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Abstract— Multi-agent systems outperform single agent in
complex collaborative tasks. However, in large-scale scenarios,
ensuring timely information exchange during decentralized task
execution remains a challenge. This work presents an online
decentralized coordination scheme for multi-agent systems
under complex local tasks and intermittent communication
constraints. Unlike existing strategies that enforce all-time or
intermittent connectivity, our approach allows agents to join
or leave communication networks at aperiodic intervals, as
deemed optimal by their online task execution. This scheme
concurrently determines local plans and refines the commu-
nication strategy, i.e., where and when to communicate as a
team. A decentralized potential game is modeled among agents,
for which a Nash equilibrium is generated iteratively through
online local search. It guarantees local task completion and
intermittent communication constraints. Extensive numerical
simulations are conducted against several strong baselines.

I. INTRODUCTION

Coordination for multi-agent systems (MAS) with tempo-
ral logics is gaining attention, due to its intuitive framework
to describe and coordinate complex tasks, like surveillance
and search-rescue missions [1]–[3]. Correct-by-design meth-
ods are proposed to synthesize both discrete plans and
continuous control strategies for each agent. Furthermore,
inter-agent communication is crucial in facilitating real-
time information exchange and collaborative coordination.
However, existing approaches either assume fully-connected
communication, or sacrifice task efficiency for communica-
tion. Instead, our work focuses on coordinating MAS under
temporal logic tasks and communication constraints, such
that task performance can be guaranteed alongside sufficient
team-wise communication.

Temporal logics, like linear temporal logic (LTL), serve
as a formal language for complex high-level task description
in MAS. Discrete plans are synthesized via off-the-shelf
model-checking algorithms using workspace abstraction and
temporal logic tasks [4], [5]. Two common formalisms
exist for assigning temporal tasks. One decomposes global
tasks into local sub-tasks, assigned to individual agents in
a top-down manner [6], [7]. The other adopts a bottom-
up approach, assigning individual tasks to agents [8], [9],
and necessitating real-time coordination. Our work adopts
the bottom-up formalism as each agent is initially assigned
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specific local LTL tasks, entailing collaboration and real-time
information exchange.

As described earlier, communication is vital in MAS,
enabling behavior coordination and real-time information
sharing. Related literature categorizes communication into
all-time and intermittent types. The former requires constant
agent connectivity, often managing network connectivity
through graph theory [10]–[14]. These approaches either
preserve initial links [11] or allow for link additions and
removals [13] while ensuring network connectivity. However,
they usually neglect local tasks for agents, focusing solely
on maintaining connectivity. Our earlier work addresses both
connectivity constraints and local temporal tasks [14], which
however scarifies greatly the efficiency of task execution
as all agents move as a fixed topology to accomplish
local tasks. Therefore, the intermittent communication has
emerged as an alternative solution [15]–[17], where the
communication network is disconnected at most of the
time. Most recent methods propose decentralized pair-wise
communication protocols enabling communication among
pairs or subgroups of the agents only when necessary. In
other words the communication constraints are much more
relaxed, thus enhancing efficiency of task execution. How-
ever, these methods usually impose fixed communication
schedules [16], or communication at predetermined locations
[9]. Furthermore, due to infrequent network connections,
real-time information propagation faces delays, impacting
collaborative state estimation and data fusion processes.

This work introduces an online decentralized coordination
scheme for MAS with complex local tasks and intermit-
tent team-wise communication constraints. The agents are
assigned complex local tasks expressed as LTL formulas
involving their motion and actions. Simultaneously, the team
is required to maintain connectivity for at least Dc during
each time interval Tc, known as the pTc, Dcq constraint,
to facilitate timely information exchange. To satisfy both
local tasks and communication constraints, we formulate a
constrained optimization problem encompassing task execu-
tion and communication strategies. Our proposed method
utilizes a decentralized potential game framework for agents
to optimize where and when to communicate as a team under
the pTc, Dcq constraint. Through iterative online processes, a
Nash-stable solution is generated recursively, while achieving
a balance between local task efficiency and intermittent com-
munication. The overall scheme is demonstrated by extensive
numerical simulations against several baselines. The main
contribution is two-fold: i) the formulation of a novel task
coordination problem under team-wise intermittent commu-
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nication constraints; ii) the proposed online decentralized
coordination scheme for task execution and team-wise com-
munication, which ensures both the satisfaction of all local
tasks and a timely information propagation across the team.

II. PRELIMINARIES

A Linear Temporal Logic (LTL) formula consists of a set
of atomic propositions Ψ and several boolean and temporal
operators [18]: ϕ ::“ true |ψ |ϕ1 ^ ϕ2 |  ϕ | © ϕ |ϕ1Uϕ2,
where  (negation), ^ (conjunction) are standard boolean
connectives and © (next), U (until) are temporal operators.
Besides, the derivations of other useful operators, such as
♦ (eventually), l (always), and the semantics of LTL are
omitted here due to limited space. Particularly, syntactically
co-safe LTL (sc-LTL) is a subclass of LTL without the
operator l, and requiring that the negation operator  
appears only in front of atomic propositions [19]. In addition,
the words that satisfies an LTL formula ϕ over Ψ can
alternatively be captured through a Nondeterministic Büchi
Automaton (NBA), denoted by Aϕ “ pQ, 2Ψ, δ, Q0, F q,
where Q is a finite set of states; 2Ψ is a power set of all
alphabets; δ : Q ˆ 2Ψ ˆ Q is a transition relation; Q0 and
F Ď Q is the set of initial and accepting states.

III. PROBLEM FORMULATION

Consider a team of N robotic agents coexisting in a 2D
workspace with a cluster of obstacles. Each agent i P N fi

t1, . . . , Nu can only traverse within the free space Z P R2

and employs the unicycle dynamics

9xi “ vi cos pθiq , 9yi “ vi sin pθiq , 9θi “ wi, (1)

where piptq “ pxiptq, yiptqq P R2 and θiptq P p´π, πs are
the central position and orientation of agent i at time t ě 0.

A. Local Task Specification

All agents can navigate within the free space Z and
perform various actions. There is a set of regions of interest
with different properties for each agent i P N , denoted
by Πi “ tπi,1, ¨ ¨ ¨ , πi,Mi

u, Mi ą 0, which is assigned and
known a priori. Besides, each agent i is capable of several
actions Ai “ tai,0, ai,1, . . . , ai,Li

u, Li ą 0, where ai,0
reflects none of actions. The duration of each action is
given by the function Di : Ai Ñ Rě0. With a slight
abuse of notations, we denote the set of atomic propositions
by Ψi fi tπi,m^ai,l, @πi,m P Πi, @ai,l P Aiu, over which a
high-level local task for agent i can be specified as the LTL
formula: ϕi fi l♦pϕsi q, where ϕsi is a co-safe LTL formula
as defined in Sec. II. The task ϕsi can be satisfied in finite
time, while ϕi requires ϕsi to be satisfied infinitely often.

B. Communication Constraint

To facilitate information exchange during task execution,
agents are required to communicate with others sufficiently
often. However, their communication is constrained by the
relative distance, i.e., two agents i, j P N can only establish
communication at time t ě 0 when dijptq “ }piptq ´
pjptq}2 ď R, where R ą 0 is the bounded communi-
cation range and uniform among all agents. Consequently,

the communication network is defined as a time-varying
graph Gptq fi pN , Eptqq, where Eptq fi tpi, jq | dijptq ď
Ru is the time-varying edge set. Thus, the team N can
perform communication at time t ě 0, if the underlying
graph Gptq is connected. Moreover, the team N is said to
have sufficient communication with pTc, Dcq, denoted by

N com
„ pTc, Dcq, (2)

if there exists t1 P rrTc, pr ` 1qTcq, @r P N, such that Gptq
is connected, @t P rt1, t1 `Dcq, where Tc ą Dc ą 0.

C. Performance of Task Plan

Particularly, the complete plan Γi of agent i P N is an
infinite sequence of task states, combining the motion path
with local actions performed at specified regions. Moreover,
let tsi fi tsi,1 ¨ ¨ ¨ t

s
i,k ¨ ¨ ¨ be the time sequence when ϕsi is

satisfied during the execution of plan Γi, i.e., ϕsi is performed
for the k-th time during rtsi,k, t

s
i,k`1q with tsi,k`1 ą tsi,k ą 0,

@k P N`. Thus, the makespan of agent i to perform co-
safe LTL task is given by ξi fi maxkPN` tt

s
i,k`1 ´ tsi,ku,

which is the maximum interval between two consecutive
instances in tsi . It actually measures the bottleneck efficiency
of accomplishing the co-safe task, by which, the performance
of the whole team can be evaluated.

D. Problem Statement

Problem 1. Consider a team of N agents with dynamics (1)
and bounded communication range R. Each agent i P N
is assigned an LTL task ϕi. Design an integrated planning
scheme for agents to synthesis their complete plans Γi, i P
N , such that

min
tΓi, iPNu

ÿ

iPN
ξi,

s.t. ϕi is satisfied, @i P N ,
N com

„ pTc, Dcq,

(3)

indicating that local tasks and communication constraints are
satisfied, meanwhile the sum of makespan is minimized. �

IV. INTEGRATED PLANNING OF LOCAL TASK AND
INTERMITTENT COMMUNICATION

In this work, we propose an online integrated plan and
execution scheme, which mainly contains three parts: i) the
offline synthesis of local plan by each agent, ii) the online
coordination of intermittent communication as a team, and
iii) the hybrid execution of local plans and communication.

A. Local Plan Synthesis

To begin with, each agent i P N synthesizes its lo-
cal discrete plan that satisfies its LTL task ϕi. Since ϕi

is independent among the agents, the local plans can be
synthesized locally without coordination. Similar to our
previous work [9], the complete model of agent i that com-
bines motion and actions among the regions of interest Πi

can be derived as a finite transition system, denoted by
Ti fi pΠ1i, Ñ

1
i, Π1i,0, Ψi, Li, T

1
i q, where Π1i “ Πi ˆ Ai

is the set of composed states with π1i,m̃ “ xπi,m, ai,ly P
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Π1i, ÑiĎ Π1i ˆ Π1i is the transition relation such that
pxπi,m, ai,ly, xπi,n, ai,hyq PÑi if two conditions hold: i)
there is a path from πi,m to πi,n and ai,h “ ai,0, or ii) πi,m “
πi,n and ai,l, ai,h P Ai; Π1i,0 Ă Π1i contains the initial states;
Ψi is the set of atomic propositions; Li : Π1i Ñ 2Ψi is the
labeling function, and T 1i :ÑiÑ Rě0 approximates the time
cost of each transition, measured by

T 1i pπ
1
i,m̃, π

1
i,ñq “ Tipπi,m, πi,nq `Dipai,hq, (4)

where π1i,m̃ “ xπi,m, ai,ly and π1i,ñ “ xπi,n, ai,hy,
Tipπi,m, πi,nq estimates the time cost of traversing the path
from πi,m to πi,n by the turn-and-forward technique as in [9],
and Dipai,hq is the duration time of action ai,h.

Given the complete model Ti, the local plan of agent i can
be synthesized via the automaton-based model-checking al-
gorithms, see [18]. More precisely, the synchronized product
automaton between Ti and the NBA Aϕi associated with ϕi

is constructed, denoted by Pi “ TiˆAϕi
. Then an accepting

run of Pi is synthesized with the prefix-suffix structure τi “
τi,prepτi,sufq

ω , where τi,pre “ π1i,0π
1
i,1 ¨ ¨ ¨π

1
i,ki´1 is the pre-

fix that executed only once, and τi,suf “ π1i,ki
¨ ¨ ¨π1i,Ki

, 1 ď
ki ď Ki is the suffix that repeated infinitely often, which
contains at least one state that is acceptable for local task ϕi

Consequently, the makespan of agent i over infinite horizon
is equivalent to the total time cost of τi,suf, calculated
by ξi “ T 1i pπ

1
i,Ki

, π1i,ki
q`

řKi´1
k“ki

T 1i pπ
1
i,k, π

1
i,k`1q. Therefore,

the optimal local plan τi, can be found via a nest-Dijkstra
shortest path algorithm, i.e., a loop with minimum cost that
contains at least one accepting state. For more algorithmic
and implementation details, please refer to [18].

However, the local plan are synthesized without consider-
ing the communication constraints in (2). In other words,
if these plans are executed blindly, the agents can only
communicate pair-wise by chance rather than an intermittent
full connection, which would mostly violate the constraint
of sufficient communication.

B. Online Coordination of Intermittent Communication

In this section, we design an approach for all agents to
schedule communication events including where and when
to communicate as a team. First, the Prob. 1 is reformulated
as a combinatorial optimization w.r.t. the communication
events in finite horizon. Under this formulation, a potential
game is designed for which the concept of Nash equilibrium
is introduced. Then, a decentralized coordination scheme is
proposed to find a communication strategy that satisfies the
Nash-stable condition.

1) Problem Re-formulation: For each agent i P N , the
complete plan Γi is generated by scheduling communication
events properly into the local plan τi synthesized in Sec IV-
A. The strategy for agent to attend communication is a 2-
tuple si fi pzi,c, hiq, where zi,c P Z and hi P N` are the
location and the index of subtask in plan τi, which indicates
that the agent will move to zi,c for communication after the
hi-th task in local plan. The team strategy is the compilation
of all local strategies, denoted by S “ tsi, i P N u.

To distinguish the communication events, we use r P N
as the round of communication, where r “ 0 indicates that
all agents are connected at t “ 0. Therefore, the complete
plan Γi can be split into the concatenating form, denoted
by Γi fi τ1

i ¨ ¨ ¨ τ
r
i ¨ ¨ ¨ , r P N`, where τ ri fi τirl

r
i : hri s s

r
i

combines a segment of local plan τi from index lri to hri
with hri ě lri ě 1, and the communication strategy sri .
Particularly, there exists lr`1

i “ hri ` 1, r P N` and l1i “ 1.
Furthermore, the associated time sequence of plan τ ri is
generated by tri “ ti,lri ti,lri`1 . . . ti,hr

i
ti,sri . More importantly,

the additional time to attend communication using strategy sri
is computed by

ξi,sri “ δi,sri ` pt
r
c ´ ti,sri q, (5)

where δi,sri is the extra traveling time calculated by δi,sri “
Tipπ

hr
i

i , zri,cq ` Tipz
r
i,c, π

hr
i 1̀

i q ´ Tipπ
hr
i

i , π
hr
i`1

i q, where πhr
i

i

and π
hr
i 1̀

i are the task locations before and after com-
munication event; while trc “ maxiPN tti,sri u is the time
when communication actually takes place, and trc ´ ti,sri is
the waiting time for communication. Here, we ignore the
communication duration Dc, for it is constant among agents.
Moreover, the communication topology is constructed by
collecting all locations Zr

c “ tz
r
i,c, i P N u in the strategies.

It is denoted by GpZr
c q “ pN , EpZr

c qq, where EpZr
c q “

tpi, jq | }zri,c ´ zrj,c} ď Ru is the set of connected edges.
Based on the above descriptions, the considered Prob. 1 can
be reformulated as follows.

Problem 2. Design a coordination scheme for the team N
to find the optimal strategy set Sr, by solving the following
combinatorial optimization problem for each round r P N`:

min
Sr

ÿ

iPN
ξi,sri ,

s.t. GpZr
c q is connected,

trc P rrTc, pr ` 1qTcq,

(6)

which indicates that the sum of the additional time caused
by communication is minimized, while the constraints of
intermittent communication are fulfilled. �

2) Potential Game with Nash Equilibrium: To balance the
optimality and efficiency of the solution, we model Prob. 2
as a potential game among the agents as inspired by [20].
Formally, a game is characterized by Θ fi pN, SN , uq,
where N is the number of agents as players; SN “ S1 ˆ

¨ ¨ ¨ˆSN is the set of team strategies defined over the strategy
set Si of each agent i P N ; and u : S ˆ SN´1 Ñ R is the
cost function. Each agent aims to minimize the cost ui by
changing its strategy si within the strategy set Si. Then, an
exact potential game is defined as follows.

Definition 1. A game Θ “ pN, S, uq is an exact potential
game, if there is a potential function Φ : SN Ñ R, such that

ups1i, S´iq ´ upsi, S´iq “ ΦpS1q ´ ΦpSq, (7)

@si, s
1
i P Si, @S´i Ă SN´1, @i P N , where S´i “ S{tsiu

and S1 “ S´i Y ts
1
iu. �
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Here, we set the potential function as the sum of the
additional time defined by (5), i.e., ΦpSq fi

ř

iPN ξi,si , and
the cost function for each agent i P N as upsi, S´iq fi

δi,si `Ntc ´ ti,si . Then, Prob. 2 can be related to an exact
potential game. Particularly, the change in cost if agent i
switches from strategy si to s1i is measured by

σ
siÑs1i
i,S´i

fi uips
1
i, S´iq ´ uipsi, S´iq, (8)

which is equivalent to the change in team potential. More
importantly, the concept of Nash equilibrium for game Θ is
defined as below.

Definition 2. A team strategy S P SN is a Nash equilibrium,
if and only if, there does not exist any agent i P N
that can reduce its cost by unilaterally switching to a new
strategy s1i P Si from si, while others retain the same
strategies, i.e., σsiÑs1i

i,S ě 0, @s1i P Si, @i P N . �

Note that the potential game has two vital properties: i) at
least one Nash equilibrium exists, and ii) finite improvements
can be made to the potential. Ultimately, our goal is to find a
Nash equilibrium strategy for Prob. 2, under which no agent
can update its strategy individually to reduce the sum of
additional time caused by communication.

3) Decentralized Coordination Scheme: In this section,
an online decentralized coordination scheme for the potential
game is proposed, which mainly contains two steps: first find
the initial team strategy with the minimum potential among
a class of special strategies, where all agents gather together
at the same location; then the initial team strategy is refined
iteratively through a local search algorithm until it converges
to a Nash equilibrium.

Optimization of Initial Strategy: Initially, each agent i
prepares its tentative local plan in the finite horizon according
to the results of last round. Particularly, the associated team
strategy SN is featured with the same location zc P Z to
communicate. Then the initial strategy for round r P N` is
optimized by

S‹N “ argmin
SNPS

tΦpSNq | tc P rrTc, pr ` 1qTcqu , (9)

where the graph connectivity constraint in (6) is relaxed.
Eventually, the optimal team strategy S‹N can be determined
by iterating all discrete nodes within workspace Z , and the
corresponding time set T ‹N “ tti,si , i P N u is generated by
collecting the arrival time of each agent i by strategy si.

Nash Equilibrium Strategy: As summarized in Alg. 1,
an anytime algorithm is proposed to improve the initial
strategy for the game Θ iteratively by local search, until
it converges to a Nash equilibrium or it exceeds a max-
imum iteration K P N`. More specifically, within each
iteration k ă K, agent i P N initially assembles a set
of regions encompassing finite locations that maintain the
connectivity of the communication topology, denoted by

ΥipZ
k
c q “ tz P Bpzki,c, Rq |GpZk

c,´i, zq is connectedu, (10)

where Bpzki,c, Rq is a circular region around zki,c within
range R, and Zk

c,´i “ Zk
c {tz

k
i,cu. Moreover, for any loca-

Algorithm 1: Decentralized Coordination Algorithm.
Input: Team strategy SN and time set TN;
Output: Nash equilibrium team strategy SNE;

1 Initialize k Ð 0 and S0, T 0 Ð SN, TN;
2 while k ă K do
3 foreach i P N do
4 Construct region set ΥipZ

k
c q;

5 Set σ‹i Ð 0;
6 for z1i P ΥipZ

k
c q do

7 σ1i, h
1
i Ð min

hi

tσi | rTc ď tc ă pr ` 1qTcu;

8 if σ1i ă σ‹i then
9 Reset σ‹i Ð σ1i;

10 Si, Ti Ð

Sk
´i Y tpz

1
i, h

1
iqu, T

k
´i Y tt

h1i
i,z1i
u;

11 Determine i‹ “ argmin
iPN

tσ‹i u;

12 if σ‹i‹ ě 0 then
13 return SNE Ð Sk;

14 k Ð k ` 1, then Sk, T k Ð Si‹ , Ti‹ ;

15 Return SK .

tion z1i P ΥipZ
k
c q, the maximal decrease of the potential

induced by agent i is given by min tσi | rTc ď tc ă pr `

1qTcu, where σi “ σ
siÑs1i
i,Sk
´i

is the change caused by agent i
switching from strategy si to s1i “ pz

1
i, h

1
iq under the current

team strategy Sk.
Therefore, the best strategy for agent i is generated by

reducing the change σi in a greedy way, i.e., traversing the
region set ΥipZ

k
c q to find the strategy with minimal change

σi (Line 5-10). In addition, each agent compares its mini-
mal σ‹i with its neighbors to obtain the minimal value σ‹i‹ .
If it is no less than zero, then the current team strategy is
a Nash equilibrium by Definition 2 (Line 12-13); if not, the
team strategy is updated by the optimal team strategy Si‹ ,
together with the time set Ti‹ (Line 14). Through enough
iterations, it converges to a Nash equilibrium, where the
potential cannot be reduced any more. The above process is
repeated iteratively until it converges to a Nash equilibrium,
or exceeds the maximum iteration K. Note that the proposed
algorithm can return a valid team strategy when interrupted at
any time, and the potential, i.e., the summation of additional
time is decreased monotonically.

C. Hybrid Execution

The complete plan Γi, i P N is synthetically executed by
interleaving between local tasks and communication events
for each agent. Initially, agents are located within a connected
topology, each agent i first synthesizes the local plan τi as
described in Sec. IV-A, then coordinates with other agents
to determine the communication location and time for the
next round r “ 1 using the scheme designed in Sec. IV-B.
Afterwards agents move and execute actions independently
executing their local plans without communication, until they
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reach the agreed locations at the expected time. However,
due to the different efficiencies of performing local tasks, the
agents mostly reach the agreed locations at different times.
So the agent that arrives early is responsible to wait for the
later agents, and the communication will happen eventually
when the last agent arrives. Since communication events
always happen at the time when all agents gather together,
the delays caused by different arrival times of agents do not
propagate to the future round.

Once all agents have successfully reached the designated
locations zri,c, i P N , a communication topology naturally
takes shape. Within this topology, the accumulated informa-
tion can be comprehensively shared among all agents. Subse-
quently, each agent prepares its preliminary local plan for the
ensuing round r building upon the tasks previously executed,
and collaborates to formulate the subsequent communication
plan Γr

i . The above process continues iteratively, encompass-
ing rounds from r to r` 1, ensuring the fulfillment of local
tasks and facilitating intermittent team-wise communication.

Proposition 1. Starting from a connected communication
topology, the hybrid execution framework ensures that each
agent i P N can satisfy its local task ϕi and the team
communication can happen sufficiently by pTc, Dcq. �

Proof. First, the correctness of the local plan τi by each
agent i P N is guaranteed by the model-checking algo-
rithm [18]. Consider the sequence of task states in complete
plan Γi is equivalent to the local plan τi, when ignoring
communication states, so the local task ϕi can be sat-
isfied by executing the complete plan Γi. Moreover, the
communication events are determined strictly within time
constraints pTc, Dcq according to Prob. 2, and due to the
waiting mechanism, each agent will wait for communication
to happen before performing their individual tasks. Therefore
the communication is guaranteed to iteratively happen at the
time trc “ maxiPN tt

r
i,cu P rrTc, pr ` 1qTcq, r P N`, by

following the hybrid execution framework.

V. NUMERICAL SIMULATION

This section contains the numerical simulation compared
with several strong baselines. The proposed approach is
implemented in Python3 and run on a workstation with 12-
core Intel Conroe CPU. The complete simulation video can
be found in http://y2u.be/t2PUp2 NdrU.

A. Workspace and Task Description

Consider a team of N “ 8 agents that coexist within a
10 m ˆ 10 m workspace, which is partitioned into cells as
shown in Fig. 1a. All agents follow the unicycle dynamics
by (1) with the reference linear velocity v “ 1.0 m/s and
angular velocity ω “ 1.5 rad/s. Their communication ranges
are uniformly set to 1.0 m. Each agent is responsible for
transporting resources from the production line P1,2 to the
corresponding repository R1,...,4, monitoring air pollution
index (API) of the plant at different location M1,...,4. More
specifically, the local task specifications for each agent are
defined as ϕi “ l♦ppπpi ^a

c
i q^♦ppπri ^a

u
i q^♦pπmi ^a

m
i qqq,

Fig. 1: (Top-left) Workspace abstraction and the initial locations
of agents, together with several local paths of agents 1, 3, 5, 7;
(Top-right) The topology of round r “ 1, and the distribution
of topologies shown as a heat-map; (Bottom) The instances of
topology in round r “ 8, 23, 58.

which requires agent i to collect resources (aci ) at the
production line πpi , then unload (aui ) the collected resources
to the corresponding repository πri , and finally move to the
measurement station πmi to monitor (ami ) the current API,
infinitely often. See the simulation video for the exact task
assignments. The time cost for executing each action is
set to 4s uniformly. Moreover, agents are encouraged to
communicate sufficiently as a team with pTc, Dcq as defined
in (2) to share their measured value in different stations.

B. Simulation Results

This section mainly presents the results for the integrated
planning scheme designed in Sec. IV. To begin with, agents
start from initially-connected positions as shown in Fig. 1a,
and the communication constraint pTc, Dcq in (2) is set
to Tc “ 60.0s and Dc “ 5.0s. Prepared with local plans,
agents first coordinate with each other to find an initial
strategy with the average additional time 10.48s for the 1st
round, then refine it by local search and converge to a Nash
equilibrium strategy eventually with 8.72s using Alg. 1. As
shown in Fig. 1b, the resulting communication topology is
drastically different from the initial one, both in location and
topology. The same procedure is simulated for 100 rounds,
it takes 1.323s on average to generate the Nash equilibrium
strategy, and the average additional time caused by commu-
nication is 7.72s. Besides, the topology distribution is shown
as a heat-map in Fig. 1b and several intermediate topologies
are in Fig. 1c. Moreover, the final schedule of local tasks and
communication events indicates that the local tasks of each
agent are satisfied, and communication events occurs 5.0s
every 60.0s.
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Fig. 2: (Top) Evolution of the estimated API w.r.t. the true value
(in black dotted line) under different methods; (Bottom) Deviation
of estimated API, which is the difference between the estimated
value and the true value at the same time instant.

C. Comparisons with Baselines

The proposed scheme is compared against the following
three different baselines that are commonly used in multi-
agent systems. Static: the communication topology remains
static thus the same as the initial topology. Pair-Wise: the
agents communicate in pairs whenever possible and the next
communication round is optimized only between two agents,
see [16] for more detail. All-Time: the agents are connected
at all time and take turns to execute its local task in a round-
robin fashion, as used in our earlier work [14]. The actual
API in the plant follows a piecewise-linear function νptq
painted in black dotted line as shown in Fig. 2. However,
due to airflows in the plant, the API values measured by the
agents at stations M1,...,4 drift with time. In particular, it is
assumed that an additional sinusoid noise is added to νptq
with magnitude 1 and frequency π{6000. Whenever the
agents communicate, the consensus protocol [21] is followed
to compute the average API. All methods are simulated
for the same duration, during which the progress of task
execution, communication events and locally estimated value
of API are stored. The final results are summarized in Fig. 2.
It can be seen that the proposed method has the most accurate
estimate of νptq as each agent has the smallest deviation to
the true value, i.e., the maximum deviation is 0.82 for our
approach, 0.85 for the static method. While the estimated
values of pair-wise and all-time communication have very
large fluctuations compared to the true value, and the latter
has the largest deviation. Moreover, the average additional
time for agents to attend communication by our proposed
scheme is 13.15s, while the time of static approach is 20.04s,
which means that our proposed scheme is more time-saving.

VI. CONCLUSION

This work has proposed an online decentralized coordi-
nation scheme for multi-agent systems, which features the
co-design of the local plans and communication strategy,
subject to individual temporal tasks and communication
constraints pTc, Dcq. Different from all-time connected and
pair-wise intermittent communication, our scheme allows the

agents to join and leave different communication topologies
at aperiodic intervals, which ensures an efficient and timely
data spreading across the team, and also the satisfaction of
local tasks. Future research work includes online adaptive
planning to dynamic environments and failure tolerance.
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