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Abstract— Networked dynamic systems are ubiquitous in
various domains, such as industrial processes, social networks,
and biological systems. These systems produce high-dimensional
data that reflect the complex interactions among the network
nodes with rich sensor measurements. In this paper, we pro-
pose a novel algorithm for latent dynamic networked system
identification that leverages the network structure and performs
dimension reduction for each node via dynamic latent variables
(DLVs). The algorithm assumes that the DLVs of each node have
an auto-regressive model with exogenous input and interactions
from other nodes. The DLVs of each node are extracted
to capture the most predictable latent variables in the high
dimensional data, while the residual factors are not predictable.
The advantage of the proposed framework is demonstrated
on an industrial process network for system identification and
dynamic data analytics.

I. INTRODUCTION

Networked dynamic systems have become increasingly
prevalent across various fields, from industrial processes to
social networks and biological systems. These systems are
composed of interconnected nodes with their own dynamics
and dynamic interactions with other nodes [1], [2]. The nodes
in the networked systems are often equipped with a rich
set of sensors that yield high-dimensional time series data.
Recent works have dealt with the estimation and system
identification problems of these networked models with
tremendous progress [3], [4], [5]. However, in dealing with
high-dimensional networked systems data, little has been
done to extract low-dimensional latent dynamic networks
from the high-dimensional networked data [6].

To reduce dimension in data with static collinearity, statis-
tical techniques such as principal component analysis (PCA),
partial least squares (PLS), and canonical correlation analysis
(CCA) are commonly used in data analytics [7], [8]. These
methods effectively extract low-dimensional latent variables
(LV) with statistical objectives. However, these methods do
not focus on extracting latent dynamic information from data.
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To deal with the issue of co-moving dynamics or collinear
dynamics in high-dimensional data, dynamic latent vari-
ables (DLVs) and dynamic factor models (DFMs) have
been developed. Box and Tiao [9] introduced a technique
to decompose multivariate time series into dynamic and
static latent factors. Following this work, DFMs have been
extensively used in financial time series to extract reduced-
dimensional dynamics [10]. Besides, compressive sensing
offers another perspective for extracting reduced-dimensional
dynamic LVs (DLVs) with principles of signal processing
and optimization [11].

The aforementioned methods may not emphasize the
predictability of the extracted DLVs. To this end, various
reduced-dimensional DLVs methods with a focus on pre-
dictability have been proposed. For instance, the dynamic
inner PCA (DiPCA) [12] algorithm, the dynamic inner
PLS (DiPLS) [13] model, and the dynamic inner CCA
(DiCCA) [14] method all extract the most predictable DLVs
based on the univariate auto-regressive (AR) assumption. Re-
cent works include the latent vector AR (LaVAR) model with
fully interactive DLVs [15] and the latent state space rep-
resentation with a CCA objective (LaSS-CCA) [16]. These
methods also extract predictable DLVs in descending order
and have been demonstrated to reduce the dimensionality
of time-series data effectively. However, these methods do
not consider the networked structure in the data, lacking the
ability to capture the complex communications among the
nodes of the networked system.

To address the challenges mentioned above, we propose
a new framework for latent dynamic networked systems
modeling with the following advantages:

1) To handle co-moving or collinear dynamics, low dimen-
sional dynamics are captured on each individual node
system to extract DLVs with a network topology;

2) The proposed framework extends single-node DLV
methods to networked dynamic systems to analyze high-
dimensional networked time series data.

3) The proposed networked systems adopt vector auto-
regressive models with exogenous input (VARX) for
each node, and dynamic connections to other nodes
follow a fully interactive topology;

4) The identified network model is a networked latent
VARX model (Net-LaVARX), which is readily suitable
for networked system identification.

We demonstrate the effectiveness of the proposed framework
by applying it to an industrial process network.

The remainder of the paper is organized as follows.
In Section II, the proposed framework for latent dynamic
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networked systems is presented. The Net-LaVARX algorithm
is developed in Section III with its learning procedures. In
Section IV, a dynamic case study is detailed to verify the
proposed method. The conclusions are given in Section V.

TABLE I: Notation

JMK node index set {1, 2, . . . ,M}
Ni indices of incoming neighbor nodes, subset of JMK
yi
k measurement vector of Node i

ui
k exogenous input of Node i

vi
k dynamic latent variables (DLVs) of Node i

εik innovations vector of Node i, driving vi
k

pi/ℓi/mi dimension of the measurement/DLVs/input of Node i
si DLV order of Node i
Ri projection weight matrix of Node i
Pi DLV loadings matrix of Node i
Wi equivalent projection weight matrix of Node i
P̄i static loadings matrix of Node i
Ai

h auto-regressive coefficient matrix of Node i
Bi

h exogenous input coefficient matrix on Node i

Cij
h regression coefficient matrix from Node j to Node i

II. NETWORKED LATENT DYNAMIC SYSTEMS

A. Networked latent vector AR model with exogenous input
(Net-LaVARX)

As described in the introduction section, high dimensional
data usually have dynamics with a reduced dimension for
each node of a networked system, giving rise to the need
to develop networked latent dynamic modeling methods.
For convenience, the notation is listed in Table I. Consider
a networked dynamic system of M nodes, where Node
i ∈ JMK has a measurement vector yi

k ∈ Rpi . Let vi
k ∈ Rℓi

represent the reduced dimensional dynamic latent vector
(DLV) for Node i, whose elements lie independently in
an ℓi-dimensional subspace. Following [15] for a single node
system, the dynamics of yi

k are related to vi
k with an outer

model,

yi
k = Piv

i
k + P̄iε̄

i
k, (1)

where ε̄ik ∈ ℜpi−ℓi denotes the static noise, and Pi ∈ ℜpi×ℓi

and P̄i ∈ ℜpi×(pi−ℓi) are the respective loadings for the
DLVs and static latent factors.

It is noted that the auto-correlated DLVs vi
k and static

noise ε̄ik complement each other to make up the whole signal
series yi

k. We give the following definition for a networked
latent vector auto-regressive model with exogenous input.

Definition 1: A networked latent vector auto-regressive
model with exogenous input (Net-LaVARX) system is de-
scribed by (1) with

1)
[
Pi P̄i

]
∈ ℜpi×pi form a non-singular matrix,

2) the DLVs vi
k of Node i have auto-regressive terms with

exogenous input as

vi
k =

si∑
h=1

(
Ai

hv
i
k−h +Bi

hu
i
k−h

)
+

∑
j∈Ni

si∑
h=1

Cij
h v

j
k−h + εik,

(2)
where the notation is given in Table I, and

Fig. 1: A diagram of a networked latent dynamic systems
with three nodes.

3) the noise terms εik, ε̄jk are serially uncorrelated and
mutually independent random sequences for i ∈ JMK.

With the definition, if ℓi = pi, the model is a standard
full-dimensional networked dynamic system, and ε̄ik is null.
On the other hand, if ℓi = 0, the model is composed of static
nodes only. Without the cross terms Cij

h , the above model is
a standard latent VARX model for Node i. The networked
dynamic system is illustrated in Fig. 1, where dashed arrows
represent dynamic interactions between nodes.

B. Extracting Net-LaVARX DLVs via oblique projections

The ultimate objective of the Net-LaVARX modeling is
to develop algorithms to extract the DLVs vi

k and estimate
model parameters of (1) and (2). To do this, we design a
projection to eliminate the column space of P̄i and focus on
that of Pi. We give the following lemma to state the result.

Lemma 1: Let P̄⊥
i ∈ ℜpi×ℓi have full column rank and

P̄⊺
i P̄

⊥
i = 0. Then

vi
k = R⊺

i y
i
k, (3)

where Ri = P̄⊥
i (P

⊺
i P̄

⊥
i )

−1, R⊺
i Pi = I, and PiR

⊺
i is an

oblique projection matrix, i.e., (PiR
⊺
i )

2 = PiR
⊺
i .

The proof of this lemma is given in the appendix of the
paper. This lemma shows that we can extract the DLVs via
an oblique projection. Further, using (3), the projection

yi,proj
k = PiR

⊺
i y

i
k = Piv

i
k (4)

is a reconstruction of yi
k.

While separating the dynamic variations from static ones
in (1) is feasible, Pi cannot be uniquely identified due to
the bilinear decomposition in (1). Assuming v∗i

k is the true
DLV with loadings P∗

i , we have

yi
k = P∗

i v
∗i
k + P̄iε̄

i
k.

For any nonsingular M ∈ ℜℓi×ℓi , we have

P∗
i v

∗i
k = (P∗

iM
−1)(Mv∗i

k )

It is obvious that vi
k = Mv∗i

k is an equivalent dynamic
latent vector. Therefore, the true loadings matrix can only
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be identified up to the same range space, since P∗
iM

−1 and
P∗

i share the same range space. For this reason, the subspace
of the DLVs is uniquely identified. There are extra degrees
of freedom to make the DLVs in vi

k in a pre-specified order,
e.g., a descending order of predictability with constrained
magnitudes [14], [15].

Substituting (3), (2) into (1) gives the model of measure-
ment variables as

yi
k =

si∑
h=1

(PiA
i
hR

⊺
i y

i
k−h +PiB

i
hu

i
k−h)

+
∑
j∈Ni

si∑
h=1

PiC
ij
h R

⊺
i y

j
k−h + eik, (5)

which is a networked VARX model with reduced-rank auto-
regressive matrices PiA

i
hR

⊺
i , where

eik = Piε
i
k + P̄iε̄

i
k

is the equivalent noise sequence of the model.
Since εik ∈ ℜℓi and eik ∈ ℜpi are the random noises that

are serially independent, the best predictions of vi
k and yi

k

are, respectively

v̂i
k =

si∑
h=1

(Ai
hv

i
k−h +Bi

hu
i
k−h) +

∑
j∈Ni

si∑
h=1

Cij
h v

j
k−h, (6)

ŷi
k = Piv̂

i
k (7)

with the auto-regressive coefficient matrix Ai
h ∈ ℜℓi×ℓi , the

exogenous input coefficient matrix Bi
h ∈ ℜℓi×mi , and the

regression coefficient matrix Cij
h ∈ ℜℓi×ℓj .

C. Net-LaVARX with a CCA objective

Taking account of the interactions between the networked
nodes, we aim to find the projection weight matrices Ri

for i ∈ JMK that make the DLVs vi
k the most predictable

based on the latent dynamics, with ℓi < pi,∀i ∈ JMK for the
dimension reduction purposes. Let s = max{si, i ∈ JMK}
and consider that we have s + N samples of training data
{{yi

k,u
i
k}

s+N
k=1 , i ∈ JMK}. Similar to [15] for a single node

system, we use the last N samples to form the following
Net-LaVARX CCA objective

min
{Ri,Ai

h,B
i
h,C

ij
h }

J =

M∑
i=1

s+N∑
k=s+1

∥vi
k − v̂i

k∥2 (8)

s.t.
s+N∑

k=s+1

vi
k(v

i
k)

⊺ = I, i ∈ JMK, (9)

where the first s samples are saved for initialization.

III. LEARNING PROCEDURE OF DYNAMIC LATENT
NETWORK SYSTEMS

A. Net-LaVARX objective with training data

With s + N samples of training data {{yi
k,u

i
k}

s+N
k=1 , i ∈

JMK}, we denote the matrices of output and input data as

Yi =
[
yi
1 yi

2 · · · yi
s+N

]⊺ ∈ ℜ(s+N)×pi ,

Ui =
[
ui
1 ui

2 · · · ui
s+N

]⊺ ∈ ℜ(s+N)×mi .
(10)

The time-shifted matrices with N samples are formed as

Yi
j =

[
yi
j+1 yi

j+2 · · · yi
j+N

]⊺ ∈ ℜN×pi

Ui
j =

[
ui
j+1 ui

j+2 · · · ui
j+N

]⊺ ∈ ℜN×mi

Vi
j =

[
vi
j+1 vi

j+2 · · · vi
j+N

]⊺ ∈ ℜN×ℓi ,

(11)

for j = 0, 1, . . . , s, where Vi
j = Yi

jRi. For the case of
j = s, we have

Vi
s =

[
vi
s+1 vi

s+2 · · · vi
s+N

]⊺ ∈ ℜN×ℓi

The objective (8) is reformulated as

min
{Ri,Ai

h,B
i
h,C

ij
h }

J =

M∑
i=1

∥Vi
s − V̂i

s∥2F (12)

s.t. (Vi
s)

⊺Vi
s = I, i ∈ JMK (13)

where ∥ · ∥F denotes the Frobenius norm and V̂i
s depends

on {Ri,A
i
h,B

i
h,C

ij
h } which can be obtained from (6) as

V̂i
s =

si∑
h=1

(
Vi

s−hA
i
h

⊺
+Ui

s−hB
i
h

⊺
)
+

∑
j∈Ni

si∑
h=1

Vj
s−hC

ij
h

⊺

= Vi
sAi + Ui

sBi +
∑
j∈Ni

Vj
sCij , (14)

where the augmented matrices are given as follows

Vj
s =

[
Vj

s−1 Vj
s−2 · · · Vj

s−si

]
, j ∈ JMK

Ui
s =

[
Ui

s−1 Ui
s−2 · · · Ui

s−si

]
,

Ai =
[
Ai

1 Ai
2 · · · Ai

si

]⊺
,

Bi =
[
Bi

1 Bi
2 · · · Bi

si

]⊺
,

Cij =
[
Cij

1 Cij
2 · · · Cij

si

]⊺
, j ∈ Ni

for i ∈ JMK. To further simplify the notations, we denote

Zi =
[
Vi Ui [Vj ]j∈Ni

]
,

where [Vj ]j∈Ni is arranged row-wise with all Vj for j ∈ Ni.
Similarly, we collect all DLV model parameters as

Qi =

 Ai

Bi

[Cij ]j∈Ni

 ,

where [Cij ]j∈Ni is arranged column-wise with all Cij for
j ∈ Ni. The objective (12) is rewritten as

min
{Ri,Qi}

J =

M∑
i=1

∥Vi
s − V̂i

s∥2F =

M∑
i=1

∥Vi
s − ZiQi∥2F

s.t. (Vi
s)

⊺Vi
s = I, i ∈ JMK. (15)

The above equality constraints guarantee that the objective is
equivalent to the sum of canonical correlations of all nodes
[15].
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B. Solution of the Net-LaVARX models

Due to the bilinear decomposition of the Net-LaVARX
models, an alternating iterative solution is expected, as shown
in early work [15]. Below we give an iterative solution to
update {Ri}Mi=1. Given {Ri}Mi=1, {Vi

s}Mi=1 can be calculated.
We have the following solution for the i-th component by
minimizing (15),

Qi = (Zi)
+
Vi

s, (16)

where (·)+ refers to the Moore–Penrose pseudo-inverse.
Then we have

V̂i
s = Zi(Zi)

+
Vi

s. (17)

The objective (15) can be rewritten as

min
{Ri}

J =

M∑
i=1

∥∥∥Vi
s − Zi(Zi)

+
Vi

s

∥∥∥2
F

=
M∑
i=1

∥∥Vi
s

∥∥2
F
−

M∑
i=1

∥∥∥Zi(Zi)
+
Vi

s

∥∥∥2
F

=

M∑
i=1

ℓi −
M∑
i=1

∥∥∥Zi(Zi)
+
Yi

sRi

∥∥∥2
F

s.t. (Vi
s)

⊺Vi
s = Iℓi , i ∈ JMK

(18)

In the iterative scheme, Zi depends on the previous values
of {Ri}Mi=1. Therefore, the above objective is equivalent to
maximizing the following M separate objectives,

max
Ri

Ji =
∥∥∥Zi(Zi)

+
Yi

sRi

∥∥∥2
F

s.t. (Vi
s)

⊺
Vi

s = R⊺
i (Y

i
s)

⊺
Yi

sRi = Iℓi

(19)

for i ∈ JMK. To make it easy to satisfy the equality
constraints, we perform the following singular value decom-
position (SVD)

Yi
s = U i

sDi
s(Vi

s)
⊺

where Di
s retains all non-zero singular values of Yi

s which
makes U i

s = Yi
sVi

s(Di
s)

−1. The DLV score matrix is equiv-
alently obtained by linearly combining U i

s as

Vi
s = U i

sWi = Yi
sVi

s(Di
s)

−1Wi = Yi
sRi

which makes

Ri = Vi
s(Di

s)
−1Wi (20)

Therefore, solving Wi is equivalent to solving for Ri.
With the above SVD the objective (19) is transformed into

the following objective

max
Wi

Ji =
∥∥∥Zi(Zi)

+U i
sWi

∥∥∥2
F

= tr
{
W⊺

i (U
i
s)

⊺Zi(Zi)
+U i

sWi

}
s.t. (Vi

s)
⊺
Vi

s = W⊺
i Wi = Iℓi .

(21)

It is clear that the above objective with W⊺
i Wi = Iℓi is

achieved only if Wi are the eigenvectors of (U i
s)

⊺Zi(Zi)
+U i

s

corresponding to the ℓi maximum eigenvalues. Therefore,
performing eigen-decomposition

(U i
s)

⊺Zi(Zi)
+U i

s = W̄iΛiW̄
⊺
i , (22)

the optimal solution is Wi = W̄i (:, 1 : ℓi) for i ∈ JMK. The
complete iterative Net-LaVARX algorithm is summarized in
Algorithm 1. Note that in the algorithm, the DLV scores
are scaled to unit variance as a post-processing step. The
loadings matrix is solved by

Pi = argmin ∥Yi
s −Vi

sP
⊺
i ∥

2
F

= (Yi
s)

⊺Vi
s = Vi

sDi
sW

i.
(23)

Algorithm 1 Pseudo-code for Net-LaVARX-CCA

Input: Scale output Yi and inputs Ui to zero mean and unit
variance; specify the number of DLVs ℓi and order si for
i ∈ JMK;

Output: Weight matrices Ri, loadings matrices Pi, and
VARX coefficients Qi, for i ∈ JMK;
Perform SVD: Yi

s = U i
sDi

s(Vi
s)

⊺, i ∈ JMK;
Initialize Wi = Iri(:, 1 : ℓi), where ri is the rank of Di

s;
Form Ui

s =
[
Ui

s−1 Ui
s−2 · · · Ui

s−si

]
, i ∈ JMK;

while not converge & iter < max iter do
for i = 1 : M do

Update i-th DLV node Vi
s = U i

sW
i;

Update the corresponding Vi
s with Vi

s;
Concatenate augmented DLVs and inputs for Zi

s;
Perform eigen-decomposition on (U i

s)
⊺Zi

s(Zi
s)

+U i
s

and store the ℓi leading eigenvectors in Wi;
end for
Convergence detection on Wi;

end while
Calculate Ri =

√
N − 1Vi

s(Di
s)

−1
Wi;

Calculate DLV scores Vi = YiRi;
Calculate loading matrix Pi = Vi

sDi
sW

i/
√
N − 1;

Calculate VARX coefficients Qi, for i ∈ JMK.

IV. CASE STUDY

In this section, we present an application of the pro-
posed net-LaVARX model on the Tennessee Eastman process
(TEP) [17] with specially simulated dynamic data under
decentralized control [18]. The goal is to demonstrate the
effectiveness of the dynamic latent networked model in
predicting the behavior of the TEP systems and to compare
the variable partition strategies with different network parti-
tioning of the process.

The current simulation represents an improved version of
the original TEP problem [19]. We record data from 12
manipulated variables and 22 measured process variables.
Unlike the heavily utilized simulated data with a 3-minute
interval for steady-state modeling [20], the dataset used in
this study is sampled every 36 seconds to reflect latent
dynamics in the data. Nine manipulated variables, namely
XMV(1)-XMV(8) and XMV(10)-XMV(11), are treated as
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TABLE II: The TEP variable partition description with different strategies.

Partition Nodes w/ Units Process Measurements Exogenous Inputs

I
Reactor&Cond. XMEAS(1)-XMEAS(3), XMEAS(6)-XMEAS(9), XMEAS(21) XMV(1)-XMV(3), XMV(10), XMV(11)

Separator&Comp. XMEAS(5), XMEAS(10)-XMEAS(14), XMEAS(20), XMEAS(22) XMV(5)-XMV(7)
Stripper XMEAS(4), XMEAS(15)-XMEAS(19) XMV(4), XMV(8)

II
Reactor XMEAS(1)-XMEAS(3), XMEAS(6)-XMEAS(9), XMEAS(21) XMV(1)-XMV(3), XMV(10)

Separ.&Cond.&Comp. XMEAS(5), XMEAS(10)-XMEAS(14), XMEAS(20), XMEAS(22) XMV(5)-XMV(7), XMV(11)
Stripper XMEAS(4), XMEAS(15)-XMEAS(19) XMV(4), XMV(8)

the exogenous inputs, while XMEAS(1)-XMEAS(22) are
chosen as the process measurements.

The central units in TEP consist of a reactor, a stripper,
and a vapor-liquid separator (Separ.) column with a con-
denser (Cond.) and a compressor (Comp.). By examining
the process flow chart in [17] and decentralized control in
[18], we respectively model the TEP process as networked
dynamic systems with two partition scenarios, which are in
Table II. Partition-I includes the node of the reactor with the
condenser, the node of the separator with the compressor, and
the node of the stripper. Partition-II moves the compressor
to the node of the separator. For comparison, we also tested
a model that treats all measurements and inputs as a whole,
i.e., the LaVARX model, without considering the networked
structure, denoted as Monolithic.

The Net-LaVARX models are built on each partition of
the TEP process. For the Net-LaVARX model, the hyper-
parameters include the number of DLVs ℓi and the AR orders
si. To select the optimal number of hyper-parameters, the
grid search method is utilized, where the first 60% of the
samples are used to train the model, and the next 15% is
used for validation purposes. The last 25% of the data is
reserved for testing the model generalization performance.
The performance metrics adopted are the coefficient of
determination (R2), the correlations (Corr) coefficients, the
root mean squared error (RMSE), and the mean absolute
error (MAE) between the predicted and actual measurement
values. The optimal number of hyper-parameters ℓ∗i and s∗i
with performance metrics on the validation set are depicted
in Table III. It is noticed that the sums of the optimal number
of ℓ∗ and s∗ for Partition-I and Partition-II are comparable to
that of the Monolithic (LaVARX) model, but their prediction
performance is rather different. Precisely, the Net-LaVARX
models with Partition-I and Partition-II attain the respective
best RMSE and MAE, and the best R2 and Corr on the
validation set. It also verifies the feasibility of dividing
the TEP into a networked system model with three nodes
according to its central columns, and the effectiveness in
improving the prediction performance.

Once the optimal ℓ∗i and s∗i are decided, we train the final
Net-LaVARX models again using the entire training set (first
75% of the samples). Then, we evaluate the performance of
the final model on the remaining 25% of the samples, with
the same metrics given in Table IV. The results show that
networked systems with both partitions outperform the per-
formance of the monolithic model, as evidenced in Table III
and Table IV.

TABLE III: The optimal hyper-parameters according to the
performance metrics on the validation set.

Monolithic Partition-I Partition-II

ℓ∗ 19 [7, 6, 5] [7, 7, 5]
s∗ 17 [6, 6, 6] [6, 6, 6]
R2 0.919 0.972 0.972

Corr 0.946 0.972 0.983
RMSE 0.232 0.114 0.117
MAE 0.186 0.090 0.092

To visualize the interactions between the latent nodes
in these networked dynamic systems, the cross-correlations
among the DLV scores of each node are calculated. With
the threshold of 0.1 on the correlations, the DLVs network
graph for Partition-II is generated and visualized in Fig. 2,
where the nodes are marked with distinct colors. Each node
contains the optimal number of DLVs. For easy visualization,
the arcs from the leading two DLVs are colored, whereas the
remaining ones are shown in light grey. The arcs indicate the
connectivity between these DLVs, and the line width of each
arc corresponds to the correlation magnitude between the
connected DLVs. It is noticed that the thick arcs of different
colors only appear between the leading 2 DLVs among these
three nodes. This phenomenon coincides with our model
objective that the predictable DLVs in each node are ranked
in descending order. The leading DLVs of all nodes have
consistently strong interactions among them, which dominate
the underlying dynamics of the networked system. The minor
DLVs have limited predictability and low correlations among
them. As a particular case, DLV N3.5 in Fig. 2 of the stripper
node has no significant correlations with other nodes.

In addition, the sizes of dots for the node and DLVs
in Fig. 2 represent the corresponding R2 values, which
correspond to predictability. It can be seen that the leading
DLVs tend to have larger sizes of dots, but this is not
absolute. For instance, although N2.2 has a weak intra-
group prediction ability, it has considerable connectivity with
N1. The above observations shed light on interpreting latent
dynamic networked systems for complex plants.

V. CONCLUSIONS

In this paper, a new framework for latent dynamic net-
worked system modeling is successfully developed to extract
low-dimensional network dynamics from high-dimensional
networked data. The new latent networked models can handle
co-moving or collinear dynamics with dimension reduction
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TABLE IV: The performance metrics with the optimal hyper-
parameters on the test data.

Metrics Monolithic Partition-I Partition-II

R2 0.896 0.958 0.962
Corr 0.940 0.969 0.979

RMSE 0.234 0.114 0.113
MAE 0.188 0.091 0.089

Fig. 2: The graph visualization of the networked system
nodes according to cross-correlations among the DLV scores
in Partition-II. N1.x marked in blue is the reactor node; N2.x
in red is the separator node; N3.x in green is the stripper
node.

and take the process network topology into account. The Net-
LaVARX models applied to the dynamic TEP dataset show
that it is beneficial to partition complex plants into networked
systems by employing the process topology. The results
demonstrate the potential of the proposed latent dynamic
networked modeling for system identification. Future work
will focus on the computational complexity and robustness
analysis of the networked system identification framework.

APPENDIX

A. Proof of Lemma 1

We first need to show that (P̄⊥
i )

⊺Pi is invertible. Since
[Pi P̄i] in (1) is non-singular,

(P̄⊥
i )

⊺[Pi P̄i] = [(P̄⊥
i )

⊺Pi 0ℓi×(pi−ℓi)]

has a rank of ℓi, i.e., (P̄⊥
i )

⊺Pi has full rank. Therefore,
(P̄⊥

i )
⊺Pi is invertible.

It is straightforward to show that

R⊺
i Pi = ((P̄⊥

i )
⊺Pi)

−1(P̄⊥
i )

⊺Pi = I.

It follows that

(PiR
⊺
i )

2 = Pi(R
⊺
i Pi)R

⊺
i = PiR

⊺
i ,

which shows that PiR
⊺
i is an oblique projection [21].

Moreover, it follows from P̄⊺
i P̄

⊥
i = 0 that

R⊺
i P̄i = ((P̄⊥

i )
⊺Pi)

−1(P̄⊥
i )

⊺P̄i = 0.

Thus, we have

R⊺
i y

i
k = R⊺

i Piv
i
k +R⊺

i P̄iε̄
i
k = vi

k + 0 = vi
k.

This completes the proof.
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networked systems with time-invariant topology,” IFAC-PapersOnLine,
vol. 48, no. 28, pp. 1184–1189, 2015, 17th IFAC Symposium on
System Identification SYSID 2015.

[5] A. Haber and M. Verhaegen, “Subspace identification of large-scale
interconnected systems,” IEEE Transactions on Automatic Control,
vol. 59, no. 10, pp. 2754–2759, 2014.

[6] S. J. Qin, Y. Dong, Q. Zhu, J. Wang, and Q. Liu, “Bridging systems
theory and data science: A unifying review of dynamic latent variable
analytics and process monitoring,” Annual Reviews in Control, vol. 50,
pp. 29–48, October 2020.
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