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Abstract— This paper investigates the design of event-
triggered control strategies that guarantee Lp-stability prop-
erties when measurement noise is present. It is well known
that in many event-based transmission schemes, the inclusion of
measurement noise can lead to the so-called Zeno phenomenon,
where an infinite number of transmissions occur in a finite
amount of time, even when a minimum inter-event time is
guaranteed in absence of noise. In this paper, we present a
solution to the open problem of designing triggering rules,
which ensure bounded Lp-gains from the exogenous inputs
to a desired performance output in the closed-loop system,
in the presence of measurement noise. We guarantee a global
minimum inter-event time by design. Additionally, we show that
suitable choices of the tuning parameters allow us to affect the
“steady-state” inter-event times (when close to the attractor) by
exploiting the design freedom in the parameter selection, which
may result in improved behavior when close to the attractor.
We showcase our results through a consensus example.

I. INTRODUCTION

In recent years, event-triggered control (ETC), see, e.g., [1]
and references therein, has been suggested as an alternative
transmission paradigm in (packet-based) networked control
systems, to time-triggered control (TTC). Whereas in TTC,
the transmission times are determined by a local clock,
in ETC, the transmissions are generated using a threshold
function which incorporates (local) state or output infor-
mation of the system. The intuition behind this strategy is
that transmissions only occur when “needed” to guarantee
certain stability or performance criteria, contrary to TTC,
where they occur based on a timer. In TTC, the performance
of the system is strongly coupled to the inter-transmission
times, which effectively means that the sampling times have
to be chosen for the worst case scenario. However, when
(network) resources are scarce, this may result in redundant
transmissions when not operating in the worst-case scenario.
In ETC, however, this is not the case in principle. As
the transmissions occur only when necessary, the network
utilization can be reduced while still meeting the desired
stability and/or performance criteria.

A notoriously hard problem in ETC is dealing with mea-
surement noise. As was shown in [2], when a popular relative
trigger is used, it is impossible to guarantee Zeno freeness
in presence of additive measurement noise. Some works in
the literature can ensure Zeno freeness by design, see, e.g.,
[3], [4], however, they require that the noise is differentiable
and that its derivative is bounded. A notable exception is [5],
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wherein space-regularization is used to ensure the absence
of Zeno behavior, while requiring only boundedness of the
measurement noise (and no other conditions on, e.g., the
existence or boundedness of its derivative). In [5], a practical
input-to-state stability property is ensured, which means that,
even for vanishing noises, the solutions to the system are not
guaranteed to converge to the attractor, but rather to remain
in a bounded neighborhood of it. A notable exception is
when time-regularization is used. In that case, no space-
regularization is needed to ensure Zeno freeness, thereby
retaining the asymptotic behavior in presence of vanishing
noises, see [5, Remark 5], although, as also illustrated in [5],
in some cases, it may still be beneficial to also use space-
regularization.

Due to the fact that the stability property is practical in [5],
i.e., because of the application of space-regularization, it is
not possible to extend the results in a straightforward manner
to the case where other stability properties are required,
such as, e.g., Lp-stability, which is often essential in, e.g.,
platooning.

In this paper, we showcase some of the difficulties that
arise when dealing with measurement noise in an Lp-stability
setting. Due to the zero-order-hold present as a sampling
mechanism, additional conditions are required to ensure that,
when the measurement signal itself is bounded in an Lp

sense, the sampled version of the noise signal is also bounded
in an Lp sense. Under these conditions, we design triggers
that ensure bounded Lp-gains of the closed-loop system.
We also investigate (using simulations) what the effect of
certain choices are on the qualitative behavior of the closed-
loop system. Using these observations, we put forth some
suggestions on how to select the tuning parameters based
on the specific scenario in mind, and discuss some open
problems related to the notion of Lp stability in settings
where only noisy measurements are available.

Hence, the contributions of this work are three-fold:

1) the proposed setup ensures an Lp-stability property of
the closed-loop system in presence of measurement
noise;

2) the triggering rules are thus robust to measurement
noises and process disturbances and have a guaranteed
global minimum inter-event time by design;

3) we showcase how the selection of tuning parameters
may affect the qualitative behavior of the closed-loop
system.

All proofs are omitted for space reasons.
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II. PRELIMINARIES

A. Notation
The sets of all non-negative and positive integers are

denoted N and N>0, respectively. The field of all reals and all
non-negative reals are indicated by R and R⩾0, respectively.
The identity matrix of size N × N is denoted by IN , and
the vectors in RN whose elements are all ones or zeros
are denoted by 1N and 0N , respectively. For any vector
u ∈ Rm, v ∈ Rn, the stacked vector

[
u⊤ v⊤

]⊤
is denoted

by (u, v). By ⟨·, ·⟩ and | · | we denote the usual inner product
of real vectors and the Euclidean norm, respectively. For any
x ∈ RN , the distance to a closed non-empty set A is denoted
by |x|A := miny∈A |x − y|. We use U◦(x; v) to denote
the generalized directional derivative of Clarke of a locally
Lipschitz function U at x in the direction v, i.e., U◦(x; v) :=
lim suph→0+, y→x(U(y + hv)− U(y))/h, which reduces to
the standard directional derivative ⟨∇U(x), v⟩ when U is
continuously differentiable; see [6] for more details. We
denote the function space of Lebesgue measurable signals
from R⩾0 to Rn by Mn with n ∈ N>0. Given x ∈ M, if
rangex ⊂ A ⊂ Rn, i.e., if x(t) ∈ A for all t ∈ R⩾0, we
write x ∈ MA. By ∧ and ∨ we denote the logical and and
or operators respectively. We use the usual definitions for
comparison functions K, K∞ and KL, see [7].

B. Hybrid systems
Based on an extension [8] of the formalism of [7], we

model hybrid systems H(F, C, G,D,X,V) as{
ξ̇ ∈ F (ξ, ν)

ξ+ ∈ G(ξ, ν)

(ξ, ν) ∈ C,
(ξ, ν) ∈ D,

(1)

where ξ ∈ X ⊆ Rnξ denotes the state, ν an external
input taking values in V ⊆ Rnν , C ⊆ X × V the flow
set, D ⊆ X × V the jump set, F : X × V ⇒ Rnξ the
(set-valued) flow map and G : X × V ⇒ Rnξ the (set-
valued) jump map. Sets C and D are assumed to be closed.
We refer to [7] for notions related to (1) such as hybrid
time domains or hybrid arcs. For a hybrid time domain
E, supt E := sup {t ∈ R⩾0 : ∃j ∈ N such that (t, j) ∈ E},
supj E := sup {j ∈ N : ∃t ∈ R⩾0 such that (t, j) ∈ E} and
supE := (supt E, supj E). We consider the notion of
solutions proposed in [8]. The set of maximal solutions for
the hybrid system H with initial condition ϕ(0, 0) = x and
input v are denoted SH(v, x).

For 1 < p < ∞, we introduce the Lp-norm of a signal z
defined on a hybrid time domain dom z = ∪J−1

j=0 [tj , tj+1]×
{j} with J possibly ∞ and/or tJ = ∞ by

∥z∥Lp =

(
J−1∑
j=0

∫ tj+1

tj

|z(t, j)|pdt

)
1
p
. (2)

Definition 1. Hybrid system H is said to be Lp-stable, 1 <
p < ∞, from input v to output z = h(ξ, ν) with respect to a
closed non-empty set A with an Lp-gain less than or equal
to ϑ ∈ R>0, if there exists β ∈ K∞ such that for any initial
condition ξ0 ∈ X and all ϕ ∈ SH(v, ξ0) with v ∈ M,

∥z∥Lp ⩽ β(|ϕ(0, 0)|A) + ϑ∥v∥Lp , (3)

Proposition 1. Consider the hybrid system H with a set of
inputs V ⊆ Lp and let A ⊂ Rnx be a non-empty closed set.
If there exist a locally Lipschitz V : Rnx → R⩾0, α, α ∈ K∞
and γ, ϑ ∈ R>0 such that

i) for any (ξ, v) ∈ C ∪ D,

α(|ξ|A) ⩽ V (ξ) ⩽ α(|ξ|A),

ii) for all (ξ, v) ∈ C and f ∈ F (ξ, v),

V ◦(ξ; f) ⩽ γ(ϑp|v|p − |z|p),

iii) for all (ξ, v) ∈ D and any g ∈ G(ξ, v),

V (g)− V (ξ) ⩽ 0,

then H is Lp-stable from input v to output z with Lp gain
less than or equal to ϑ with respect to A.

III. PROBLEM FORMULATION

As in [5], we consider a collection of N ∈ N>0

continuous-time plants Pi, i ∈ N := {1, 2, . . . , N}, of the
form

Pi :


ẋp,i = fp,i(xp, ui, vi),

yi = gp,i(xp,i, ui),

ỹi = yi + wi,

(4)

where xp,i ∈ Rnxp,i is the plant state, xp := (xp,1, xp,2, . . . ,
xp,N ) ∈ Rnxp with nxp

=
∑

i∈N nxp,i
is the collection of

the plant states, ui ∈ Rnu,i is the control input, vi ∈ Mnv,i

a process disturbance taking values in Rnv,i , yi ∈ Rny,i

the output of the system unaffected by measurement noise,
ỹi ∈ Rny,i the output of the system affected by additive
measurement noise and wi ∈ Mny,i the measurement noise
taking values in Rny,i , fp,i : Rnxp × Rnu,i × Rnv,i →
Rnxp,i is continuous and gp,i : Rnxp,i × Rnu,i → Rnxy,i

is continuously differentiable. Each system Pi, i ∈ N is
controlled by a local dynamic feedback law Ci with dynamics

Ci :

{
ẋc,i = fc,i(xc,i, ỹi, ̂̃y ),
ui = gc,i(xc,i, ỹi, ̂̃y ), (5)

where xc,i ∈ Rnxc,i is the controller state, ̂̃y :=

(̂̃y1 ,
̂̃y2 , . . . , ̂̃yN ) ∈ Rny denotes the “networked” version

of the outputs yi of the systems Pi, i ∈ N with fc,i :
Rnc,i×Rny,i×Rny → Rnc,i and gc,i : Rnxc,i ×Rny → Rnu,i

continuous and ny =
∑

i∈N ny,i.
We impose the following assumption on the measurement

noises wi and process disturbances vi.

Assumption 1. For each i ∈ N , vi, wi ∈ Lp and wi(t) ∈
Wi for all t ∈ R⩾0, where Wi :=

{
wi ∈ Rny,i

∣∣ |wi| ⩽ wi

}
for some known wi ∈ R⩾0. Moreover, there exists Υi :
R≥0 → R≥0, which is monotonically decreasing and satisfies
|wi(t)|p ⩽ Υi(t) and

∫∞
0

Υ(s)ds < ∞ for all p ∈ [1,∞).

Assumption 1 imposes boundedness conditions on the
measurement noise and it does not impose restrictions on the
existence or boundedness of their derivatives. The function
Υi in Assumption 1 is required in order to ensure that the
“sampled” version of wi, which we will formalize below, also
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Fig. 1. Networked control setup where the controller and plant are
(physically) separated and communicate via a packet-based network.

has bounded Lp norm, see Remark 3 below. This assumption
is satisfied if, e.g., wi is bounded by an exponential function,
i.e., if for all t ∈ R⩾0 we have |wi(t)| ⩽ ce−αt for some
c, α ∈ R⩾0. Essentially, it is required that wi vanishes
sufficiently fast when t → ∞.

Remark 1. Without Assumption 1, we still obtain a finite
Lp-gain from (v, w, ŵ) to z, hence, ∥z∥Lp

is finite if ∥w∥Lp
,

∥ŵ∥Lp
and ∥v∥Lp

are finite.

The i-th system, i ∈ N , broadcasts its output ỹi to
the controllers C1,C2, . . . ,CN over the digital network. The
corresponding transmissions occur at time instants tik, k ∈ N,
which are generated by a local Event-Triggering Mechanism
(ETM), which is to be designed. Because of the packet-
based communication over the network, the i-th controller,
which depends on the outputs of Pm, m ∈ N , does not have
continuous access to ỹ := ( ỹ1, ỹ2, . . . , ỹN ), but only to its
estimate ̂̃y := (̂̃y1 , ̂̃y2 , . . . , ̂̃yN ) and to its local output ỹi.
When ETM i ∈ N , transmits the measured output of plant
i over the network, ̂̃yi is updated according tỗyi ((tik)+) = ỹi(t

i
k). (6)

In between transmissions, a zero-order-holding device is used
to produce a continuous-time estimate, i.e.,

˙̂
ỹi = 0. (7)

For modeling purposes only, we define ŷi and ŵi, where

ŷi ((t
i
k)

+) = yi(t
i
k),

˙̂yi = 0,

ŵi((t
i
k)

+) = wi(t
i
k),

˙̂wi = 0.
(8)

Hence, ŵi is the value of wi at the last transmission instant
of ETM i. Due to the aforementioned definitions, we obtain
that ̂̃yi = ŷi + ŵi.

We define the ideal network-induced error ei as the differ-
ence between the sampled output ŷi without measurement
noise and the current output yi without measurement noise:

ei := ŷi − yi. (9)

Note that ei is not known by the ETM, and therefore, cannot
be used by the corresponding local triggering condition
for determining tik, k ∈ N. Hence, we also define the

measured network-induced error ẽi as the difference between
the estimated output ̂̃y i and the current measured output ỹi,
which are both affected by noise, i.e.,

ẽi := ̂̃yi − ỹi = ei + ŵi − wi. (10)

The local ETM at plant i does have access to ẽi. We denote
the concatenated variables corresponding to (9) and (10) as
e := (e1, e2, . . . , eN ) and ẽ := (ẽ1, ẽ2, . . . , ẽN ), respectively.

To determine the triggering times, we define the local
auxiliary variables ηi ∈ R, i ∈ N , whose dynamics are
given by

ηi((t
i
k)

+) = ϱi(oi), η̇i = Ψi(oi), (11)

where oi := (ỹi, ̂̃y , ẽi, ui, ηi) ∈ Rno,i with no,i := 2ny,i +
ny + nu,i + 1 is the locally available information at ETM i,
and the functions Ψi and ϱi are to be designed. The triggering
times are then given by

tik+1 := min
{
inf
{
t > tik + τ imiet | ηi(t) ⩽ 0

}
;Ti

}
(12)

with Ti ∈ R>0 an arbitrarily large constant. The constant Ti

forces transmissions to occur indefinitely, which is needed
to ensure boundedness of the “sampled” noise signal ŵ, see
also Remark 3 below.

Remark 2. The upper-bound wi of the noise is used only
in the reset maps ϱi presented in Section V. Consequently, if
we design ϱi ≡ 0, we can forego Assumption 1 and instead
just assume that wi ∈ Lp and that it is bounded from above
by the function Υi. However, the inclusion of a nontrivial
reset improves the inter-event behavior of the closed-loop
significantly. Therefore, we choose to impose Assumption 1.

We are now interested in designing robust event-triggering
conditions which ensure bounded Lp-gains with respect to
some output variable

z = q(x, v, w, ŵ), (13)

where x := (x1, x2, . . . , xN ) ∈ Rnx , xi := (xp,i, xc,i) ∈
Rnxp,i

+nxc,i , v := (v1, v2, . . . , vN ) ∈ Rnv , w :=
(w1, w2, . . . , wN ) ∈ W and ŵ := (ŵ1, ŵ2, . . . , ŵN ) with
nv :=

∑
i∈N nv,i, nx := nxp +nxc , W := W1×W2× . . .×

WN and Wi, i ∈ N as defined in Assumption 1.

IV. HYBRID MODEL

We model the overall system as a hybrid system H
as in Section II-B, for which a jump corresponds to the
broadcasting of the noisy output ỹi over the network for
some i ∈ N . We allow the local triggering (transmission)
conditions to depend on two local auxiliary variables denoted
ηi, ϱi ∈ R, as is the case in dynamic triggering [9], [10]. The
dynamics of ηi and ϱi are designed in the following.

The full state for H is ξ := (x, e, ŵ, τ, η) ∈ X, where X :=
Rnx ×Rny ×W ×RN

⩾0 ×R⩾0. We define the concatenated
exogenous inputs ν := (v, w) ∈ V, where V := Rnv ×W .
The flow map F : X× V ⇒ X can then be written as
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F (ξ, ν) :=
(
f(x, e, ŵ, v, w), g(x, e, ŵ, v, w),0ny

,

1N ,Ψ(o)− σ(η)
)
.

Based on (4), (5) and (10), we obtain
f(x, e, ŵ, v, w) := (f1(x, e, ŵ, v1, w1), f2(x, e, ŵ, v2, w2),
. . . , fN (x, e, ŵ, vN , wN )), where fi : Rnx × Rny × W ×
Rnv,i × Rny,i → Rnx,i is given by fi(x, e, ŵ, vi, wi) :=(
fp,i
(
xp, gc,i(xc,i, gp,i(xp,i) + wi, gp(xp) + e + ŵ), vi

)
,

fc,i
(
xc,i, gp,i(xp,i) + wi, gp(xp) + e + ŵ

))
with

gp(xp) := (gp,1(xp,1), gp,2(xp,2), . . . , gp,N (xp,N )). Based
on (4), (7) and (10), we obtain g(x, e, ŵ, v, w) :=
(g1(x, e, ŵ, v1, w1), g2(x, e, ŵ, v2, w2), . . . , gN (x, e, ŵ, vN ,
wN )), where gi(x, e, ŵ, vi, wi) := fh,i(gp,i(xp,i) +
ei + ŵi) − fy,i(x, e, ŵ, vi, wi) with fy,i(x, e, ŵ, vi, wi) :=
∂gp,i
∂xp,i

fp,i (xp, gc,i(xc,i, gp,i(xp,i) + wi, gp(xp) + e+ ŵ), vi).

The function Ψ defines the dynamics of the local triggering
variables η and are defined as

Ψ(ỹ, ̂̃y , ẽ, u, ϱ) := (Ψ1(o1),Ψ2(o2), . . . ,ΨN (oN )), (14)

where Ψi will be constructed in the following.
The flow set C ⊆ X × V is given by C := ∩i∈NCi with

Ci := {(ξ, ν) ∈ X× V | τi ⩽ Ti ∧ ηi ⩾ 0}, where τ imiet is to
be designed.

The jump set is given by D := ∪i∈NDi with Di :={
(ξ, ν) ∈ X × V | τi ⩾ τ imiet ∧ ηi ⩽ 0

}
. The jump map

G : X× V ⇒ X is, for any (ξ, ν) ∈ X× V, given by

G(ξ, ν) :=
⋃
i∈N

{
Gi(ξ, ν), when (ξ, ν) ∈ Di,

∅, otherwise
(15)

with

Gi(ξ, ν) := (x,Γie,Γiŵ + Γiw,Γiη + Γiη
0(ξ, ν)) (16)

where Γi := Iny
−Γi and Γi := diag (∆i,1,∆i,2, . . . ,∆i,N )

with

∆i,j :=

{
0ny,j ,ny,j

, if i ̸= j,

Iny,j
, if i = j.

(17)

Observe that, by construction of the sets Ci and Di, a
trigger is enforced when τi ⩾ Ti, which is consistent with
(12). Similarly, a trigger cannot occur when τi < τ imiet.
Although the setup is similar to the setup in [5], the essential
differences here are the inclusion of the timers τi which
enforce a global minimum inter-event time by design. This
difference is instrumental in showing Zeno-freeness.

V. MAIN RESULTS

With the model in place, we can now present the condi-
tions that are required to ensure Lp-stability.

Condition 1. For all i ∈ N , there exist a constant Li ⩾ 0
and a continuous function Hi : Rnx×Rny×W×Rnv → R⩾0

such that for all x ∈ Rn, e ∈ Rny , ŵ ∈ Rm and v ∈ Rnv ,

|gi(x, e, ŵ, v, w)| ⩽ Li|ei|+Hi(x, e, ŵ, v, w). (18)

The inequality in (18) is loosely speaking an upper bound
on the growth of ei between successive transmission instants.

This condition is always satisfied, e.g., for linear systems or
when the map gi satisfies a linear growth condition. In the
following, we will omit the arguments of Hi, as specified in
Condition 1, for brevity.

Condition 2. There exist a locally Lipschitz function V :
Rn → R⩾0, a supply rate s : Rnx × Rny ×W × V → R, a
non-empty closed set X ⊆ Rnx , K∞-functions α, α, and, for
all i ∈ N , positive semi-definite functions δi : Rno,i → R⩾0

and constants ζi, γi, µi > 0 such that for all x ∈ Rnx

α(|x|X ) ⩽ V (x) ⩽ α(|x|X ), (19)

and for all ν ∈ V, e ∈ Rny , ŵ ∈ W , and almost all x ∈ Rnx ,

⟨∇V (x), f(x, e, ŵ, v, w)⟩
⩽ α(ϑp|(ŵ, ν)|p − |q(x, v, w, ŵ)|p)

+
∑

i∈N
(
− δi(oi)− ζiH

2
i + (γ2

i − µi)|ei|2
)
. (20)

Condition 2 is akin to an L2-gain condition from |ei| to
Hi like in [11], which translates the impact of the network-
induced error on the output Hi. When e ≡ 0, i.e., in absence
of the network, the condition in (20) ensures the desired Lp-
gain property.

Condition 3. There exist continuous functions Hi : Rno,i →
R⩾0, i ∈ V , that satisfy for all x ∈ Rnx , e ∈ Rny , ŵ ∈ W ,
v ∈ Rnv , w ∈ W ,

Hi(oi) ⩽ Hi(x, e, ŵ, v, w) (21)

for functions Hi as in Condition 1.

Condition 3 is trivially satisfied by taking Hi(oi) = 0
for all i ∈ V , oi ∈ Rno,i as the function Hi is non-
negative. However, the introduction of the function Hi is
an important feature that allows to capture relevant systems
such as consensus systems with single-integrator dynamics,
as we will show in the case study in Section VI.

We are now ready to state the main result of this paper.

Theorem 1. Suppose Assumption 1 and Conditions 1-3 hold.
For all i ∈ N , select λi > λi > 0 and ϵi ∈ (0, 1]. We define
for all ξ ∈ X and ν ∈ V,

Ψ(oi) := δi(oi) + (1− ϵi)ζiH
2
i (oi)− ωi(τi)γi|ẽi|2,

ϱi(oi) := λiγi(max{|ẽi| − 2wi, 0})2,
γi := γi(2Liλi + γi(1 + λ2

i ))

(22)

with ωi : R⩾0 ⇒ [0, 1] defined as

ω(τ) :=


{0}, if τi ∈ [0, τ imiet),

[0, 1], if τi = τ imiet,

{1}, if τi > τ imiet.

(23)

and τ imiet given by

τ imiet :=


1

Liri
arctan(θi),

√
ϵiζiγ > Li,

1
Li

λi−λi

(λi+1)(λi+1)
,

√
ϵiζiγi = Li,

1
Liri

arctanh(θi),
√
ϵiζiγi < Li,

(24)
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where

θi :=
ri(λi − λi)

γi

Li
(1 + λiλi) + λi + λi

, r :=

√∣∣ϵiζi( γi

Li

)2 − 1
∣∣,

and Li, and γi come from Conditions 1 and 2. System
H(F, C, G,D) with triggering dynamics (22) renders the
closed-loop system Lp-stable with finite Lp-gain from input
(ν, ŵ) to output z with respect to A := {ξ ∈ X | x ∈ X ,
e = 0, η = 0} and has a guaranteed minimum inter-event
time given by τ imiet > 0.

The function ωi, i ∈ N , in (23) is defined such that
the flow map F is outer semi-continuous to ensure that
the hybrid system H satisfies the hybrid basic conditions
as presented in [7, Assumption 6.5].

Remark 3. The requirement that the inter-transmission times
are bounded from above by Ti together with Assumption 1
are essential requirements to ensure that ŵi ∈ Lp. Indeed, as
wi(t) → 0 for t → ∞, its sampled version ŵi → 0 as well,
given that transmissions occur at least every Ti time-units.
This is instrumental due to the term ŵ entering the system
through the controller. As a consequence, if, at some point,
transmissions stop and ŵ ̸= 0 for all t > T̃ ∈ R⩾0, ∥ŵ∥Lp

=
∞, even though ∥w∥Lp

< ∞. Similarly, the requirement that
ŵ ∈ Lp essentially also requires the upper bound on |wi(t)|p
given by Υi in Assumption 1. These assumptions together
allow us to ascertain that ∥ŵ∥Lp < ∞ if ∥w∥Lp < ∞. Of
course, when it can be a priori inferred that ∥ŵ∥Lp

< ∞,
this requirement is not necessary and Ti = ∞ can be chosen
in that case.

Remark 4. To illustrate the necessity of Assumption 1,
consider the signal given by z(t) = 1 if t ∈ T , and z(t) = 0

if t /∈ T with T :=
⋃

k∈N

[
k, k+ 1

2k

]
. The signal z is depicted

in Figure 2. For any p ∈ R⩾1, we have that

∥z∥Lp
=

(∫ ∞

0

|z(t)|pdt

)
1
p
=

( ∞∑
k=0

1

2k

)
1
p
= 2

1
p .

However, if we sample this signal at every t ∈ N, we find
that its sampled version ẑ(t) = 1 for all t ∈ R⩾0. Hence,
ẑ /∈ Lp.

Remark 5. In the literature, the design parameters λi and
λi are typically chosen to satisfy λi ∈ (0, 1) and λi = 1/λi,
see, e.g., [12]. As we illustrate using simulations below, in
some cases, a significant contribution to the favorable inter-
event times in dynamic event-triggered control originate from
the reset maps ϱi in (22). Thus, often, the resulting average
inter-event times improve when λi ∈ (0, 1) is selected larger,
even though, in these cases, the MIET is smaller due to the
larger λi. This has also been reported in other literature,
mainly in the context of self-triggered control, see [13]. The
(re)selection or shifting of λi and λi may help in improving
the (average) inter-event behavior, however, the Lp-gain
depends on λi in the sense that larger λi will result in a
larger Lp-gain.

t

z(t)

0
0

1

1 2 3 4

Fig. 2. Example of a signal z ∈ Lp whose sampled version ẑ /∈ Lp.

TABLE I
MEAN AND STANDARD DEVIATION OF THE NUMBER OF EVENTS IN 100

SIMULATIONS WITH THE INITIAL CONDITIONS xi(0, 0) CHOSEN

RANDOMLY IN [−10, 10].

λi
−1 = λi = 0.01 λi

−1 = λi = 0.4 λi = 100, λi = 0.4

350.02± 50.39 315.66± 10.14 268.30± 30.23

VI. CASE STUDY

To illustrate our results, we focus on a consensus problem.
Specifically, we are interested in the consensus of single
integrator systems, where each plant Pi, which we call agent
in this section, has dynamics ẋi = ui, with xi, ui ∈ R, and
the output yi = xi.

For a network topology described by a connected weight-
balanced digraph G with Laplacian L, it is known that agents
achieve consensus when the ideal (static) control law ūi =∑

m∈Vin
i
(xi − xm), with Vin

i the in-neighbors of agent i, is
applied, see [14]. In vector notation, this is written as ū =
−Lx, where ū := (u1, u2, . . . , uN ) and L is the Laplacian
matrix of the graph. We use the noisy sampled states for
each agent instead of the actual states, resulting in the actual
control law

ui =
∑

m∈Vin
i
(xi + ei + ŵi − xj − em − ŵm),

written in vector notation as u = −L(x+e+ŵ). Hence, the
closed-loop system dynamics are ẋ = −Lx−Le−Lŵ. We
are interested in the Lp-stability properties with p = 2 from
inputs (v, w) to the output q(x) := Lx with respect to the
consensus set

X :=
{
x ∈ RN | x1 = x2 = . . . = xN

}
. (25)

For this particular system, we have the following result.

Proposition 2 ([5], [15]). Consider the above system. Con-
ditions 1, 2 and 3 hold with V (x) = 1

2x
⊤Lx, δi(oi) := (1−

αi)di(1−2aNi), ζi = (1−di)(1−2aNi), γi =
√

1
aNi + µi,

Hi = |ui|, Li = 0 and Hi = |ui|, where a ∈ (0, 1
2Ni

),
µi > 0, αi ∈ (0, 1), ϵi ∈ (0, 1) and di ∈ (0, 1) are tuning
parameters.

We now run three different simulations, in the first one
we select λi

−1 = λi = 0.01. The second one, we will select
λi

−1 = λi = 0.4. For the last one, we choose λi = 100 and
λi = 0.2. The resulting inter-event times are depicted in Fig.
3 and the total number of events are stated in Table I.

We can draw several conclusions from Fig. 3. Firstly,
when close to the attractor, the triggering times are indeed
close to the MIET. Thus, in case the parameters λi, λi are
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Fig. 3. Comparison of inter-event times for the different choices of
λi, λi. From top to bottom, the minimum inter event-times are given by
(τ1miet, τ

2
miet) = (0.2132, 0.1628), (τ1miet, τ

2
miet) = (0.1562, 0.1180)

and (τ1miet, τ
2
miet) = (0.1722, 0.1295), respectively.

selected “only” for the best transient response, eventually,
a periodic triggering rule or the triggering rule with larger
λi and smaller λi will always outperform the triggering
rule designed for the best transient response. Moreover,
when λi = 100 and λi = 0.2, the transient response is
somewhere between the other two responses, i.e., it does not
perform as well as taking λi = 1/0.4 during the transient,
however, it does better vis-à-vis the case where λi = 0.01.
Similarly, during the “steady-state” phase, i.e., when the
noise is dominant, this reverses: due to the MIET being
the dominant factor in the inter-event times, the simulation
with λi

−1 = λi = 0.01 “outperforms” the simulation with
λi

−1 = λi = 0.4 in terms of average inter-event times.
Again, in this setting, the solution with λi = 100 and
λi = 0.2 performs somewhere in between in terms of inter-
event times, which is to be expected based on the MIET.
Thus, freely selecting the parameters λi and λi, allows us to
shape the behavior both during the “transient response,” i.e.,
when the initial condition is dominant in the behavior, as well
as during “steady-state,” i.e., when the noise is dominant in
the behavior.

VII. DISCUSSION & FUTURE WORK

Although we can ensure bounded a Lp-gain through this
particular design, it requires some additional conditions on
the (measurement) noise signal on top of assuming that it is
bounded in an Lp sense due to the zero-order-hold, which
is applied to allow packet-based communication. There are
several interesting directions to pursue in future work. The
first issue we want to address is that, although we prove
Lp-stability, it is difficult to obtain the Lp-gain explicitly
due to the conservatism in the analysis. Secondly, we are
interested in relaxing the conditions that are imposed on the
noise signals. As a last potentially interesting direction, it
seems that additional refinement of the reset functions ϱi
may improve the average inter-event behavior further.

VIII. CONCLUSIONS

In this paper, we have designed time-regularized triggering
rules for the event-based control of distributed systems. Our
approach allows us to ascertain Lp-stability properties of the
closed-loop system. This property is ensured only under mild
conditions on the noise signals and process disturbances. We
ensure a minimum inter-event time by design. Furthermore,
we show that by cleaverly selecting the tuning parameters,
we can affect the average inter-event times both during the
“transient response,” i.e., when the initial condition in dom-
inant in the behavior, as well as during “steady-state,” when
the noises determine the dominant behavior. This allows us
to, loosely speaking, “tune” the behavior to prioritize the
behavior during the “transient” or during “steady-state”. We
envision that this is beneficial in applications where the
attractor is not (necessarily) constant, such as, e.g., tracking
(motion) control. We have demonstrated the benefits of the
proper selection of these parameters on a consensus example.
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event-triggered output feedback controllers for nonlinear systems,”
Automatica, vol. 75, pp. 96–108, 2017.

[5] K. J. A. Scheres, R. Postoyan, and W. P. M. H. Heemels, “Robustifying
event-triggered control to measurement noise,” Automatica, vol. 159,
p. 111305, 2024.

[6] F. H. Clarke, Optimization and Nonsmooth Analysis. Classics in
Applied Mathematics vol. 5, SIAM, 1990.

[7] R. Goebel, R. G. Sanfelice, and A. R. Teel, Hybrid Dynamical
Systems: Modeling, Stability, and Robustness. Princeton University
Press, 2012.

[8] W. P. M. H. Heemels, P. Bernard, K. J. A. Scheres, R. Postoyan,
and R. G. Sanfelice, “Hybrid systems with continuous-time inputs:
Subtleties in solution concepts and existence results,” in 60th IEEE
Conf. Decis. Control, Austin, TX, USA, 2021, pp. 5368–5373.

[9] A. Girard, “Dynamic triggering mechanisms for event-triggered con-
trol,” IEEE Trans. Autom. Control, vol. 60, no. 7, pp. 1992–1997,
2015.

[10] V. S. Dolk, D. P. Borgers, and W. P. M. H. Heemels, “Output-based and
decentralized dynamic event-triggered control with guaranteed Lp-
gain performance and zeno-freeness,” IEEE Trans. Autom. Control,
vol. 62, no. 1, pp. 34–49, 2017.
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