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Abstract— This paper starts by considering an optimal con-
trol formulation of the consensus problem on complete graphs
with a cost capturing disagreement and agents modeled by
integrators. An optimal control policy for this problem is shown
to be the well-known consensus algorithm by which each agent
resets its state to the average of its and other agents’ state values
received at every time step. The framework is extended to the
case where agents can only exchange information periodically,
with a period larger than one. Then an event-triggered control
strategy is proposed that results in a better cost than that of the
optimal periodic one with the same average transmission rate,
that is, it is consistent. According to this strategy, each agent
distributedly transmits its state if the error between its current
state and a common consensus estimate based on previously
transmitted agents’ data exceeds a threshold. Simulation results
are presented to illustrate the proposed strategy.

I. INTRODUCTION

In many applications, a group of distributed agents needs
to agree upon certain quantities of interest or states [1]–[3].
Under mild conditions on the communication graph, this can
be achieved by having agents exchange and update their
states based on weighted averages of neighbouring agent
states [2]. The exchange of information is typically assumed
to be time-triggered, particularly periodic.

However, applications where this information exchange is
expensive and thus the communication load needs to be re-
duced, need more efficient communication protocols, such as
event-triggered protocols. In event-triggered conmunication
and/or control, information exchange is based on the state
rather than time [4]–[9]. Many consensus strategies that
borrow ideas from event-triggered control (ETC) have been
proposed [10].

One of the underlying principles of ETC is that it should
outperform periodic control. However, this is not always
the case [5], [11], and it is thus a desired property rather
than a fact. Therefore, it is reasonable to pose the following
question: given a performance index and a periodic con-
trol strategy that is optimal with respect to this index, is
there an ETC strategy that improves this performance index
while using the same communication resources as periodic
control? This question was addressed in a pioneering paper
on ETC [12]. Considering an integrator system and the
output variance as a performance metric, [12] proves that this
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property holds for a threshold ETC strategy. ETC strategies
that achieve this property, referred to as consistency [5],
were later proposed for general linear systems with quadratic
performance indices [5]–[9].

This question has been recently addressed in the context
of consensus in [11]. Considering a complete communication
graph, a continuous-time framework with agents described
by integrators driven by white noise, and a natural perfor-
mance index measuring disagreement between agents, [11]
compares periodic and event-triggered implementations that
are reasonable extensions of [12] to the consensus case.
Surprisingly, [11] shows that periodic control yields a better
index for the same average transmission rate when the
number of agents is large. However, note that the event-
triggered policy in [11] is not optimal for the performance
index considered. Thus, it remains open whether there exists
an ETC policy that can outperform an optimal periodic
control policy for the performance index proposed in [11]
using the same communication resources.

This paper considers a discrete-time version of the optimal
control problem proposed in [11]. An optimal control policy
is shown to be the natural consensus policy by which each
agent resets its state to the average of its and other agents’
state values received at every time step. Since there are other
optimal control policies, including fully decentralized ones,
the choice for the natural consensus strategy is motivated
by a related stochastic reformulation of the problem. The
framework is extended to the case where agents can only
exchange information periodically, with a period larger than
one. This is how agents can reduce the communication load
in a periodic communication setting. A class of ETC policies
is proposed for which the initial disagreement cost can be
expressed as an output variance of an ETC policy for a
single integrator. Building upon this fact, an ETC strategy
is proposed that results in a better cost than that of the
optimal periodic one with the same average transmission
rate, that is, it is consistent. According to this strategy, each
agent transmits if the error between its current state and a
common estimate based on previously transmitted agents’
data exceeds a threshold. This strategy can be described as
a simple distributed algorithm (see Algorithm 2 below).

The paper is organized as follows. Section II formulates
the optimal control problem, gives an optimal periodic con-
trol solution and states the problem. Section III provides the
proposed ETC policies and the main results. Section IV dis-
cusses a numerical example and Section V gives concluding
remarks. The proofs of the results are omitted for brevity.
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II. PROBLEM FORMULATION, PERIODIC CONSENSUS,
AND PROBLEM STATEMENT

Section II-A formulates an optimal control problem with
no communication constraints for which an optimal solution
is a natural consensus policy. The optimal periodic solution
with period larger than one is given in Section II-B and the
problem considered in this paper is stated in Section II-C.

A. Problem Formulation

Consider a set of n agents indexed by i ∈ N :=
{1, 2, . . . , n} and each storing state xi[t] ∈ R at time
t ∈ N0 := N ∪ {0}. The agents are described by integrators

xi[t+ 1] = xi[t] + ui[t] + wi[t], i ∈ N, t ∈ N0, (1)

driven by zero-mean independent and identically Gaussian
distributed disturbances {wi[t]|t ∈ N0} with E[w2

i [t]] = σ2
w,

for every i ∈ N, where ui[t] is the control input of agent
i at time t that allows that agent to change its state. The
disturbances sequences are mutually independent.

The communication graph, determining which agents re-
ceived information from which agents is assumed to be
complete. This means that all the agents can communicate
with all others at each time t although they might refrain
from doing so to save communication resources.

Assumption 1: Each agent can communicate with all the
other agents, i.e., the communication graph is complete. �

A natural consensus law in this case is

u[t] = −x[t] +
1

n
1n1

ᵀ
nx[t], t ∈ N0, (2)

with x[t] =
[
x1[t] . . . xn[t]

]ᵀ
, u[t] =[

u1[t] . . . un[t]
]ᵀ

, and 1n a column vector with n
entries equal to one. This law can be written in the
equivalent form ui[t] = 1

n

∑
j∈N(xj [t] − xi[t]); it is clear

that it depends on the relative distances of the agents’ states.
A binary variable σi[t] indicates if, at time t, agent i ∈ N

decides to transmit to all the other agents its state (σi[t] = 1)
or not (σi[t] = 0). Based on the past transmitted states, each
agent has access to a common information set at time t,

It = ∪ni=1{xi[`] |σi[`] = 1, 0 ≤ ` ≤ t}.

Each agent has access to its own state. At time t, each agent:
1) decides based on shared information up to time t−1, It−1
and private state information up to time t either to transmit
or not; 2) receives information from other agents at time
t; 3) compute its control input based on shared and state
information up to time t, It. Thus, σi[t] = νt,i(Jt,i) and
ui[t] = µt,i(Kt,i) for some functions νt,i, µt,i, where Jt,i :=
It−1∪{xi[`] | 0 ≤ ` ≤ t} and Kt,i := It∪{xi[`] | 0 ≤ ` ≤ t}.

Performance of a given control and transmission policy is
measured by the average cost

J=lim sup
T→∞

1

T
E[

T−1∑
t=0

g(x[t])], g(x[t])=
1

2

∑
1≤`,j≤n

(x`[t]− xj [t])2.

(3)
Let In be the n-dimensional identity matrix. Defining the
incident matrix Γ = In ⊗ 1n − 1n ⊗ In and Laplacian L =

1
2ΓᵀΓ = nIn − 1n1

ᵀ
n of this fully connected graph, we can

write g(x[t]) = x[t]ᵀLx[t].;T g measures the disagreement
between states and is zero if all the agents’ states are equal.
It is a discrete-time version of the cost proposed in [11].

The next proposition provides an optimal policy when all
the agents are allowed to transmit all the time.

Proposition 1: Suppose that σi[t] = 1 for every i ∈ N and
t ∈ N0. Then, any policy of the form

ui[t] = −xi[t] + a(x[t], t), i ∈ N, t ∈ N0,

for arbitrary a(·, ·) minimizes (3) for (1). The resulting
optimal cost is

J = J1 = (n− 1)nσ2
w. �

While a(·, ·) could depend on other variables (e.g. previous
states), it is well known in the context of Markov decision
processes that it is enough to search for policies that depend
on the state [13], which justifies this choice.

Interestingly, the natural consensus policy (2) is an optimal
solution with a(x[t], t) = 1

n1
ᵀ
nx[t] for every t ∈ N0.

However, making a(x[t], t) = 0 for every t ∈ N0 results in a
control policy for which each agent tries to reset its state to
the origin, a simpler but non-cooperative way of achieving
consensus. The choice of the natural consensus policy (2) is
justified in the appendix. It discusses an alternative problem
formulation that makes (2) unique in a given sense.

B. Periodic control solution with period larger than one

We now turn to the case where the communication proto-
col is still periodic but with general period h ∈ N, i.e.,

σi[t] =

{
1 if t ∈ {0, h, 2h, . . . },
0 otherwise, ∀i ∈ N, t ∈ N0.

(4)

This is the way in a periodic setting one can reduce com-
munication. As stated next, the optimal control policy and
the optimal cost can still be computed, thus providing a
benchmark for comparison with other (ETC) strategies.

Lemma 1: Suppose that the transmission protocol is pe-
riodic with period h ∈ N, that is, it follows (4). Then, any
policy of the form

ui[t] =

{
− xi[t] + b(It, t) if t ∈ {0, h, 2h, . . . },
b(It, t) otherwise,

(5)

for arbitrary b(·, ·) minimizes (3) for (1). The resulting
optimal cost is

Jh = J1 + φh(n− 1)nσ2
w, φh =

(h− 1)

2
. (6)

�
We chose here to make b(·, ·) It dependent, since It plays

the role of state. The reformulation in the appendix leads to
an optimal policy that is unique in a given sense and sets

b(It, t) =


1

n
1ᵀnx[t] if t ∈ {0, h, 2h, . . . },

0, otherwise.

This is a natural choice and leads to a very simple algorithm
to be implemented by each agent distributedly. This is
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Algorithm 1: Distributed periodic consensus algo-
rithm run by each agent i ∈ N

Set x̂j [0] = xj [0], for all j ∈ N, α[0]= 1
n

∑n
j=1xj [0]

At each time t ∈ {1, 2, . . . }:
if t ∈ {h, 2h, . . . } then

1 Send xi[t] to all agents
2 Receive messages from other agents
3 Set α[t] = 1

n

∑n
j=1xj [t], ui[t] = −xi[t] + α[t]

else
No action needed (ui[t] = 0)

summarized in Algorithm 1 for later comparison with the
ETC case. Note also that Lemma 1 provides the optimal
cost when transmissions are periodic with period larger than
one, which is crucial for comparison with ETC.

C. Problem Statement

Let us define the average transmission rate

r =
1

n

n∑
i=1

ri, ri = lim sup
T→∞

1

T

T−1∑
t=0

E[σi[t]]

of a given control and communication policy and the average
inter-transmission time τ̄ = 1

r . From Lemma 1, we know that
the optimal cost for a fixed communication policy (4) with
period h is J̄(h) = Jh. Suppose that we linearly interpolate
the points (h, Jh), i.e., consider the curve (d, J̄(d)), for d ∈
R≥1,

J̄(d) = Jh + (Jh+1 − Jh)(d− h), d ∈ [h, h+ 1).

We are interested in finding a policy π = {νt,i, µt,i|t ∈
N0, i ∈ N} for communication and control for which the
pair (τ̄π, Jπ), where τ̄π is the average inter-sampling time of
π and Jπ is the cost of π, is below the curve (d, J̄(d)), i.e.,

Jπ ≤ J̄(τ̄π). (7)

Following the nomenclature in [5] and the discrete-time
adaptation proposed in [6], we say that a policy π that
satisfies (7) is consistent (although in [5] the definition is
different, namely by considering a second desired property).
We say that it is strictly consistent if (7) holds with strict
inequality. Typically in ETC, there is parameter (e.g. θ in (11)
below) that allows to tune τ̄π . Also here we are interested in
finding a parameterized class of consistent policies.

III. CONSENSUS ETC POLICY AND MAIN RESULTS

The proposed ETC policy is given in Section III-A leading
to Algorithm 2. Section III-B establishes consistency.

A. Consensus ETC policy

By convention, let us assume that each agent shares its
state at time t = 0, i.e., σi[0] = 1 for all i ∈ N.
Suppose now that each agent can transmit asynchronously
and independently from the other agents. For all i ∈ N let

x̂i[t] :=

{
xi[t], if σi[t] = 1,

α[t− 1], otherwise, for all t ∈ N0,

Algorithm 2: Distributed ETC consensus algorithm
run by each agent i ∈ N

Set x̂j [0] = xj [0], for all j ∈ N, α[0]= 1
n

∑n
j=1xj [0]

At each time t ∈ {1, 2, . . . }:
1 if |xi[t]− α[t− 1]| > θ then

Send xi[t] to all agents and update x̂i[t] = xi[t]
2 Receive possible messages and update x̂j [t] = xj [t]

for nodes j 6= i from which a message is received
3 if either a message was sent or received then

Set α[t] = 1
n

∑n
j=1x̂j [t], ui[t] = −x̂i[t] + α[t] and

x̂j [t+ 1] = α[t] for all j ∈ N.
else

No action needed (ui[t] = 0, α[t] = α[t− 1])

and

α[t] :=
1

n

n∑
j=1

x̂j [t], for all t ∈ N0.

By convention α[−1] = 0. Note that α[t+1] = α[t] if σi[t] =
0 for all i ∈ N. Note also that each agent can compute and
keep track of x̂j [t], and α[t], for all j ∈ N, which depend only
on the shared information It; α[t] can be interpreted as an
estimated consensus value, since it relies on state estimates
rather than on states. The proposed control policy is

ui[t] =

{
− x̂i[t] + α[t] if σj [t] = 1 for some j ∈ N,

0 if σj [t] = 0 for all j ∈ N.
(8)

Note that it takes the form ui[t] = µt,i(Kt,i). Let ei[t] :=
xi[t]− x̂i[t], ẽi[t] := xi[t]− α[t− 1] which evolve as

ei[t] =

{
ẽi[t] if σi[t] = 0

0 if σi[t] = 1
(9)

ẽi[t+ 1] = ei[t] + wi[t].

Note that ẽi[t] and ei[t] are local errors that can be computed
only by each agent i by measuring its own state xi[t] and
keeping track of the shared x̂i[t], α[t− 1].

We define and restrict ourselves to scheduling policies
which are functions of ẽi[t], i.e.,

σi[t] = η(ẽi[t]). (10)

Note that indeed these take the form σi[t] = νt,i(Jt,i). An
important special case is the following threshold policy

σi[t] =

{
1 if |ẽi[t]| > θ

0 otherwise
(11)

where the threshold θ is a positive constant.
This proposed consensus ETC policy can be summarized

as in Algorithm 2. We can interpret this algorithm as follows.
All the agents keep track of the same value α[t] which is
equal to the average of the last transmitted state values; if
an agents’ state x[t] deviates from α[t−1] by more than θ it
communicates it to other agents. When this happens, all the
agents need to update α[t] and simultaneously try to make
their states close to α[t] by setting ui[t] = −x̂i[t] + α[t].
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Let us now compare the communication and computation
requirements of ETC and periodic control. The transmission
rate of agent i in the ETC case is only determined by
Step 1 in Algorithm 2. However, this ETC algorithm will
execute steps 2 and 3 at a typically much higher rate than
this transmission rate, whereas in the periodic case steps
1,2,3 in Algorithm 1 are executed at the same rate 1

h . This
means the agents can be put to sleep in between steps t ∈
{h, 2h, . . . } in the periodic case, but must perform internal
computations in the ETC case. Besides in the ETC case,
agents need to update the input at a typically much higher
rate. The way we define consistency only takes into account
the communication rate. Still, we acknowledge this is a
disadvantage of the ETC algorithm when computation and
control updates and not only communication are expensive.

B. Main result

For every i ∈ N, let the times t at which σi[t] = 1 be

si[`+ 1] = si[`] + τi[`], ` ∈ N0,

where si[0] = 0 and τi[`+1] = inf{t ∈ N|σi[si[`]+ t] = 1}.
Note that τi[`] are stopping times, with the same statistical
properties, for every i ∈ N and every `. Let us denote by τ
one such stopping time, e.g,. τ = τ1[0]. Note that

τ = inf{t ∈ N| |ẽ1[t]| > θ} (12)

with

ẽ1[t+ 1] = ẽ1[t] + wi[t], t ∈ N, ẽ1[0] = 0. (13)

Moreover, ri = 1
E[τ ] , for every i ∈ N, and r = 1

E[τ ] if
E[τ ] <∞.

Theorem 1: Consider (1) and suppose the control policy
is given by (8) and the scheduling policy takes the form (10)
for some function η such that E[τ ] = τ̄ < ∞. Then the
average cost (3) is

J = J1 + ψτ (n− 1)nσ2
w (14)

with

ψτ =
1

σ2
wE[τ ]

E[

τ−1∑
t=1

ẽ1[t]2]. �

This theorem is the main result of the paper. It reveals
that the cost of (8), (10) is obtained by picking a scheduling
policy (or stopping time τ ) for a scalar integrator system (13).
Thus, consider the curve (d, φ̄(d)), for d ∈ R≥1,

φ̄(d) = φh + (φh+1 − φh)(d− h), d ∈ [h, h+ 1).

which, due to φh = h−1
2 , boils down to φ̄(d) = d−1

2 , d ∈
R≥1. If we find a stopping time τ that can ensure that
(E[τ ], ψτ ) is below this curve, i.e., ψτ < φ̄(τ) then due
to Theorem 1 it immediately follows that (7) holds with
strict inequality, irrespective of n. While there are multiples
other ways of achieving this, see [5], [5]–[8], we show next

Fig. 1: Components ψτ and φτ of average costs (3) ver-
sus average inter-sampling time E[τ ] for single integrator
described by (9) for threshold ETC (see (11)) and periodic
control. From (14), (6) we conclude the ETC is consistent.

that (11) guarantees ψτ < φ̄(τ). Note that for (11), ψτ only
depends on the ratio θ

σw
. In fact, we can write

ψτ =
1

E[τ ]
E[

τ−1∑
t=1

ẽs[t]
2], ẽs[t] =

ẽ1[t]

σw
(15)

where for unitary variance random variables ws[t] = w1[t]
σw

,
ẽs[t+ 1] = ẽs[t] + ws[t], t ∈ N, ẽs[0] = 0, and the triggering
condition in (11) is now |ẽs| > θ

σw
. The next proposition

provides a method to compute E[τ ] and ψτ ; it relies on
computing the conditioned probability distribution of the
error given that the triggering condition has not been met up
to time t, which is denoted by pt(·) using the Bayes filter.
Let a(s) ∗ b(s) =

∫∞
∞ a(r)b(s − r)dr denotes convolution

of two real functions in R, 1[c,d](s) := 1 if s ∈ [c, d] and

1[c,d](s) := 0 if s /∈ [c, d], and pw(s) = 1√
2πσw

e
− s2

2σ2w be the
probability distribution of wi[t] for any i, t.

Proposition 2: Consider (13) and the stopping time (12)
for a positive constant θ. Then,

E[τ ] =

∞∑
t=1

βt, βt = Πt−1
`=0λ`

E[

τ−1∑
t=1

ẽ1[t]2] =

∞∑
t=1

vtβt+1, vt =

∫ ∞
−∞

s2pt(s)ds

where λt, pt(.), can be computed by taking initially p̃1(s) =
pw(s) and λ0 = 1 and then recursively computing for t ∈ N

pt(s) =
1

λt
p̃t(s)1[−θ,θ](s), λt =

∫ θ

−θ
p̃t(s)ds,

p̃t+1(s) = pt(s) ∗ pw(s). �
An outcome of this proposition is that E[τ ] <∞ for (11).
The result of applying this procedure is shown in Figure 1

for various values of θ/σw; this plot can be used to predict
the performance for any value of n and σw. It is then clear
that the proposed ETC policy is consistent for any n and σw.
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IV. NUMERICAL EXAMPLE

Figure 2 plots the results of a numerical simulation with
n = 3 for periodic control with h = 5 and Figure 3 the
results for ETC with θ = 0.15, σw = 0.1 which leads to
approximately the same average inter-transmission time r =
0.218. As expected, after transmission times the states move
closer to α[t]. For the values plotted, periodic control has

Fig. 2: Periodic

Fig. 3: ETC for θ = 0.15

Periodic Control MC J Th. J MC 1/r Th. 1/r
n = 3, σw = 1, h = 7 23.973 24 7 7
n = 5, σw = 2, h = 13 34.832 35 13 13

ETC MC J Th. J MC 1/r Th. 1/r
n = 3, σw = 1, θ = 2 11.182 11.159 7.037 6.913
n = 5, σw = 0.5, θ = 1.5 14.324 14.389 13.147 13.085

TABLE I: Comparison of Monte-Carlo (MC) and Theoretical
(Th.) values of the average cost J and average intersampling
time 1/r

overall 5×3 = 15 transmissions, whereas ETC 5+7+5 = 17
transmissions and the cost

∑20
k=1 x

ᵀLx of periodic control
is 8.2041 and for ETC 7.7134. Over a large time horizon
of 10000, Monte-carlo simulation confirms the value for the
average costs and average intersampling times. These are
compared to the theoretical values obtained from the plot in
Figure 1 for some values of n and σw in Table I.

V. CONCLUSIONS

Recently, [11] has shown that an ETC consensus law can
perform worse than periodic control with respect to a cost
measuring disagreement for the same average communica-
tion rate, as the number of agents becomes large. Such
an ETC consensus law is a natural extension of [12] to
multi-agents systems with a complete communication graph
structure. Here, we consider a discrete-time version of the
problem considered in [11]. We provide a different ETC
policy that guarantees a better performance/cost for the same
average communication rate irrespective of the number of
agents. Such an ETC policy, can be described by a simple
distributed algorithm. The connection between the present
work and [11] as well as considering general communication
graphs, not necessarily complete, are topics for future work.

APPENDIX

This appendix proposes a different problem formulation
that leads to an optimal policy coinciding with the natural
consensus policy (2) that is unique in a given sense. Suppose
that possibly p, 0 ≤ p < n, of the agents are leaders, and
the leaders might change in time. If i is a leader at time
t, i ∈ Lt ⊆ N; when there are no leaders at time t, Lt =
∅. The case of no-leaders is the most interesting scenario,
but accounting for possible leaders plays an important role.
The non-leader agents are described as before xi[t + 1] =
xi[t] + ui[t] + wi[t], i ∈ N \ Lt, t ∈ N0. A leader state is
described by xi[t + 1] = xi[t], i ∈ Lt, t ∈ N0, meaning
that it cannot change its state; disturbances are not included
for leaders since (3) would not be finite otherwise.

The shared information set is modified to include infor-
mation about the leader

It = ∪ni=1{xi[`] |σi[`] = 1, 0 ≤ ` ≤ t} ∪ {Lt|0 ≤ ` ≤ t}.

The next proposition generalizes Proposition 1 to the case
where the set of leaders is fixed throughout time. Since only
the asymptotic behavior is important for cost (3), optimal
control policies are not unique. For instance given any
optimal policy µt,i, ui[t] = µt,i(It, t) + κt is also optimal,
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where κt is arbitrary in t ∈ {0, 1, . . . ,M − 1} and κt = 0
for t ≥M , for an arbitrary M ∈ N. Therefore, we consider
the following finite-horizon version of cost (3)

E[

T∑
t=0

g(x[t])] (16)

As proved next, the optimal policy considering (16) is unique
and time-invariant for any given horizon T ∈ N. If we extend
such a unique optimal policy for t > T , it is also an optimal
policy when (3) is considered.

Proposition 3: Suppose that σi[t] = 1 for every i ∈ N and
t ∈ N0, that Lt = L ⊂ N for every t ∈ N0, and p > 0. Then,
an optimal control policy for (1) that minimizes (3) is

ui[t] = −xi[t] +
1

p
(
∑
j∈L

xj [t]), i ∈ N \ L. (17)

Moreover, the resulting optimal cost (3) is

J = (n− 1)(n− p)σ2
w +

n

2p

∑
`,j∈L, 6̀=j

(x`[t]− xj [t])2.

Furthermore, (17) is the unique optimal policy for (1) that
minimizes (16) for any T ∈ N. �

Policy (17) imposes collaboration with the leaders since
each agent needs to average the leaders’ states. but not with
the remaining agents. We thus proceed to a formulation with
stochastic leaders, to arrive at the desired form (2).

Consider that at each time t there is either one randomly
picked agent with probability ε or no leader is selected with
probability 1 − ε; all agents have the same probability of
being the leader at time t. We can model this as

x[t+ 1] = x[t] + Ωδ[t](u[t] + w[t]) (18)

where, Ωi := In − eie
ᵀ
i , for i ∈ N, Ωn+1 = In with

{e1, . . . , en} the canonical basis vectors in Rn, and

Prob[δ[t] = i] =
ε

n
, for i ∈ N, Prob[δ[t] = n+ 1] = 1− ε,

where ei ∈ Rn, i ∈ {1, . . . , n} is a column vector with entry
i equal to one and all other entries equal to zero. Note that
implicitly δ[t] through Lt is part of the information set It.

Proposition 4: Suppose that σi[t] = 1 for every i ∈ N and
t ∈ N0 and consider the problem of finding a control policy
to minimize (3) for system (18). Then, an optimal policy is

ui[t] = eᵀi ũ[t], i ∈ N \ Lt, ũ[t] = Kεx[t], (19)

where Kε = − (1− ε
n )

(n−ε− ε
n )L. Moreover, the resulting cost is

J = Jε,1 =
n(n− ε− ε

n )

(n− ε)2
n(n− (1 + ε) +

ε

n
)σ2
ω.

Thus, as ε � 0, Kε → −I + 1
n1n1

ᵀ
n, Jε,1 → n(n − 1)σ2

ω .
Furthermore, (19) is the unique optimal policy for (1) that
minimizes (16) for any T ∈ N. �

This proposition states that the parameters Kε optimal
control policy as ε � 0 converge to parameters that recovers
the natural consensus policy (2). Note then that from all
the policies taking the form ui[t] = −xi[t] + a(x[t], t) in

Proposition 1, in the case of no leaders, we now have a good
reason to pick the natural consensus policy (2), and it is the
(unique) limit of a sequence of policies parameterized by ε as
ε converges to zero, themselves unique is we consider (16).

Lemma 2: Suppose that the transmission protocol is pe-
riodic with period h, that it follows (4), and consider the
problem of finding a control policy to minimize (3) for
system (18). Then, an optimal policy is given by

ui[t] = eᵀi ũ[t], i ∈ N \ Lt, ũ[t] = Kεx̂[t], (20)

where x̂[k] =

{
x[k] if k is a multiple of h
x̃[k] otherwise,

,‘ and x̃[t +

1] = (I + Ωδ[t]Kε)x̂[t], Moreover, the cost is

Jε,h=Jε,1+φh
(n− ε)2

(n− ε− ε
n )n

(n−1)n, φh :=
(h−1)

2
(1− ε

n
).

Furthermore, this same optimal control policy is the unique
optimal policy for (1) that minimizes (16) for any T ∈ N. �

Again, ε � 0 recovers the policy and cost of Lemma 1.
We can provide consistent ETC policies for the case ε >

0 and recover the one proposed in Section III when ε �
0. While we do not pursue this here, we note that we can
only easily implement this policy in a distributed way when
ε = 0 both in the ETC and periodic case. For example to
compute (20) δ[t] labeling the stochastically chosen leader
would have to be communicated to all agents.
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