]). If a robot i ∈ L receives
nα=

log(1/δ)
2ε2α

trust observations from another robot j, it will know
with probability at least (1−δ) whether robot j is legitimate or
malicious by simply relying on the majority of the observations:

P

[
nα∑
κ=1

(
[oi,j]κ−

1

2

)
>0

∣∣∣∣ j∈L

]
≥1−δ,

P

[
nα∑
κ=1

(
[oi,j]κ−

1

2

)
<0

∣∣∣∣ j∈M

]
≥1−δ.

(13)

Proposition 2 ([25]). Let X1,...,Xn be independent Bernoulli
random variables with X =

∑n
i=1Xi and µ=E[X]. Then, for

any 0<γ<1, P[X≤(1−γ)µ]≤e−γ2µ/2.

Lemma 3 ([28, Theorem 1.3]). For any t ∈ N \ {0} and any
sequence χi(1),χi(2), ... ,χi(t) ∈ V we have that for any lazy
random walk Pj(κ) done by a robot j for κ∈{1,...,t} starting
from the stationary distribution π, that

P[∀κ,χj(κ)≠χi(κ)]≤(1−1/Thit)
κ
.

The following is consequence of [11, Theorem 4] and Equation
10 of [29].

Proposition 3. Let Y =
∑n

i=1Yi be the sum of n independent
and identically distributed random variables with P[Yi=1]= p
and P[Yi=0]=1−p with p≤ρ2/exp(2e(1−ρ). We have for any
ρ∈(0,0.8] that

P[Y ≥ρn]≤pρn/2.

Lemma 4. Consider the notation of Lemma 1 and Proposition 1.
We have, q|L|≤ δ

4NR|L| .

Proof: The proof can be found in our extended version [30].
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