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I. ABSTRACT

The main objective of this research paper is to investi-
gate the local convergence characteristics of Model-agnostic
Meta-learning (MAML) when applied to linear system
quadratic optimal control (LQR). MAML and its variations
have become popular techniques for quickly adapting to new
tasks by leveraging previous learning knowledge in areas
like regression, classification, and reinforcement learning.
However, its theoretical guarantees remain unknown due
to non-convexity and its structure, making it even more
challenging to ensure stability in the dynamic system setting.
This study focuses on exploring MAML in the LQR setting,
providing its local convergence guarantees while maintaining
the stability of the dynamical system. The paper also presents
simple numerical results to demonstrate the convergence
properties of MAML in LQR tasks.

II. INTRODUCTION

In the field of machine learning, the ability to quickly
learn a new task with limited data by utilizing prior learning
experiences is highly desirable. This approach is known as
meta-learning or learning from learning. MAML is a well-
known approach that can train machine learning models to
swiftly adapt to new tasks with only a small amount of
task-specific data. The concept behind MAML is to train
a model on a group of related tasks so that it can acquire a
useful starting parameter for a new task. MAML has gained
recognition in scenarios such as few-shot image classification
and reinforcement learning.

This paper focuses on applying MAML to a specific
class of linear system quadratic optimal controllers, known
as LQR. The goal is to examine the convergence of the
algorithm for a collection of LQR tasks that vary in their
system parameters or cost parameters.

There is a substantial body of research demonstrating the
success of MAML through empirical studies on regression,
classification, and reinforcement learning [1], [2], [3], [4].
However, there are only a few works that have analyzed
the theoretical guarantees of this algorithm. To give a few
examples, the work in [5], [6], [7] have established local
convergence guarantees for MAML in supervised learning
such as classification and regression. The works in [8], [9]
have explored its global convergence in specific settings. In
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reinforcement learning, the local convergence properties of
the algorithm have been studied in [10] under the assumption
of having access to biased stochastic gradients and that stabil-
ity of the dynamical system at each iteration of the algorithm.
Another relevant study is the examination of the optimization
landscapes of MAML in the LQR setting [11]. This work
provides conditions for stability and global convergence of
the algorithm in the single task LQR setting, but doesn’t
include conditions for the multi-task setting.

This paper presents the first examination of the conver-
gence of the MAML algorithm for the multi-task LQR
problem while also presenting conditions to guarantee the
stability of the dynamical system. The MAML objective
function for LQR tasks is not convex and does not inherit
the gradient dominance property of the LQR cost function,
which would have been helpful in analyzing convergence and
ensuring the global convergence of gradient-based algorithms
for the LQR problem. The study focuses on the local conver-
gence properties of the algorithm and provides conditions to
ensure the stability of the dynamical system. Whether global
convergence is possible remains an outstanding research
problem.

III. PRELIMINARIES AND PROBLEM STATEMENT

In this section, we present the basics of the standard LQR
problem followed by a brief overview of the gradient-based
MAML method and its modification for LQR tasks.

A. Notation

We use the following mathematical notation throughout
the paper. The set of real numbers is denoted by R. For a
real matrix Z, ZT represents its transpose, ∥Z∥ its maximum
singular value, ∥Z∥F its Frobenius norm, tr(Z) its trace,
σmin(Z) its minimum singular value, and vec(Z) its vector-
ization obtained by stacking its columns. For a real square
matrix Z, its spectral radius is denoted by rad(Z). For a real
symmetric matrix Z, Z ≻ 0 and Z ⪰ 0 indicate that Z is
positive definite and positive semi-definite, respectively. The
open ball of radius r > 0 centered at Z0 ∈ Rn×m, is defined
as B(Z0, r) = {Z ∈ Rn×m : ∥Z − Z0∥ < r}. For matrices
Z1, Z2, ⟨Z1, Z2⟩ = tr(ZT

1 Z2) denotes their inner product
and Z1 ⊗ Z2 denotes their Kronecker product.

B. Standard LQR Problem

Consider the infinite horizon discrete-time LQR problem,

minimizeu(.) E
[ ∞∑

t=0

(xT
t Qxt + uT

t Rut)

]
subject to xt+1 = Axt +But, x0 ∼ D,

(1)
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where the initial state x0 is randomly drawn from a dis-
tribution D. The matrices A ∈ Rn×n and B ∈ Rn×m

represent the system dynamics, and Q ∈ Rn×n and R ∈
Rm×m parameterize the cost, with Q and R being positive
definite matrices. For a control policy at time t ≥ 0 that is
parameterized by a matrix W ∈ Rm×n given by ut = −Wxt

the cost can be expressed as:

C(W ) = Ex0∼D

[ ∞∑
t=0

xT
t (Q+WTRW )xt

]
. (2)

This problem has an optimal solution as:

W ∗
lqr = (R+BTPB)−1BTPA,

where P ≻ 0 satisfies the Algebraic Riccati Equation P =
Q+ATPA+ATPB(R+BTPB)−1BTPA.

Clearly W is an stabilizing parameter for the LQR prob-
lem in (1) with system parameters (A,B) if rad(A−BW ) <
1. Now we present explicit formulas for LQR cost, its
gradient and its Hessian at an stabilizing W which will be
used later in our analysis.

• LQR cost: We can express the LQR cost as

C(W ) = Ex0∼D
[
xT
0 PWx0

]
,

with PW satisfying the following Lyapunov equation

PW = Q+WTRW+(A−BW )TPW (A−BW ). (3)

• LQR cost gradient: We can express the gradient of the
LQR cost as

▽C(W ) = 2EWΣW ,

with EW = (R+BTPWB)W −BTPWA and ΣW =
Ex0∼D

[∑∞
t=0 xtx

T
t

]
the state correlation matrix. If we

further assume that Ex0∼D
[
x0x

T
0

]
is full rank, then

the unique solution for ▽C(W ) = 0 is W ∗
lqr(for more

details see [12]).
• LQR cost Hessian: The action of Hessian operator on

Y ∈ Rn×m can be expressed as [13]:

▽2C(W )[Y, Y ] = 2⟨(R+BTPWB)Y ΣW , Y ⟩
− 4⟨BTP ′

W [Y ](A−BW )ΣW , Y ⟩,
(4)

with P ′
W [Y ] ≻ 0 satisfying the following equation

P ′
W [Y ] = (A − BW )TP ′

W [Y ](A − BW ) + Y TEW +
ET

WY .

C. MAML

MAML was first introduced in [14]. It is a meta-learning
approach that aims to learn a good initialization for a
model, such that it can quickly adapt to new tasks. More
formally, suppose we have a set of tasks I = {I1, · · · IK}
drawn from distribution p(I). Let the objective of task Ii
be as minimizing a loss function that is parameterized by
parameter W , i.e. minW Li(W ).

The idea behind MAML, under the assumption that the
task can be solved by gradient descent, is to fine-tune
parameter W for set of tasks I such that one or a few

gradient steps can be taken with respect to a particular task
Ii allowing it to serve as a good initialization for a new
task drawn from the same distribution as the other tasks. For
instance, with one gradient step this is achieved by solving
the following optimization problem:

min
W

∑
Ii∼p(I)

Li(W − η▽Li(W )),

with η > 0 as a step-size parameter.

D. Problem Statement

We devote this section to introducing the Gradient-based
MAML for set of LQR tasks. Let us first outline the LQR
task set I.

Definition 1: Each LQR task Ii is defined by a tuple of
matrices

(
Ai, Bi, Qi, Ri

)
, with Ai ∈ Rn×n, Bi ∈ Rn×m,

and Qi ∈ Rn×n, Ri ∈ Rm×m being positive definite matri-
ces. The cost function associated with each task, Ci(W ) :
Rm×n → R≥0, is parameterized by W ∈ Rm×n as in (2).

The objective is to find the best W for the tasks I using
MAML approach such that it can be a good starting point
for a new LQR task. This amounts to the following MAML
objective function:

F (W ) :=
∑

Ii∼p(I)

Fi(W ) (5)

with Fi(W ) = Ci(W−η▽Ci(W )) and η > 0 as the step-size
parameter. The MAML objective is to be minimized using
gradient descent, with a single step update rule as follows

W ←W − β▽F (W ), (6)

with step-size parameter β > 0. This is called gradient-based
MAML and is depicted in Algorithm 1. The step-sizes η and
β are also known as the inner-loop and outer-loop step-sizes.
Define Gi(W ) :=

(
I − η▽2Ci(W )

)
, then we have:

▽F (W ) =
∑

Ii∼p(I)

▽Fi(W )

=
∑

Ii∼p(I)

Gi(W )▽Ci(W − η▽Ci(W )).
(7)

Algorithm 1 gradient-based MAML for LQR tasks.
1: Initialize W
2: while not done do
3: Choose step-size parameters η and β
4: for all tasks ∈ I do
5: Evaluate ▽Ci(W )
6: Compute adapted parameter with a gradient

step: W̃i = W − η▽Ci(W )
7: Evaluate ▽Ci(W̃i) and Gi(W )

8: Update W ←W − β
∑

Ii∼p(I) Gi(W )▽Ci(W̃i)

return Estimation of MAML optimal parameter Ŵ ∗
maml
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IV. CONVERGENCE ANALYSIS OF GRADIENT-BASED
MAML FOR MULTI-TASK LQR PROBLEM

In this section, we will examine the local convergence of
gradient-based MAML for a set of LQR tasks. We will begin
by presenting definitions, assumptions, and lemmas, and then
employ them to prove the desired result. For the sake of
conciseness, only some of the results will be accompanied
by their proofs. We commence with the following definition.

Definition 2: We say:
• parameter W is task-stabilizing for task Ii if rad(Ai −

BiW ) < 1; and
• parameter W is MAML-stabilizing if it is task-

stabilizing for all tasks in I and rad(A − B(W −
η▽Ci(W ))) < 1 holds for all tasks.

Suppose parameter W is task-stabilizing for all tasks.

Define µ = σmin

(
Ex0∼D[x0x

T
0 ]

)
, and δi(W ) as

δi(W ) =
σmin(Qi)µ

4Ci(W )∥Bi∥(∥Ai −BiW∥+ 1)
.

Also let δ(W ) = minIi
δi(W ). Given these, the following

lemma provides a sufficient condition on η to ensure W be
also MAML-stabilizing.

Lemma 1: Given that W is task-stabilizing for all
tasks, if the step-size η satisfies the condition η <

minIi

{
δi(W )

∥▽Ci(W )∥

}
, then it is also MAML-stabilizing.

This outcome is a direct consequence of the results in [12].
Before presenting the convergence theorem for Algorithm 1,
we need to make certain assumptions regarding each task’s
cost function.

Lemma 2: Given that W and U are task-stabilizing for
task Ii, there exists θi(W ), ℓi(W ), ρi(W ), and Hi(W ) such
that:

|Ci(U)− Ci(W )| ≤ Ex0∼D
[
∥x0∥2

]
θi(W )∥U −W∥,

∥▽Ci(U)− ▽Ci(W )∥ ≤ ℓi(W )∥U −W∥,
∥▽2Ci(U)− ▽2Ci(W )∥ ≤ ρi(W )∥U −W∥,
vec

(
▽Ci(U)− ▽Ci(W )

)
= Hi(W )vec

(
U −W

)
.

The first three inequalities indicate that the LQR cost
function, its gradient, and its Hessian are locally Lipschitz
continuous at any stabilizing W . Hence an upper bound for
θi(W ) and ℓi(W ) are provided in references [12], [15] in
terms of W , system parameters and cost parameters. We
have also obtained an upper bound for ρi(W ), as presented
in Lemma 7, with a brief proof that is available in [16]
Appendix B for better understanding. The final statement
follows directly from the mean-value theorem applied to
the LQR gradient, as the LQR gradient is locally Lipschitz
continuous at any stabilizing W . Lemma 9 provides the
details of this and its proof is also included in [16] Appendix

B. The subsequent assumption pertains to the set of LQR
problems that will be considered.

Assumption 1: The set of LQR tasks I share the same
system matrices, namely Ai = A and Bi = B for all Ii.
The cost parameters Qi and Ri vary among the tasks.

Furthermore, similar to the analysis presented in [5], it
is required that the variance of the LQR cost gradient
be bounded over the set of tasks I. This requirement is
further elaborated in the following assumption. The set of
all parameters that stabilize task Ii is denoted as Si =
{W : rad(Ai − BiW ) < 1}. Also, let S = ∩iSi. Under
Assumption 1, the sets Si are identical for all tasks, and
therefore S is non-empty and identical to each Si.

Assumption 2: Let W be a compact subset of S. There
exists a constant σ > 0 such that for all W ∈ W

Ei

[
∥▽Ci(W )− Ei

[
▽Ci(W )

]
∥2F

]
≤ σ2.

With these assumptions in place, we can proceed to the
next two lemmas. The following lemma provides a sufficient
condition on β to ensure that W − β▽F (W ) is task-
stabilizing for all tasks given that W is MAML-stabilizing
for all tasks.

Lemma 3: Let W be MAML-stabilizing parameter for all
tasks in Assumption 1. Define δ̄i(W ) as:

δ̄i(W ) =

√
∥A−BW∥2 + µσmin(Qi)

Ci(W ) − ∥A−BW∥
∥B∥

.

If β satisfies the following condition

β < min
Ii

{
δ̄i(W )

∥▽F (W )∥

}
,

then W − β▽F (W ) is task-stabilizing for all tasks in I.

The proof of this lemma is deferred to [16] Appendix
C. Now let ℓ(W ) = maxi ℓi(W ), ℓ̄(W ) = maxi ℓi(W −
η▽Ci(W )), ∥H(W )∥ = maxi ∥Hi(W )∥, and ρ(W ) =
maxi ρi(W ) for a given W . Then we have:

Lemma 4: Consider the MAML objective in (5). Suppose
W and U are task-stabilizing for all tasks in Assump-
tion 1. If the learning rate η > 0 is such that η <

minIi

{
δ(W )

∥▽Ci(W )∥
,

δ(U)

∥▽Ci(U)∥

}
, then we have:

∥▽F (U)− ▽F (W )∥ ≤ L(W )∥U −W∥,

with L(W ) = ℓ̄(W )
(
1 + η(ℓ(W ) + δ(W )ρ(W ))

)
(1 +

ηℓ(W )) + ηρ(W )(1 + η∥H(W )∥)∥Ei

[
∥▽Ci(W )∥F

]
.

The proof of this lemma is derived from the definition
of the MAML objective, by applying Lemmas 1 and 2, by
utilizing Assumption 2, and follows a similar approach to
[5]. The proof of this lemma is deferred to [16] Appendix
C. Also consider the following conditions for both step-sizes.
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Condition 1: For a task-stabilizing Wj of all tasks at
iteration j of Algorithm 1, consider the following conditions
on η:

ηj < min
Ii

{
1

4∥▽2Ci(Wj)∥+ 2ρi(Wj)δi(Wj)
,

(1− α)δ(Wj)

αδ(Wj)ℓi(Wj) + ∥▽Ci(Wj)∥

}
,

for some α ∈ (0, 1), and then on β:

a

L(Wj)
< βj <

b

L(Wj)
< min

Ii

{
αδ̄i(Wj)

∥▽F (Wj)∥

}
,

for some a, b such that 2a > b2.

The stability of the linear system during the optimization
and the convergence of the algorithm, as stated in the
following theorem, depend on satisfying these conditions for
η and β. Specifically, the last conditions on η and β serve
the former purpose, while the first condition on η and the
first two conditions on β are for the latter.

Theorem 1: Let W be a compact subset of S. Initialize
the Algorithm 1 with a task-stabilizing W0 for all the tasks
in Assumption 1 such that W0 ∈ W . Let W ∗

maml :=
argminW F (W ), and define the sub-optimality gap ∆ =
F (W0)−F (W ∗

maml). Given that Assumption 2 holds, if the
step-sizes η and β satisfy the conditions in Condition 1 at
each iteration, then for any desired accuracy ϵ > 0, there
exist constants c̃1, c̃2 > 0 such that after running Algorithm 1

for at most
∆
(
c̃1 + c̃2

(
σ + ϵ

))
(2a− b2)ϵ2

iterations, it will find a

solution Wϵ that satisfies

∥▽F (Wϵ)∥ ≤ ϵ,

where σ is the variance constant from Assumption 2, and
a, b are constants defined in Condition 1.

The theorem states that with proper choices of step-sizes,
MAML will reach a stationary point, characterized by a
small gradient magnitude (≤ ϵ), in a number of iterations
that grows inversely proportional to the square of ϵ. In other
words, the computational cost of finding the stationary point
scales as O(1/ϵ2). The proof of this theorem is deferred
to [16] Appendix D to enhance readability.

V. SIMULATION RESULTS

In this part we provide simulation results for the con-
vergence of the gradient descent-based MAML algorithm.
Specifically, we tested the algorithm on ten LQR tasks with

identical A and B matrices, where A =

(
1.5 0
0 −2

)
and

B =

(
0.5
0.5

)
. The LQR tasks are constructed with different

cost parameters Qi and Ri, where Qi are a linear combina-

tion of Q̄1 =

(
0.01 −0.5
−0.5 200

)
and Q̄2 =

(
200 1
1 0.01

)
, and

Ri is a linear combination of R̄1 = 2 and R̄2 = 0.1 as:

Qi = α1iQ̄1 + α2iQ̄2

Ri = α3iR̄1 + α4iR̄2,

with coefficients α1i, α2i, α3i, and α4i that are randomly
drawn from the interval (0, 10).

We run Algorithm 1 with four different initialization and
choices of step-sizes η, β. The results of the experiment,
which ran for 50 iterations, are presented in Figure 1. In
three of the runs, we kept the inner-loop step-size η constant
throughout the optimization process, while in one run, we
varied it. In the plot where the initialization W 4

0 is far from
the converging point, we started with a small η (= 0.00005)
and gradually increased it. The reason for this is that in this
case, W 4

0 is close to the boundary of the stabilizing set S and
requires a lower η to ensure task stability of all tasks. As Wj

moves away from the boundaries of the set S, a higher η can
be chosen to speed up the convergence, so we increased the
step-size accordingly. It is noted that in this case at iteration
50 the step-size η = 0.0066.

Fig. 1. Convergence of Algorithm 1 for tasks I with different
initialization W 1

0 ,W 2
0 , W 3

0 , and W 4
0 .

The optimal parameter returned by the Algorithm 1, i.e.
W̃ ∗

maml, for the four runs is recorded and is presented in
Table I. Here, w1 and w2 represent the first and second
entries of W . To demonstrate the efficiency of Algorithm 1,

TABLE I
OUTPUT OF THE ALGORITHM 1 FOR DIFFERENT RUNS.

W0 W 1
0 W 2

0 W 3
0 W 4

0

Ŵ ∗
maml

w1 = +1.38

w2 = −2.13

w1 = +1.36

w2 = −2.12

w1 = +1.38

w2 = −2.13

w1 = +1.37

w2 = −2.13

it is necessary to provide a measure of how closely these
estimated optimal parameters match the MAML objective
in (5). Clearly, the MAML objective depends on the inner-
loop step-size η. Therefore, we girded the set of stabilizing
parameters S with a resolution of 0.05 and computed the
MAML objective on the grid points using different η values.
We then searched for the optimal parameter for each and
recorded the results in Table II. According to these results,
the optimal parameter is located within a ball of radius
0.23 centered at [1.347,−2.102] which we call it MAML
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optimal neighborhood. On closer inspection of the output
of Algorithm 1 recorded in Table I, we find that all the
parameters lie within this optimal neighborhood. Therefore,
we can conclude that Algorithm 1 converges to a MAML
optimal neighborhood estimated by girding the S.

TABLE II
THE MAML OBJECTIVE’S OPTIMAL POINT CALCULATED BY

SEARCHING A GIRD CREATED OVER THE SET S .

η 0.0005 0.0050 0.0066

W ∗
maml

w1 = +1.402

w2 = −2.102

w1 = +1.292

w2 = −2.102

w1 = +1.347

w2 = −2.102

VI. CONCLUSION AND FUTURE WORK

We studied the convergence of MAML for a set of specific
LQR tasks that share the same dynamics. We derived that
with conditions on both step-sizes the linear system stability
is guaranteed and MAML reach any desired accuracy level of
ϵ ≥ 0, with a computational cost that scales as O(1/ϵ2). Our
focus was on the model-based version of the LQR problem,
where we have exact information about the cost, its gradient,
and its Hessian for a specific policy. However, we would
like to point out that these results could also be extended to
model-free scenarios, where the cost gradient and Hessian
must be estimated from data. We aim to explore these model-
free extensions in our future work.
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