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Abstract— This paper proposes a piecewise modeling method
based on fuzzy if-then rules using particle swarm optimization.
The piecewise model has the shape of a rectangular partition
of the state-space; the model can be represented as a fuzzy
if-then rule with singleton consequents. The vertex values of
the rectangular regions are determined using particle swarm
optimization because the optimal solution is a nonlinear pro-
gramming problem. In order to determine optimal vertex values
of the piecewise regions with minimal modeling errors, this
paper proposes a learning algorithm based on simplified fuzzy
inference reasoning and particle swarm optimization methods.
Some numerical simulation results show the effectiveness of the
learning algorithm.

I. INTRODUCTION
In recent years, nonlinear systems have been modeled

using neural networks as data-driven modeling in [1], [2].
Although the modeling performance is high, stability analy-
sis of the model can be difficult due to the high nonlinearity
of the model. Piecewise model studies [3], [4] have also been
conducted. Most studies dealt with piecewise linear models
which are easier for stability analysis and control system
design. Fuzzy models [5] were also used for control system
design, but most studies were conducted for target systems
with known physical structures. In [6], an improved particle
swarm optimization (PSO) method was used for training the
parameters of adaptive neural network based fuzzy inference
systems. A PSO algorithm was utilized to optimize the fuzzy
set parameters in [7].

This study uses a piecewise multilinear (PML) system [8]
as a piecewise model. The system has a simple nonlinearity
and a universal approximator property. In addition, it is
fully parametric. The model has a rectangular shape of the
state-space. It is formed by convex combinations of the
vertices of the piecewise regions and the adjacent regions
have continuity. Because we can represent the models as
a fuzzy if-then rule with singleton consequents, the PML
system is also regarded as a fuzzy system [5]. The stabilizing
conditions of the PML system for continuous and discrete-
time nonlinear systems have been derived in [9], [10].

The author has been conducting research on modeling
methods using piecewise models. Three variables, vertex
values of the piecewise models, dividing points in the state-
space, and the number of piecewise regions, need to be
derived for the PML model construction. In [11], the dividing
points were determined by the data smoothing method of
the spline function, and the vertex values of the piecewise
regions were determined by simplified fuzzy reasoning.
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However, the solution region of the dividing points is narrow
with spline function data smoothing. Therefore, they may
fall into a local solution. In [12], the dividing points were
determined by PSO algorithm [13], [14] to widen the solution
region of these points, and the optimization of the vertex
values for piecewise models was not performed. This study
realizes the optimization of the dividing points by PSO in
[12] and the vertex values of piecewise regions by simplified
fuzzy reasoning in [11], and achieves the construction of a
piecewise model with a small modeling error.

This study develops a piecewise modeling method based
on the PSO algorithm using numerical data. It is an optimiza-
tion method that searches for optimal values by simulating
the behavior of living animals such as school of fish or flock
of birds. The PSO algorithm searches for optimal solutions
by having multiple particles fly around the search space
in where the solution needs to be searched. In [12], the
dividing points of the piecewise regions were determined
using the PSO algorithm because finding the optimal solution
is a nonlinear programming problem. Because the piecewise
model is regarded as a fuzzy if-then rule with singleton
consequents, this study applies a learning algorithm based on
a simplified fuzzy inference reasoning [15] to find the vertex
values of the rectangular region. The optimal vertex values
and dividing points of the piecewise regions with minimal
modeling errors can be found by the proposed modeling
algorithm. Finally, numerical simulations are performed to
demonstrate the effectiveness of the proposed method.

Contributions: This study achieved optimal dividing points
in the state-space and vertex values of the piecewise model
that minimizes modeling error. The piecewise model used in
this study is a nonlinear model to which stability analysis
and stabilization methods can be applied. The model can
be constructed using only vertex value information. While
it is easy to model, it is difficult to determine the optimal
domain division points. This study proposes a method for
constructing a classification model with low modeling error.

II. PML MODEL

A. If-then Rule Expression

The PML model in Rr1...rn can be transformed into an if-
then rule expression based on a fuzzy reasoning.

2024 IEEE 63rd Conference on Decision and Control (CDC)
December 16-19, 2024. MiCo, Milan, Italy 

979-8-3503-1632-2/24/$31.00 ©2024 IEEE 7308



Rule 1 : If x1 is Ar1
1 and · · · and xn is Arn

n ,

Then x+ is f (r1, . . . ,rn).

...

Rule 2n : If x1 is Ar1+1
1 and · · · and xn is Arn+1

n ,

Then x+ is f (r1 +1, . . . ,rn +1).

(1)

where A
r j
j is the fuzzy set, and ω

r j
j (x j), j = 1, . . . ,n, is the

membership function. The degree of the rules is denoted by

µk(x) =Π
n
j=1ω

i j
j (x j),

ω
r j
j (x j) =Π

n
j=1A

r j
j ,

where i1 = r1,r1 + 1, . . . , in = rn,rn + 1, and k =

∑
n
j=1 2 j−1(i j− r j +1).
Region R(r1 ·rn) has 2n if-then rules. The PML model has

Πn
i=1(mi−1) regions and the entire system has 2nΠn

i=1(mi−
1) rules. The fuzzy inference system x+ is denoted by

x+ =
2n

∑
k=1

µk(x) f k

=
r1+1

∑
i1=r1

ω
i1
1 (x1) · · ·

rn+1

∑
in=rn

ω
in
n (xn) f (i1, . . . , in), (2)

where k = ∑
n
i=1 2i−1(i j− r j + 1) and f k = f (i1, · · · , in). The

fuzzy inference system in (2) is the same as that of the PML
system (4). If the PML system is a continuous-time system,
then x+ means x+ = dx/dt ; if it is a discrete-time system,
then x+ means x(t+1); if it is a static system, then x+ means
z.

Note that the PML system (2) has a fuzzy if-then rule ex-
pression with singleton consequents. On the other hand, the
consequent terms of fuzzy if-then rules in T-S fuzzy systems
[5] are the state-space representation of linear systems.

B. State-Space Expression
This study deals with the PML system in n-dimensional

case. The state-space is divided by the following points.

x1 ∈{d1(1), . . . ,d1(r1), . . . ,d1(m1)},
...

xn ∈{dn(1), . . . ,dn(rn), . . . ,dn(mn)},

(3)

where d j(i j) is the vertex of x j, and n j is the number of
vertices of x j; j = 1, . . . ,n. x ∈ S, where S is the bounded
region. The number of piecewise regions is Πn

i=1(mi− 1).
The PML model in region

Rr1...rn ={(x1, . . . ,xn)|d1(r1)≤ x1 ≤ d1(r1 +1),
. . . ,dn(rn)≤ xn ≤ dn(rn +1)}

is denoted by
x+ =

r1+1

∑
i1=r1

ω
i1
1 (x1) · · ·

rn+1

∑
in=rn

ω
in
n (xn) f (i1, . . . , in),

x =
r1+1

∑
i1=r1

ω
i1
1 (x1) · · ·

rn+1

∑
in=rn

ω
in
n (xn)d(i1, . . . , in),

(4)

where

f (r1, . . . ,rn) =
(

f1(r1, . . . ,rn), . . . , fn(r1, . . . ,rn)
)T

,

d(r1, . . . ,rn) =
(
d1(r1, . . . ,rn), . . . ,dn(r1, . . . ,rn)

)T
.

The triangular membership functions are as follows:

ω
r1
1 (x1)

=


d1(r1 +1)− x1

d1(r1 +1)−d1(r1)
, d1(r1)≤ x1 ≤ d1(r1 +1)

0, otherwise

ω
r1+1
1 (x1)

=


x1−d1(r1)

d1(r1 +1)−d1(r1)
, d1(r1)≤ x1 ≤ d1(r1 +1)

0, otherwise
...
ω

rn
n (xn)

=


dn(rn +1)− xn

dn(rn +1)−dn(rn)
, dn(rn)≤ xn ≤ dn(rn +1)

0, otherwise

ω
rn+1
n (xn)

=


xn−dn(rn)

dn(rn +1)−dn(rn)
, dn(rn)≤ xn ≤ dn(rn +1)

0, otherwise.

Fig. 1 shows a PML model in two-dimensional case.

Fig. 1. PML model in two-dimensional case

III. PIECEWISE MODELING

This section presents the PML optimal modeling with
three variables, vertex values f (i1, . . . , in) of the PML model
in (4), dividing points d j(i j) in the state-space in (3), and
the number of piecewise regions, Πn

i=1(mi−1).
In [11], two variables f (i1, . . . , in) and d j(i j) were op-

timized by fixing the variable Πn
i=1(mi − 1). This study

proposes a modeling algorithm for constructing a PML
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system using numerical data. Because the PML system can
also be expressed as fuzzy if-then rules, the vertex values
of the PML model are determined based on a modeling
algorithm using simplified fuzzy inference reasoning. This
method derives the vertex values and dividing points of a
piecewise model by combining simplified fuzzy inference
reasoning [15] with a spline function minimization algorithm
[16]. Because the calculations of the vertex values and
dividing points are nonlinear programming problems, finding
a globally optimal solution is difficult. In [12], the dividing
points d j(i j) of the piecewise regions were determined using
the PSO algorithm because finding the optimal solution is not
a linear programming problem. The proposed method can
determine the optimal vertex values of the piecewise regions
with minimal modeling errors.

This paper proposes a PML modeling method that com-
bines simplified fuzzy inference reasoning and the PSO
algorithm. The proposed method can optimize two variables
f (i1, . . . , in) and d j(i j).

A. PSO Algorithm

In this study, the PSO algorithm [13] was used to deter-
mine the dividing points of the PML model in the state-space.
PSO is an optimization method that searches for optimal
values by simulating the behavior of living animals such as
school of fish or flock of birds. The PSO algorithm is simple
and has several features. The first is that it is a multi-point
search algorithm with multiple search points. Another feature
is that it shares information about the best solution among
multiple points and searches for solution space based on that
information.

Particle position is represented as xi =
(xi1, . . . ,xi j, . . . ,xin)

T in Rn , where i is the particle number
and j is the number of dimensions. The particle positions
include position xi and velocity vi = (vi1, . . . ,vi j, . . . ,vin)

T . It
has the best position data bp= (bpi1, . . . ,bpi j, . . . ,bpin)

T and
evaluation value E(bp) for each particle. In addition, it has
the best position data gbp = (gbpi1, . . . ,gbpi j, . . . ,gbpin)

T

and evaluation value E(gbp) for all the data of the swarm
group.

Moving vector vk+1
i j is generated from the weighted linear

combination of present position xk
i j, previous move vector

vk
i j, and best positions (bpk,gbpk). Next position xk+1

i j is
calculated as the sum of xk

i j and vk+1
i j .

Particle positions and velocities in [14] are represented as

vk+1
i j =wvk

i j + c1r1(bpk
i j− xk

i j)+ c2r2(gbpk
i j− xk

i j),

xk+1
i j =xk

i j + vk+1
i j ,

where r1 and r2 are uniform random numbers between 0 and
1, w is the inertia constant, and c1 and c2 are the local and
global weights, respectively; k is the number of calculations.

The PSO algorithm can be applied to a wide range of
problems, including no differentiable systems because it does
not require gradient information.

Algorithm 1 PSO
1) Set m, w, k = 0
2) Set initial particle position x0

i and velocity v0
i .

bp0
i ← x0

i ,gbp0
l ← bp0

l ,

where l = argmini E(bp0
i ).

3) Calculate the velocity and position

vk+1
i j ← wvk

i j + c1r1(bpk
i j− xk

i j)+ c2r2(gbpk
i j− xk

i j)

xk+1
i j ← xk

i j + vk+1
i j

4) Update bpi and gbp
if E(xk+1

i )< E(bpk
i ), then bpk+1

i ← xk+1
i

else bpk+1
i ← bpk

i
end if
gbpk+1← bpk

l , where l = argmini E(bpk
i ).

5) Exit sequence
if k ̸= T , then k← k+1, return to 3)
end if

B. PML Modeling Using the PSO Algorithm

In [12], the PSO algorithm was applied to construct PML
models of nonlinear systems with known model dynamics.
PML modeling requires determining the dividing points to
construct the piecewise regions. To construct a PML model
with 4×4 piecewise regions, two optimal dividing points are
required to be found in the state-space. Fig. 2 illustrates two
particle positions, that is, × : (d∗1(σ + 1),d∗2(τ + 1)) in the
first quadrant and + : (d∗1(σ),d∗2(τ)) in the third quadrant.

Fig. 2. Two dividing points in the first and third quadrants

The evaluation value of modeling based on the PSO
algorithm is the error between the PML model and the non-
linear system. Two optimal dividing points are determined
to minimize the evaluation value of the PML model. The
evaluation value of the PML model is

E(x) =
∫ d2(τ+1)

d2(τ)

∫ d1(σ+1)

d1(σ)
F(x)T F(x)dx1dx2 (5)
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for region Rστ , where x = (x1,x2)
T ,

F(x) =
σ+1

∑
i1=σ

τ+1

∑
i2=τ

wi1
1 (x1)w

i2
2 (x2) f (i1, i2)− f (x)

C. Determining optimal vertex values f (i1, . . . , in)

This subsection focuses on finding the optimal solution
[11] of f (i1, . . . , in) when the number of piecewise regions
and dividing points in the state-space are fixed. The rule
expression (1) is used instead of the state-space model (4) for
the PML modeling, in order to determine the optimal vertex
values. A simplified fuzzy inference reasoning algorithm
[15] is applied to the rules (1). Algorithm 2 shows the
fuzzy inference reasoning-based algorithm. optimal values
f k = f (i1, . . . , in) are determined by the gradient descent
method. In this algorithm, (x∗(t),x+∗ (t)) is the training data,
τ is the training rate. M is the number of training data and N
is the number of iterations. δ (t) means the calculating error.

This paper proposes an optimal method for the PML
modeling. The modeling method finds the optimal dividing
points d j(i j) and vertex values f (i1, . . . , in) in Fig. 1 using
Algorithms 1 and 2, respectively.

Algorithm 2 Optimal vertex values

1) Set (x∗(t),x+∗ (t)), M, N, f k, τ , i = 1, and t = 1.
2) for i≤M
3) for t ≤ N
4) Substitute x∗(t) into

x+(t) =
2n

∑
k=1

µk(x∗(t)) f k (6)

5) Calculate error δ (t) = x+(t)− x+∗ (t)
6) Derive f k from

f k(t +1) = f k(t)+ τµk(x∗(t))δ (t)

7) Update t←+1
8) end for
9) Update i←+1

10) end for

IV. SIMULATION RESULTS

It is not difficult for nonlinear systems, such as convex
functions (e.g. z = x2 + y2), to determine the parameters of
a piecewise model. Due to demonstrating the effectiveness
of the proposed method, this study constructs a piecewise
model of the following multimodal function with two local
minima, which has complex constructions.

z = f (x,y) = 4x2−2.1x4 + x6/3+ xy−4x2 +4y4 (7)

Figs. 3 and 4 show three-dimensional and contour plots in
the bounded region of the state-space −1≤ x,y≤ 1.

The 60 initial positions (30 positions per quadrant) of the
optimal dividing points (d1(i),d2( j)) are shown on Fig. 5.
The algorithm parameters are m = 30, w = 0.3, c1 = 1.2,
c2 = 1.2, and T = 20. The initial particle positions (x0,y0)

Fig. 3. Multimodal function

Fig. 4. Contour plots

are uniform random values bounded by 0≤ (x0,y0)≤ 1 and
−1≤ (x0,y0)≤ 0 in the first and third quadrants, respectively.
r1 and r2 are uniform random values between 0 and 1. vi j is
also a uniform random value bounded by |vi j| ≤ 1.
× and + represent particle positions in the first and third

quadrants, respectively. These particle positions represent
optimal dividing point candidates. Fig. 6 shows particle
positions after the fifth iteration. Fig. 7 shows particle
positions after the 15th iteration. The optimal dividing points
are + : (d∗1(σ),d∗2(τ)) = (−0.397,−0.761) and × : (d∗1(σ +
1),d∗2(τ +1)) = (0.312,0.752).

Then, the optimal dividing points of the PML model are
represented as

x ∈ {d1(1),d1(2),d1(3),d1(4),d1(5)}
= {−1.000, −0.397, 0, 0.312, 1.000},

y ∈ {d2(1),d2(2),d2(3),d2(4),d2(5)}
= {−1.000, −0.761, 0, 0.752, 1.000},

(8)

Vertex values f (i1, i2) in Table I are calculated by substi-
tuting the dividing points in (8) into the multimodal function
in (7).
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Fig. 5. Particle points initially

Fig. 6. Particle points after the fifth iteration

Fig. 7. Particle points after the 15th iteration

TABLE I
VERTEX VALUES f (i1, i2) CALCULATED BY SUBSTITUTING (8) INTO (7)

d2(1) d2(2) d2(3) d2(4) d2(5)
d1(1) 3.233 2.019 2.233 0.499 1.233
d1(2) 0.977 -0.093 0.580 -0.702 0.183
d1(3) 0 -0.975 0 -0.983 0
d1(4) 0.058 -0.843 0.369 -0.379 0.681
d1(5) 1.233 0.497 2.233 2.002 3.233

Optimal vertex values f (i1, i2) using Algorithm 2 are listed
in Table . In this example, the number of iterations is M = 50,
training rate is τ = 1, and initial data are the vertices in Table
I.

TABLE II
VERTEX VALUES z = f (i1, i2) USING ALGORITHM 2 AND (8)

d2(1) d2(2) d2(3) d2(4) d2(5)
d1(1) 3.336 1.819 2.602 0.262 1.465
d1(2) 0.818 -0.337 0.836 -0.999 0.144
d1(3) -0.227 -1.096 0 -1.434 -0.022
d1(4) 0.013 -1.086 0.669 -0.699 0.779
d1(5) 1.191 0.324 2.464 1.812 3.244

For comparison with the conventional method, the fol-
lowing vertices dividing x and y into equal intervals were
considered.

x ∈ {d1(1),d1(2),d1(3),d1(4),d1(5)}
= {−1.000, −0.500, 0, 0.500, 1.000},

y ∈ {d2(1),d2(2),d2(3),d2(4),d2(5)}
= {−1.000, −0.500, 0, 0.500, 1.000}

(9)

Vertex values f (i1, i2) in Table III are calculated by substi-
tuting the dividing points in (9) into the multimodal function
in (7).

TABLE III
VERTEX VALUES z = f (i1, i2) CALCULATED BY SUBSTITUTING (9) INTO

(7)

d2(1) d2(2) d2(3) d2(4) d2(5)
d1(1) 3.233 1.983 2.233 0.983 3.233
d1(2) 1.374 0.374 0.874 -0.126 1.374
d1(3) 0 -0.750 0 -0.750 0
d1(4) 0.374 -0.126 0.874 0.374 0.374
d1(5) 1.233 0.983 2.233 1.983 1.233

Figs 8 and 9 show PML models with 4×4 regions. Fig.
8 shows a PML model constructed using the dividing points
in (8) and vertex values in Table II calculated by PSO and
learning methods described in Algorithms 1 and 2. Fig. 9
shows a PML model constructed using the vertices in (9)
and Table III. Table IV shows the modeling errors E(x)
in (5) of the three PML models with the dividing points
and vertex values. Therefore, the simulation results indicate
that the PML model constructed using Algorithms 1 and 2
achieves good modeling performance in terms of modeling
error.
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Fig. 8. PML model with the dividing points (8) and vertex values in Table
II

Fig. 9. PML model with the dividing points at equal intervals (9) and
vertex values in Table III

The objective of this study is to construct a piecewise
model with as few modeling errors as possible with a
small number of piecewise models, using PML models that
can perform stability analysis and stabilization. This study
has no particular indicator that the modeling error should
be reduced. However, it is important to use the value of
modeling error as an indicator. I plan to conduct future
research on robust stability and modeling errors.

TABLE IV
MODELING ERRORS OF THE PML MODELS

Dividing points Vertex values Error
(7) by Algorithm 1 Table II by Algorithm 2 5.101
(7) by Algorithm 1 Table I 7.157

(8) at equal intervals Table III 53.773

V. CONCLUSION

This study developed a piecewise modeling method using
PSO and a learning algorithm based on simplified fuzzy

inference reasoning. The piecewise model has the shape of
a rectangular partition of the state-space The proposed algo-
rithm determined optimal vertices of the piecewise regions
with minimal modeling errors. The numerical simulation
results were performed to demonstrate the effectiveness of
the algorithm.

I will consider PML models with many piecewise regions
for complex nonlinear systems and apply them to multi-
dimensional nonlinear systems and conduct some researches
on robust stability and modeling errors in the future.
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