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Abstract— The alternating direction method of multipliers
(ADMM) has been widely adopted in low-rank approximation
and low-order model identification tasks; however, the perfor-
mance of nonconvex ADMM is highly reliant on the choice
of penalty parameter. To accelerate ADMM for solving rank-
constrained identification problems, this paper proposes a new
self-adaptive strategy for automatic penalty update. Guided
by first-order analysis of the increment of the augmented
Lagrangian, the self-adaptive penalty updating enables effective
and balanced minimization of both primal and dual residuals
and thus ensures a stable convergence. Moreover, improved
efficiency can be obtained within the Anderson acceleration
scheme. Numerical examples show that the proposed strategy
significantly accelerates the convergence of nonconvex ADMM
while alleviating the critical reliance on tedious tuning of
penalty parameters.

I. INTRODUCTION

In the recent decade, the idea of structured low-rank
matrix approximation has stimulated a continually growing
amount of work in dynamical system identification [1]–
[6]. By exploiting the low-rank property of data matrices
germane to system order, one is capable of identifying low-
order models directly from data. Its prevalence arises from
the fact that, for model-based control design, it suffices to
capture dominating process dynamics using a parsimonious
structure [7]. Besides, the reduced complexity renders the
model less susceptible to noise-corruption and alleviates
over-fitting.

For the sake of computational tractability, a plenty of
low-rank approximation methods resolve relaxed problems
by means of the nuclear norm heuristic [8]–[10]. Although
only convex programs need to be solved, these methods
more or less suffer from performance loss due to relax-
ation; see [11] for detailed discussions. The rank-constrained
program (RCP) offers a more straightforward approach,
which enforces strict satisfaction of rank constraints and thus
helps to reduce approximation error. RCP has already found
successful applications in various data-driven modeling tasks
including continuous-time model identification [5], [6], struc-
tured subspace identification [12], [13], factor analysis [14],
to mention a few.

Because of the nonconvexity of rank constraint, RCP is
NP-hard and notoriously difficult to solve. Current solution
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algorithms can be primarily classified into convex-concave
procedure and its variants, which solve relaxed problems
successively [11], [13], [15], and alternating projection-
based methods, which split the optimization problem into
subproblems and solve them alternately. As a representative
of the latter, the alternating direction method of multipliers
(ADMM) has drawn immense attentions in resolving RCP
due to its capability of starting from an infeasible solution
and the flexibility in handling different problem structures
[16]–[18]. However, ADMM is known to suffer from slow
convergence to a local optimum, especially in the final
stage. Even though the convergence of ADMM has been
proved for specific nonconvex problems, it either relies on
strong assumptions that are nontrivial for RCP, or introduces
additional approximations [17], [19], [20]. The crux is that,
the performance of nonconvex ADMM heavily hinges on
the penalty parameter, whose fine-tuning is cumbersome. As
a rule-of-thumb, the penalty parameter shall be set small
at the initial stage to escape from local optima, and then
increased continually to enforce feasibility. However, such
an updating strategy is susceptible to selection of hyper-
parameters, which may lead to poor convergence (e.g. an
imbalanced reduction of primal and dual residuals), or even
divergent behaviors.

In this work, a novel self-adaptive penalty updating strat-
egy for nonconvex ADMM is proposed to solve RCP prob-
lems in low-rank model identification. Motivated by conver-
gence criterion of nonconvex ADMM, we propose to carry
out first-order analysis of the increment of the augmented
Lagrangian, which acts as an information carrier to effec-
tively guide the automatic update of penalty parameter. In
addition, by regarding ADMM as fixed-point iterations, the
proposed self-adaptive strategy can be implemented within
the Anderson acceleration scheme to further improve the
convergence performance. Numerical experiments show that
the proposed accelerated ADMM routine yields desirable
convergent performance and manifests insensitivity towards
initialization of penalty, thereby offering ease of implemen-
tation in face of real-world problems.

The layout of this paper is organized as follows. Sec-
tion II revisits the RCP formulation of low-order system
identification problems and the ADMM routine. Section III
describes the new self-adaptive penalty updating strategy for
nonconvex ADMM and its implementation in the Anderson
acceleration scheme. Section IV showcases results of numer-
ical examples, followed by final concluding remarks.

Notations: The operators rank{A}, A⊤ and ||A||F de-
note the rank, the transpose and the Frobenius norm of a
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matrix A, respectively. vec(A) denotes the vector formed
by concatenating each column of matrix A. A ◦B denotes
the element-wise product of two matrices of equal size. The
identity matrix and the vector of all ones are denoted as I
and 1, whose dimensions can be deemed from the context.
The Hankel matrix constructed from a vector x ∈ RN with
n columns is defined as the following operator:

Hn(x) =


x1 x2 · · · xn

x2 x3 · · · xn+1

...
...

. . .
...

xN−n+1 xN−n+2 · · · xN

 .

II. RANK-CONSTRAINED IDENTIFICATION OF
LOW-ORDER DYNAMICAL MODELS

Consider the following single-input single-output discrete-
time linear system:

y(t) = G(q)u(t) + v(t), (1)

where t is the time index, q is the forward shift operator, and
u(t), y(t), v(t) denote the input, output and additive noise
at time t. The transfer function G(q) could be expressed as
G(q) =

∑∞
k=1 gkq

−1, where {gk}∞k=1 denote the impulse
response (IR). As the IR of a stable system decays to zero,
truncation becomes a simple yet viable approach that gives
rise to the finite impulse response (FIR) model G(q) =∑l

k=1 gkq
−1, where l is the length of FIR. Defining θ =

[g1, · · · , gl]⊤ ∈ Rl, model (1) can be approximated as:

y(t) = ϕ(t)⊤θ + v(t), (2)

where ϕ(t) = [u(t − 1), · · · , u(t − l)]⊤. Given N samples
pairs {ϕ(t), y(t)}Nt=1, (2) can be stacked in a vector form
y = Φθ + v, where y = [y(1), · · · , y(N)]⊤, Φ =
[ϕ(1), · · · ,ϕ(N)]⊤, and v = [v(1), · · · , v(N)]⊤. The clas-
sical least-square estimate of θ is then given by

θ̂LS = argmin
θ

∥y −Φθ∥2 = (Φ⊤Φ)−1Φ⊤y. (3)

However, under heavy noise and inadequate sample size,
least-square solution tends to be ill-condition. A remedy is
given by the kernel-based methods, which control model
complexity with the regularized least-square problem [21]:

θ̂ReLS = argmin
θ

∥y −Φθ∥2 + γ · θ⊤K−1θ, (4)

where γ > 0 is the tuning parameter and K is the kernel
matrix constructed based on prior knowledge of impulse
response, such as smoothness and exponential decay.

More recently, a new RCP perspective alternative to
kernel-based methods has been cultivated in system iden-
tification. For a low-order model, its impulse response θ
typically embodies a low-rank structure, which is useful for
controlling model complexity in a straightforward manner.
More precisely, given a model with known order r, the
Hankel matrix Hn(θ) has an exact rank of r provided n > r,
which motivates the following RCP formulation [5], [6]:

θ̂RCP = argmin
θ

∥y −Φθ∥2

s.t. rank {Hn(θ)} = r
(5)

By solving (5), a low-order G(q) can be exactly recovered
from θ̂RCP.1 For example, the RCP-based identification
of first-order and second-order plus time delay (FOTD &
SOTD) models was considered in [5] and its advantage in
relay feedback controller tuning was further exploited in
[6]. The ADMM has been a popular approach to solving
nonconvex RCP [16], [17]. By defining auxiliary variables
e ∈ RN and Z ∈ R(l+1−n)×n, the RCP in (5) is reformulated
as:

min
θ,Z,e

∥e∥2

s.t. Z+Hn(θ) = 0, e+Φθ − y = 0

rank {Z} = r

(6)

The corresponding augmented Lagrangian ignoring the rank
constraint is given by:

L(Z, e,θ,Λ,λ;β)

= ∥e∥2 − λ⊤ (e+Φθ − y)− ⟨Λ,Z+Hn(θ)⟩

+
β

2
∥e+Φθ − y∥2 + β

2
∥Z+Hn(θ)∥2F ,

(7)

where {λ ∈ RN×1,Λ ∈ R(l+1−n)×n} are dual variables and
β > 0 is the penalty. Then the parameters are updated in a
Z → e → θ → Λ → λ order. Therein the updates of e and
Z are given by:

ek+1 = argmin
e

∥e∥2 + β

2

∥∥∥∥∥e+Φθk − y − λk

β

∥∥∥∥∥
2

(8)

Zk+1 = argmin
Z

∥∥∥∥Z+Hn(θ
k)− Λk

β

∥∥∥∥2
F

s.t. rank {Z} = r

(9)

Problem (8) admits a least-square solution. Without loss of
generality, l + 1 − n ≥ n is assumed and thus the solution
of (9) is given by the following truncated SVD:

Zk+1 = Uk
(
Ĩr ◦Σk

)
(Vk)⊤, (10)

where matrices U ∈ R(l+1−n)×n, Σ = diag{σ1, · · · , σn} ∈
Rn×n, and V ∈ Rn×n are derived from the SVD:

−Hn(θ
k) +

Λk

βk
= UkΣk(Vk)⊤, (11)

and the diagonal matrix

Ĩr = diag{1, · · · , 1︸ ︷︷ ︸
r

, 0, · · · , 0︸ ︷︷ ︸
n−r

} ∈ Rn×n (12)

is used to “pick out” r largest singular values from Σ and
helps preserve a low-rank structure.

Different from the common two-block convex ADMM,
which possesses appealing convergence property, the con-
vergence performance of nonconvex ADMM heavily de-
pends on the selection of penalty parameter β [19]. Among
various applications of nonconvex ADMM, there are two
primary options for deciding β during iterations. One can
trivially set β to be a sufficiently large constant [17], [18],

1This property also holds for continuous-time transfer function G(s).
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[22], as implied by the established convergence results for
nonconvex ADMM [19]. However, an excessively large β
negatively impacts the convergence, especially the reduction
of dual residuals. Another heuristic, which is referred to
as multiplicative updating, is to increase β by a factor of
ρ > 1 successively until a maximum βmax is reached or the
residuals satisfy certain convergence condition [23]–[25]. Its
rationality lies in that using a small β at the initial stage helps
to circumvent local optima. However, the values of hyper-
parameters such as ρ and βmax exert significant influence on
the convergence and thus entail tedious fine-tuning.

III. ACCELERATED NONCONVEX ADMM FOR
RANK-CONSTRAINED MODEL IDENTIFICATION

In this section, a new penalty updating strategy for rank-
constrained nonconvex ADMM is proposed by perform-
ing first-order analysis of the increment of augmented La-
grangian L, which is then integrated with the Anderson
acceleration scheme for improved efficiency. Before proceed-
ing, we make some simplifications to facilitate subsequent
analysis. In fact, the updates of Z and e are independent
with each other and thus can be merged. Meanwhile, the
updates of Λ and λ are also decoupled. Based on this, the
following concatenated variables are introduced:

w =

[
vec(Z)

e

]
, µ =

[
vec(Λ)

λ

]
. (13)

Then the RCP (6) can be compactly expressed as:

min
w,θ

∥e∥2

s.t. w +Qθ + ỹ = 0

rank {Z} = r

(14)

where

Q =

[
M
Φ

]
, ỹ =

[
0
−y

]
, (15)

and the coefficient matrix M is defined in order to fulfill
Mz = vec(Hn(z)). Then the augmented Lagrangian L could
be rewritten as:

L(w,θ,µ;β)

= ∥e∥2 − µ⊤ (w +Qθ + ỹ) +
β

2
∥w +Qθ + ỹ∥2 ,

(16)

Consequently, the ADMM iterations can be summarized as
follows:

wk+1 = argmin
w

L(w,θk,µk;βk)

s.t. rank {Z} = r
(17)

θk+1 = argmin
θ

L(wk+1,θ,µk;βk) (18)

µk+1 = µk − βk
(
wk+1 +Qθk+1 + ỹ

)
(19)

A. Self-adaptive penalty in nonconvex ADMM

The proposed updating strategy of penalty parameter is
inspired from the descent property of L, which is pivotal for
establishing the convergence of nonconvex ADMM towards

a stationary point [19, Property 2]. The increment of L in
the k-th iteration reads as:

∆Lk ≜ L(wk+1,θk+1,µk+1;βk)− L(wk,θk,µk;βk).
(20)

Given wk, θk, µk and βk, new updates wk+1, θk+1,
and µk+1 can be uniquely determined. Thus, ∆Lk can be
thought of a function of {wk,θk,µk, βk}. Notably, its partial
derivative ∂∆Lk/∂βk contains useful information about the
impact of varying βk on ∆Lk. When ∂∆Lk/∂βk < 0, it
indicates that a larger βk is expected to make the augmented
Lagrangian possess a better descending characteristic. When
∂∆Lk/∂βk > 0, a smaller βk is suggested. This motivates
the following heuristic for updating β in nonconvex ADMM:

βk+1 =



βk · ρinc,
∂∆Lk

∂βk
< 0,

βk/ρdec,
∂∆Lk

∂βk
> 0,

βk,
∂∆Lk

∂βk
= 0,

(21)

where ρinc > ρdec > 1 are, respectively, the increase and
decrease factors of β.2

Remark 1: The above heuristic is reminiscent of the well-
known residual-based adaptive penalty updating policy for
convex problems, which is based on inspecting the relation
between primal and dual residuals [16], [26]:

βk+1 =


βk · ρinc,

∥∥εkp∥∥2 > κ
∥∥εkd∥∥2 ,

βk/ρdec,
∥∥εkd∥∥2 > κ

∥∥εkp∥∥2 ,
βk, otherwise,

(22)

where primal and dual residuals εkp and εkd are defined by

εk+1
p = wk+1 +Qθk+1 + ỹ, (23)

εk+1
d = βkQ(θk+1 − θk), (24)

and κ > 1 is a threshold parameter. Notwithstanding its
effectiveness on a variety of convex problems, the updating
rule (22) still has some pitfalls. In essence, such a strategy
takes

∥∥εkp∥∥2 +
∥∥εkd∥∥2 as an indicator of convergence and

the update of β is oriented towards equal primal and dual
residuals. However, recent studies have pointed out that there
is no theoretical guarantee that identical primal and dual
residuals are optimal for the convergence [27], which will
also be evidenced in case study.

The key challenge of executing the self-adaptive strategy
consists in the calculation of ∂∆Lk/∂βk. Delving into
ADMM iterations (17)-(19), we have the following support-
ing result.

Theorem 1: The following relations hold during iterations
of ADMM:

Q⊤µk+1 = 0, (25)

θk+1 = −(Q⊤Q)−1Q⊤ (
wk+1 + ỹ

)
. (26)

2The reason for setting ρinc > ρdec lies in that, a small β may lead to
divergence, so one needs to be more cautious in decreasing the value of β.
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Proof: In (18), the update of θ admits the following
closed-form solution:

θk+1 = −(Q⊤Q)−1Q⊤
(
wk+1 + ỹ − µk

βk

)
, ∀k ≥ 0.

(27)
Plugging it into (19) and left-multiplying Q⊤ on both sides,
we arrive at (25). Substituting (25) into (27) then yields (26).

Now we are in the position to describe the derivation of
∂∆Lk/∂βk. Using Theorem 1, the increment of L can be
rewritten as:
∆Lk = ∥ek+1∥2 − ∥ek∥2

−
[
µk − βk

(
wk +Qθk + ỹ

)]⊤ (
wk+1 −wk

)
+ βk

[∥∥P(wk+1 −wk)
∥∥2 /2 + ∥∥P(wk+1 + ỹ)

∥∥2] ,
(28)

where P = I − Q
(
Q⊤Q

)−1
Q⊤. In this way, θk+1 and

µk+1 can be eliminated. One then obtains:

∂∆Lk

∂βk
=

(
∂wk+1

∂βk

)⊤ [[
2ek+1

0

]
− µk

+βk
(
wk +Qθk + ỹ +P⊤P(3wk+1 −wk + 2ỹ)

)]
+ (wk +Qθk + ỹ)⊤(wk+1 −wk)

+
∥∥P(wk+1 −wk)

∥∥2 /2 + ∥∥P(wk+1 + ỹ)
∥∥2 .

(29)
Clearly, only ∂wk+1/∂βk needs to be computed, which is
defined as:

∂wk+1

∂βk
=

vec(∂Zk+1

∂βk

)
∂ek+1

∂βk

 . (30)

We first deal with the computation of ∂Zk+1/∂βk. Because
Zk+1 = Uk(Ĩr ◦Σk)(Vk)⊤, its derivative can be derived as

∂Zk+1

∂βk
=
∂Uk

∂βk

(
Ĩr ◦Σk

)
(Vk)⊤ +Uk

(
Ĩr ◦

∂Σk

∂βk

)
(Vk)⊤

+Uk
(
Ĩr ◦Σk

) ∂(Vk)⊤

∂βk
,

(31)
which involves the derivatives of Uk, Σk and Vk. Recalling
that UkΣk(Vk)⊤ = −Hn(z

k)+Λk/βk, we can attain these
derivatives using matrix calculus of SVD [28]:

∂Σk

∂βk
= I ◦Θk

∂Uk

∂βk
= Uk

(
G ◦

[
ΘkΣk +Σk(Θk)⊤

])
+
(
I−Uk(Uk)⊤

) ∂Ωk

∂βk
Vk(Σk)−1

∂Vk

∂βk
= Vk

(
G ◦

[
ΣkΘk + (Θk)⊤Σk

])
+
(
I−Vk(Vk)⊤

) ∂(Ωk)⊤

∂βk
Uk(Σk)−1

(32)

where

Θk = (Uk)⊤
∂Ωk

∂βk
Vk = − 1

β2
k

(Uk)⊤ΛkVk, (33)

and entries of G ∈ Rn×n are given by

Gij =

{
1/(σ2

j − σ2
i ), i ̸= j

0, i = j
(34)

We then proceed to compute ∂ek+1/∂βk. According to the
solution to problem (8), the derivative can be easily derived
as

∂ek+1

∂βk
=

1

βk + 2
(y − ek+1 −Φθk). (35)

Remark 2: Since SVD used in computing ∂Zk+1/∂βk

has been obtained in the previous iteration (11) and the com-
putation of ∂ek+1/∂βk has a simple form, the computation
of ∂∆Lk/∂βk only calls for minor extra computational cost
as compared to the original ADMM procedure.

B. Implementation with Anderson acceleration

Next, we describe the implementation of the self-adaptive
penalty within the Anderson acceleration scheme. It follows
from (17)-(19) that, θk+1 and µk+1 depend solely on θk and
µk and are independent of wk. Thus, letting ξ = [θ⊤ µ⊤]⊤,
the above ADMM iteration can interpreted as the fixed-point
iteration ξk+1 = G(ξk), to which the Anderson acceleration
can be applied [20]. By keeping track of results in m past
iterations, the accelerated iteration for ξk+1 is given by:

ξk+1
AA = G(ξk)−

m∑
j=1

αk
j

∗ [G(ξk−j+1)− G(ξk−j)
]
. (36)

Coefficients (αk
1
∗
, αk

2
∗
, . . . , αk

m
∗
) are the solution to the

following least-squares problem:

min
(αk

1 ,α
k
2 ,...,α

k
m)

∥∥∥∥∥∥ηk −
m∑
j=1

αk
j

(
ηk−j+1 − ηk−j

)∥∥∥∥∥∥
2

. (37)

where ηk = G(ξk) − ξk denotes the residual in fixed-point
iterations.

In addition, a fall-back strategy is necessary for the steady
execution of Anderson acceleration. Combined residual is
a commonly used criterion for convergence performance in
ADMM, which is defined as:

εk+1 = βk∥εk+1
p ∥2 + ∥εk+1

d ∥2/βk. (38)

The entire ADMM procedure with Anderson acceleration
is summarized in Algorithm 1. In each iteration, Anderson
acceleration is attempted by utilizing m > 0 past results,
where m is bounded by mmax to avoid negative impact of
distant iterations [20]. The efficacy of acceleration is then
evaluated by the combined residual ε. If a smaller ε is
achieved, the accelerated outcome is then accepted. Other-
wise, the algorithm backtracks to the last generic ADMM
iteration.

Remark 3: The success of Anderson acceleration entails
the convergence of ADMM itself [20]. Since the self-
adaptive updating strategy improves the convergence per-
formance of ADMM, it may also improve the efficacy of
Anderson acceleration.
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Algorithm 1 Nonconvex ADMM for Rank-Constrained
Model Identification with Self-Adaptive Penalty and Ander-
son Acceleration

Input: Initial w0, θ0 and µ0. Initial penalty β0.
Increase and decrease factors ρinc > ρdec > 1.
The maximum number of past iterations used
for acceleration mmax ≥ 1.
Maximum iteration number kmax.
Stopping tolerance εtol.

1: Set iteration count k = 0.
2: while TRUE do
3: // Run one iteration of ADMM
4: Update wk+1, θk+1, µk+1 using (17)-(19).
5: // Compute the combined residual
6: Compute ε using (38).
7: if reset == TRUE or ε < εprev then
8: // Record the latest accepted iterate
9: ξrec = ξk+1. εprev = ε. reset = FALSE.

10: // Compute the accelerated iterate
11: m = min(mmax, k).
12: Compute ξk+1

AA using (36), (37).
13: Let ξk+1 = ξk+1

AA .
14: Update βk+1 using (21).
15: k = k + 1.
16: else // Backtrack to the last accepted record
17: Let ξk = ξrec. reset = TRUE.
18: end if
19: if k > kmax or ε < εtol then
20: return θrec.
21: end if
22: end while

IV. NUMERICAL EXAMPLES

We carry out a series of simulation experiments to illus-
trate the advantages of the proposed method, where the task
is to identify the following continuous-time SOTD model:

G(s) =
0.2s+ 1

1.5s2 + 0.6s+ 1
e−3s. (39)

A relay feedback control lasting 50s is imposed on the
process to excite the system and generate input and out-
put data for identification. The input and output data are
sampled at an interval of 0.5s, and Gaussian white noise
with variance of σ2

N = 0.01 is added to the output. In each
simulation, 100 data points are collected in each simulation,
and then 100 Monte Carlo simulations are carried out in total
based on which the average performance can be evaluated.
The ADMM routines under different updating strategies,
including constant penalty, the multiplicative updating and
the proposed self-adaptive updating with/without Anderson
acceleration, are executed to solve the RCP problem (5) and
identify the model. The value of θ is initialized using the
kernel-based method in [6].

A. Constant β

First, we investigate the performance of ADMM un-
der constant β. We consider four different β (β =
1, 10, 100, 1000). In each case, the average squared norms
of primal residual εp and dual residual εd are recorded to
evaluate the performance, as profiled in Fig. 1. It can be seen
that when β ≤ 10, ADMM shows poor performance due
to the inadequate penalty, and with β ≥ 100, a large dual
residual is encountered. Henceforth, using a constant penalty
can hardly achieve a balanced reduction between primal and
dual residuals.

0 100 200 300 400 500
Iterations

10-6

10-4

10-2

100

0 100 200 300 400 500
Iterations

10-4

10-2

100

102

104

Fig. 1. The average squared norm of primal residual εp and dual residual
εd in constant penalty in 100 Monte Carlo runs.

B. Multiplicative updating strategy

Then we investigate the performance of ADMM under
multiplicative updating. We conduct two experiments. In the
former one, the initial value of beta is uniformly set to
β0 = 1, and we consider different update strategies under
different setups (ρ = 1.01, 1.1 and βmax = 10, 100, 1000).
In the latter one, the update strategy is fixed as ρ =
1.01, βmax = 100, and different initial values of β is con-
sidered (β0 = 0.1, 1, 10, 100). The average squared norms
of primal residual and dual residual are illustrated in Fig.
2.3 In Fig. 2(a), the ADMM under multiplicative updating
strategy exhibits a slow convergence with small ρ and βmax,
e.g., ρ = 1.01, βmax = 10, and leads to large dual residual
with large ones. In other cases, even though the primal and
dual residuals continually decrease in the early stage, the
convergence gets bogged down after β reaches the maximum.
Fig. 2(b) once more shows that small β0 gives rise to slow
convergence or even divergence, while large β0 yields a
large dual residual. To sum up, the practical performance
of ADMM is sensitive to the choice of hyper-parameters
and it is difficult to concurrently and steadily suppress two
residuals even with careful tuning.

C. Residual-based adaptive updating strategy

Next, before delving into the proposed self-adaptive up-
dating method, we investigate the performance of ADMM
under the existing residual-based adaptive updating strategy
mentioned in Remark 1, which endeavors to obtain equal

3Note that in Fig. 2(a), the curve under ρ = 1.01, βmax = 1000 is
dismissed because 1.01500 < 1000.
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(a) Performance under different ρ and βmax.
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(b) Performance under different β0.

Fig. 2. The average squared norm of primal residual εp and dual residual
εd in multiplicative updating strategy in 100 Monte Carlo runs.

primal residual and dual residual during iterations [16], [26].
Four different initial values of β are considered (β0 =
0.1, 1, 10, 100). Other hyper-parameters in (22) are set as
κ = 10, ρinc = ρdec = 1.02. The average squared norms
of primal residual and dual residual are profiled in Fig. 3.
It can be clearly seen that, under all β0, the residual-based
adaptive update strategy fails to converge, thereby revealing
its incapability of handling nonconvex ADMM.
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Fig. 3. The average squared norm of primal residual εp and dual residual
εd in residual-based adaptive updating strategy in 100 Monte Carlo runs.

D. The proposed self-adaptive updating strategy

Finally, we testify the performance of ADMM under the
proposed self-adaptive updating strategy, which is compared
with that under multiplicative updating strategy. For the pro-
posed method, hyper-parameters are specified as ρinc = 1.05,

ρdec = 1.02. For multiplicative updating strategy, the fine-
tuned setup with ρ = 1.01 and βmax = 100 is adopted. For
both methods, we consider cases with and without Anderson
acceleration, and m is limited by mmax = 5. In all cases the
initial penalty is set to β0 = 1. The evolution of residuals
is displayed in Fig. 4. It can be seen that self-adaptive
penalty yields much better performance than multiplicative
updating. On one hand, the self-adaptive updating results
in significantly faster convergence in the early stage as it
allows for using a large ρinc. On the other hand, thanks to
the adaptability of βk, both primal and dual residuals can be
stably reduced. Moreover, further improvement can be made
by performing Anderson acceleration, which yields much
smaller residuals under both strategies. When applied to the
proposed method, it can also be observed that oscillation is
effectively damped with Anderson acceleration.
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Multiplicative Updating
Multiplicative Updating with Anderson Acceleration
Self-Adaptive Updating
Self-Adaptive Updating with Anderson Acceleration

Fig. 4. The average squared norm of primal residual εp and dual residual
εd in multiplicative updating and proposed self-adaptive updating strategies
in 100 Monte Carlo runs.

We finally highlight that, as a merit of the proposed
method, its adaptability enables to effectively accommodate
different initial values of β. We testify the performance of
ADMM under the proposed updating strategy and Anderson
acceleration with β0 = 0.1, 1, 10, 100. Apart from ||εp||2 and
||εd||2, the evolution of β is also recorded, as depicted in Fig.
5, where both primal and dual residuals can be effectively
reduced and a steady convergence is attained. Most impor-
tantly, despite different initialization, the values of β get close
after iterations and eventually converge. This demonstrates
that the proposed self-adaptive strategy is somewhat immune
to initial values of β and is thus advantageous over generic
updating schemes in practical usage.

V. CONCLUSION

In this work, a novel self-adaptive strategy for penalty
updating was proposed to accelerate the nonconvex ADMM
algorithm used in low-order model identification. In com-
parison with generic penalty updating strategy, the proposed
method gives rise to a more balanced suppression of both
primal and dual residuals, and thus exhibits better con-
vergence performance. The implementation with Anderson
acceleration was developed to attain further improvement.
Numerical studies demonstrated the significant accelerations
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Fig. 5. The average squared norm of primal residual εp and dual residual
εd, and penalty parameter βk in the proposed self-adaptive updating
strategy together with Anderson acceleration under different β0 in 100
Monte Carlo runs.

brought by the proposed method and its insensitivity to initial
values. The theoretical convergence properties of the pro-
posed method and its applications to more general nonconvex
programs are worthy of future investigation.
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