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Abstract— This paper utilizes the weak approximation
method to analyze differential games that involve mixed strate-
gies. Mixed strategies have the potential to produce unique
strategic behaviors, whereas traditional models and tools in
pure strategy games cannot be directly applied. Based on the
stochastic processes with independent increments, we define
the mixed strategy without assuming the knowledge of the
opponents’ strategy and system state. However, this general
mixed strategy poses challenges in evaluating game payoff and
game value. To overcome these challenges, we utilize the weak
approximation method to employ a stochastic differential game
to characterize the dynamics of the mixed strategy game. We
demonstrate that the game’s payoff function can be precisely
approximated with an error of the same scale as the step size.
Furthermore, we estimate the upper and lower value functions
of the weak approximated game to analyze the existence of game
value. Finally, we provide numerical examples to illustrate and
elaborate on our findings.

I. INTRODUCTION

Differential game theory is a branch of game theory that
deals with dynamic, continuous-time interactions between
multiple decision-makers or agents. In contrast to the clas-
sical game theory, which assumes that players choose their
strategies simultaneously, differential games account for the
fact that players may choose their strategies over time, and
the evolution of the game depends on the states of the system.

One important subclass of differential games is differential
games with mixed strategies. In such games, players select
their strategies based on probability distributions over a
set of possible pure strategies. This allows for a richer
representation of the player’s behavior, as they can exhibit
varying degrees of randomness or unpredictability in their
decision-making.

The use of mixed strategies in differential games can
capture important features of real-world problems, such as
incomplete information, imperfect competition, and stochas-
tic dynamics. Mixed strategies can also generate novel strate-
gic behavior that may not emerge in pure strategy games.
In addition, the use of mixed strategies can be a useful
approach for addressing the challenge of determining a value
for differential games in cases where the Isaacs condition is
not satisfied.

The study of differential games has a rich history, with
numerous contributions from researchers in game theory,

This work was supported by the Joint Tackling Plan of the Yangtze
River Delta Science and Technology Innovation Community under Grant
2022CSJGG1400. The authors are with the Department of Automation,
Shanghai Jiao Tong University, and Key Laboratory of System Control and
Information Processing, Ministry of Education of China, Shanghai 200240,
China. E-mail: {Zerken, bddwyx, jphe}@sjtu.edu.cn.

control theory, and applied mathematics. One of the earliest
works in this area was the pioneering work by Isaacs [1].
Since then, a large body of literature has emerged on various
aspects of differential games, including their existence and
uniqueness of equilibrium solutions, numerical methods for
solving them, and applications in diverse fields such as
economics [2], robotics [3], and biology [4].

The analysis of differential games with mixed strate-
gies presents a significant challenge in recent studies. To
define the mixed strategy, two primary models are used:
the nonanticipative strategy with delay (NAD strategy) and
the Markov strategy. Both models use time discretization
to approach the final definition. [5] introduce the concept
of mixed strategies along a partition of the time interval
associated with classical NAD strategies, which helps to
address the existence of the game value for differential games
without the Isaacs condition. This work is further extended to
stochastic differential games in [6], and cases in asymmetric
information are also investigated in [7], [8]. The first model
assumes the knowledge of the opponents’ strategy, while
the second model assumes the knowledge of the system
state. The Markov strategy, which resembles the closed-loop
control in the optimal control theory, is utilized to define
mixed strategies and design nearly optimal game strategies
[9], [10]. However, for the condition where state information
is not available, both two models become inappropriate. To
tackle this open problem, we use a general stochastic process
with independent increments to define the mixed strategy, so
that the knowledge of opponents’ strategies and system state
is not needed.

The evaluation of the game payoff and the analysis of
the existence of game value are always of great challenge.
Even for the differential game with pure strategies, the game
value generically has no explicit expression or just does not
exist [11]. Traditionally, upper and lower value functions and
viscosity solutions are introduced to describe the game value.
However, these methods cannot be directly applied to the
differential games with mixed strategies. To deal with this
challenge, we introduce a novel weak approximation method
[12]–[14]. It manages to approximate the game by a standard
stochastic differential game driven by Brownian motion.

The contributions of this paper are three-fold:
• Based on the stochastic processes with independent in-

crements, a general model of mixed strategy is defined,
which does not assume the knowledge of the opponents’
strategy and system state.

• A novel weak approximation method is introduced
to estimate the payoff function, whose approximation
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error is provably guaranteed of the same scale as the
discretized step size.

• To study the existence of game value, the challenging
problem of optimizing over stochastic process is tackled
by estimating the upper and lower value functions of the
weak approximated game. Additionally, some sufficient
conditions for the existence are provided.

The remainder of this paper is organized as follows. Sec-
tion II defines the differential game with mixed strategies and
describes the problem of interest. Sec. III expounds on the
weak approximation method and proved the main theorem
on the approximation performance. Sec. IV provides some
sufficient conditions for the existence of game value. Sec.
V shows simulation results and analysis. Sec. VI presents
concluding remarks and further research issues.

II. PROBLEM FORMULATION

In this section, we expound on the dynamics of the
differential game and introduce the concept of δ-game,
which serves as a discrete approximation to the original
differential game. We then define the mixed strategy within
the differential game framework by utilizing δ-game and
outline the primary issues that are of concern in our study.

A. Differential Game

The presence of mixed strategies in zero-sum differential
games, such as the classical pursuit-evasion game, presents
a formidable challenge for the pursuer. Despite possessing
the ability to capture the evader in the sense of expectation,
the task of maintaining a constant distance from the evader
becomes exceedingly difficult due to the stochastic nature of
mixed strategies.

To study the differential games with mixed strategies, we
generally consider a linear time-invariant zero-sum differen-
tial game with mixed strategies,

G0 :

J0(t0, x0, u1, u2)=E

{
g(x(T ))+

∫ T

t0

h(t, u1, u2, x)dt

}
ẋ(t) = Ax(t) +B1u1(t) +B2u2(t), x(t0) = x0

where x(t) ∈ Rn is the game state, the matrices A,B1

and B2 are the system and input matrices with appropriate
dimensions. g(xT ) represents the terminal reward of the
game, and h(t, u1, u2, x) describes the energy cost during
the game.

For each t ∈ [t0, T ] and i ∈ {1, 2}, ui(t) ∈ U is a random
variable where U is a compact set. {ui(t)}Tt=t0 is a stochastic
process with independent increments, and it is controlled by
the player i. For ease of notation, we say ui ∈ U[t0,T ].
J0(t0, x0, u1, u2) is the payoff that the player 1 wants to
minimize and the player 2 wants to maximize.

The subsequent assumption constrains the scope of the
payoff function J to those exhibiting polynomial growth.
Specifically, the definition of polynomial growth functions
is provided as follows.

Definition 1 (Polynomial growth functions [14]): Let G
denote the set of continuous functions Rd → R of at most

polynomial growth, i.e., g(·) ∈ G if there exists positive
integers κ1, κ2 > 0 such that

|g(x)| ≤ κ1

(
1 + |x|2κ2

)
for all x ∈ Rd. Moreover, for each integer α ≥ 1 we
denote by Gα the set of α-times continuously differentiable
functions Rd → R which, together with its partial derivatives
up to and including order α, belong to G.

Definition 2: The upper and lower value functions of the
game G0 are given by

V0
− (t0, x0) = sup

u2∈U[t0,T ]

inf
u1∈U[t0,T ]

J0(t0, x0, u1, u2),

and

V0
+ (t0, x0) = inf

u1∈U[t0,T ]

sup
u2∈U[t0,T ]

J0(t0, x0, u1, u2).

The primary issue to be considered for a game is whether
the game value exists, i.e., V+ (t0, x0) = V− (t0, x0).

B. δ-Game

The formulation of mixed strategies hinges on the uti-
lization of stochastic processes, which pose significant chal-
lenges both in terms of optimization and practical imple-
mentation for the players involved [5], [7], [8]. The δ-
game is a useful approach for investigating mixed strategies
in differential games, as it involves utilizing a discretized
approximation of the continuous stochastic process inputs
utilized in the original game [15].

We divide the interval [t0, T ] into n intervals Ik of equal
length δ :

Ik = {t; tk−1 < t ≤ tk}

where tk = t0 + kδ, 0 ≤ k ≤ n, and n = ⌊T
δ ⌋. On each

interval Ik, the control input for player i is a random variable
uik. We can replace the stochastic process {ui(t)}Tt=t0 in
the game G0 by this independent random variables sequence
{uik}n−1

k=0 , i.e.,

ui(t) =

n−1∑
k=0

(uik · IIk(t)) ,

where IIk(t) = 1 if t ∈ Ik, and IIk(t) = 0 otherwise. For
these discrete type of controls, we say ui ∈ U δ

[t0,T ] ⊆ U[t0,T ].
Let xk = x(kδ) and discretize the game G0, we have the
following δ-game.

Definition 3 (δ-game): Given a constant δ ∈ (0, 1), the
δ-game of the differential game G0 is

G1 :


J1(t0, x0, u1, u2)=E

{
g(xn)+

n−1∑
k=0

h(t, u1k, u2k, xk)δ

}

xk+1=eAδxk+(B1u1k+B2u2k)

∫ δ

0

eAτdτ, x0 = x0

From another perspective, the mixed strategy for a δ-game
is the random variable pairs (u1k, u2k) for k = 0, 1, · · · , n−
1. Let δ → 0, a more tractable definition of the mixed
strategy is available as follows.
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Definition 4 (Mixed strategy): The mixed strategy for the
differential game G0 is a pair of stochastic process
{(u1, u2)}Tt=t0 such that,

ui(t) = lim
δ→0

⌊T
δ ⌋−1∑
k=0

(uik · IIk(t)) ,

where {(u1k, u2k)}
⌊T

δ ⌋−1

k=0 is a mixed strategy for the δ-game
G1.
Similarly, we study the game value of this δ-game by
defining the upper and lower value functions.

Definition 5: The upper and lower value functions of the
δ-game G1 are given by

V1
− (t0, x0) = sup

u2∈Uδ
[t0,T ]

inf
u1∈Uδ

[t0,T ]

J1(t0, x0, u1, u2),

and

V1
+ (t0, x0) = inf

u1∈Uδ
[t0,T ]

sup
u2∈Uδ

[t0,T ]

J1(t0, x0, u1, u2).

C. Problem in Interest

• Given the mixed strategies u1 and u2, our primary
goal is to estimate the payoff function J0(t0, x0, u1, u2)
accurately. Our focus is on estimating the δ-games
initially, followed by the original game by gradually
reducing δ to zero. Specifically, we design a stochastic
differential game to approximate the δ-game, and the
weak approximation theory guarantees the estimation
accuracy.

• Our second objective is to analyze the existence of
game value and investigate the sufficient conditions that
ensure its existence. To deal with the challenging prob-
lem of optimizing over stochastic processes, we study
the existence problem of the approximated stochastic
differential game and then prove the relationship to the
original game.

III. WEAK APPROXIMATION OF THE GAME

In this section, we introduce the weak approximation
method as a tool for studying the δ-game with mixed
strategies. We provide preliminaries on the weak approxi-
mation, highlighting its significance and indispensability in
the analysis of mixed strategy.

A. Preliminaries on Weak Approximation

Let’s delve into the concept of weak approximation - a
method of approximating the distribution of sample paths in-
stead of the paths themselves. By comparing the expectations
of two processes over a broad range of test functions, we can
determine their closeness. Our definition involves a massive
test function class, including all polynomials, ensuring that
all moments become close at an impressive rate. As a result,
the distributions of both processes must also be equally close.

Definition 6 (Weak convergence [14]): For T > 0, δ ∈
(0, 1 ∧ T ), and α ≥ 1 as an integer, let N = ⌊T/δ⌋. We
define a continuous-time stochastic process {Xt : t ∈ [0, T ]}
to be an order α weak approximation of a discrete stochastic

process {xk : k = 0, . . . , N} if for every g ∈ Gα+1, there is
a positive constant C that does not depend on δ such that

max
k=0,...,N

|Eg (xk)− Eg (Xkδ)| ≤ Cδα.

B. Heuristic Design of Weak Approximation

Rewrite the δ-game G1 as

xk+1−xk = (eAδ−I)xk +(B1u1k+B2u2k)

∫ δ

0

eAτdτ, (1)

where I is an identity matrix. Let γk and σk be the expec-
tation and covariance of (B1u1k +B2u2k) respectively, i.e.,

γk := E {B1u1k +B2u2k} ,

and
σk := Cov {B1u1k +B2u2k} .

Heuristically, (B1u1k+B2u2k) can be approximated by
a random variable subjected to the Gaussian distribution
N (γk, σk) because of their matchings on the first two orders
of moments. Motivated by this, we approximately rewrite the
right-hand side as

(eAδ−I)xk +
[
δ−

1
2σ

1
2

k

(
W(k+1)δ −Wkδ

)
+ γk

] ∫ δ

0

eAτdτ,

where {Wt}∞t=0 is a standard winner process. When δ is
small, there is (eAδ−I) ≈ AeAδδ,

∫ δ

0
eAτdτ ≈ δ, then it

follows approximately

(AeAδxk + γk)δ +
√
δσ

1
2

k

(
W(k+1)δ −Wkδ

)
. (2)

Substituting xk+1 − xk, δ and W(k+1)δ −Wkδ with dXt,
dt and dWt respectively, we have the following stochastic
differential equation:

dXt = (AeAδXt + Γt)dt+
√
δΣ

1
2
t dWt, (3)

where Γt and Σt are the expectation and covariance of
B1u1,⌊ t

δ ⌋ +B2u2,⌊ t
δ ⌋ respectively, i.e.,

Γt := E
{
(B1u1,⌊ t

δ ⌋ +B2u2,⌊ t
δ ⌋

}
,

and
Σt := Cov

{
(B1u1,⌊ t

δ ⌋ +B2u2,⌊ t
δ ⌋

}
.

Therefore, we have a stochastic differential game (SDG)
as a weak approximation to the δ-game G1.

Definition 7 (SDG): Given a constant δ ∈ (0, 1), a zero-
sum stochastic differential game with payoff function J2 is

G2 :


J2(t0,x0, u1, u2)=E

{
g(X(T ))+

∫ T

t0

h(t,u1, u2, X)dt

}
dXt = (AeAδXt + Γt)dt+

√
δΣ

1
2
t dWt, Xt0 = x0

Similarly, we consider the value of this stochastic game by
studying the upper and lower value functions.

Definition 8: The upper and lower value functions of the
stochastic differential game G2 are given by

V2
− (t0, x0) = sup

u2∈Uδ
[t0,T ]

inf
u1∈Uδ

[t0,T ]

J2(t0, x0, u1, u2),
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and

V2
+ (t0, x0) = inf

u1∈Uδ
[t0,T ]

sup
u2∈Uδ

[t0,T ]

J2(t0, x0, u1, u2).

If the SDG G2 indeed approximates the δ-game G1 in
a weak sense such that the approximation error is of scale
O(δ), then the original game G0 with mixed strategies can
be accurately described by the dynamic of SDG G2 when
δ → 0. In the rest of this section, it is proved that this
heuristic design is an order 1 weak approximation.

C. Proof of Weak Approximation

This section presents the primary approximation theorem,
which is obtained via a two-step process. Initially, we demon-
strate that the one-step approximations for both games G2

and game G1 exhibit second-order accuracy. Subsequently,
we establish a connection between one-step approximation
and approximation on a finite time interval, guaranteeing that
the approximation on a finite interval is of order 1.

To begin with, we study the one-step approximation errors
of the stochastic game G2, and compare the errors to δ.

Lemma 1: Let 0 < η < 1. Consider the SDG G2 and
define the one-step difference ∆ = Xδ − x. Let ∆(i) be the
ith element of ∆, then we have

1) E∆(i) = (AeAδx0 + Γ0)(i)δ +O
(
δ2
)

2) E∆(i)∆(j) = O(δ2)

Proof: This lemma is a direct application of the Lemma
4 in [14] by letting b0(x, ϵ) = b0(x) = AeAδx+Γ0 without
relying on the auxiliary variable ϵ.

Then, we study the one-step approximation errors of the
δ-game G1, and compare the errors to δ.

Lemma 2: Let 0 < η < 1. Consider δ-game G1 and define
the one-step difference ∆̄ = x1 − x0. Let ∆̄(i) be the ith
element of ∆̄, then we have

1) E∆̄(i) =
[
AeAδx0 + γ0

]
(i)

δ +O(δ2)

2) E∆̄(i)∆̄(j) = O(δ2)

Proof: According to the definition, there is

∆̄ = (eAδ−I)x0 + (B1u1,0+B2u2,0)

∫ δ

0

eAτdτ, (4)

then

E∆̄−
[
AeAδx0 + γ0

]
δ

=(eAδ−I − δAeAδ)x0 +

(∫ δ

0

eAτdτ − δ

)
γ0

=(eAδ−I − δAeAδ)x0 +

[∫ δ

0

(eAτ − I)dτ

]
γ0.

(5)

Notice that eAδ−I = δA+ δ2

2 A
2+o(δ2), the above equation

follows that

(δA+
δ2

2
A2 + o(δ2)− δAeAδ)x0

+

[∫ δ

0

(δA+
δ2

2
A2 + o(δ2))dτ

]
γ0

=
[
δA(I − eδA) +O(δ2)

]
x0 +

(
δ2A+

δ3

2
A2

)
γ0 + o(δ3)

=
[
δA(−δA+O(δ2)) +O(δ2)

]
x0 +O(δ2)

=O(δ2),
(6)

Hence, the first conclusion is proved. Notice that eAδ − I =

O(δ) and
∫ δ

0
eAτdτ = O(δ), we have

∆̄(i) = O(δ), ∀i.

Therefore, the second conclusion can be easily obtained.
Finally, we combine the above two lemmas to derive the

main theorem.
Theorem 1 (Approximation accuracy): Stochastic differ-

ential equation G2 is an order 1 weak approximation to the
δ-game G1 such that for every g ∈ G, there exists C > 0,
independent of δ, such that for all k = 0, 1, . . . , n,

|Eg (xkδ)− Eg (xk)| < Cδ.
Proof: First, according to the above two lemmas, there

exists K1 ∈ G independent of δ such that∣∣∣∣∣∣E
s∏

j=1

∆(ij)(x)− E
s∏

j=1

∆̄(ij)(x)

∣∣∣∣∣∣ ≤ K1(x)δ
2, (7)

for s = 1 and

E
2∏

j=1

∣∣∆(ij)(x)
∣∣ ≤ K1(x)δ

2 (8)

for all ij ∈ {1, . . . , d}.
Second, according to the compactness of U , for each m ≥

1, the 2m-moment of xk is uniformly bounded with respect
to k and δ, i.e., there exists a K2 ∈ G, independent of δ, k,
such that

E |xk|2m ≤ K2(x) (9)

for all k = 0, . . . , ⌊T/η⌋.
Finally, according to Theorem 3 in [14], we have the weak

approximation conclusion proved.

IV. APPROXIMATION PERFORMANCE AND EXISTENCE OF
THE GAME VALUE

In this section, our focus is on examining the accuracy
of the value functions of the continuous SDG G2 and the
δ-game G1, and demonstrating that the approximation error
is of the order of O(δ). We also investigate the correlation
between the value functions of the δ-game G1 and the
original game G0, and suggest a general sufficient condition
for the existence of the game value. Additionally, we prove
that the game value exists when the function h(t, x, u1, u2)
can be separated with respect to u1 and u2.

5219



To begin with, we apply Theorem 1 to the payoff func-
tions, and the following lemma shows that the approximation
error of payoff functions is also of scale O(δ).

Lemma 3 (Payoff approximation): Given u1 and u2, there
exists a constant C1(u1, u2) > 0 such that

|J1(t0, x0, u1, u2)− J2(t0, x0, u1, u2)| ≤ C1(u1, u2)δ.
Proof: According to the definitions of J1 and J2, we

have

|J1(t0, x0, u1, u2)− J2(t0, x0, u1, u2)|

=|E{g(xn) +

n−1∑
k=0

h(t, u1k, u2k, xk)δ

− g(X(T ))−
∫ T

t0

h(t, u1, u2, X)dt}|

≤|E{
n−1∑
k=0

h(t, u1k, u2k, xk)δ −
∫ T

t0

h(t, u1, u2, X)dt}|

+ |E{g(xn)− g(X(T ))}|

≤
∫ T

t0

|E{h(t, u1, u2, x)− h(t, u1, u2, X)}|dt

+ |E{g(xn)− g(X(T ))}|.
(10)

By the weak approximation theorem, there are
C2(u1, u2), C3(u1, u2) such that

|E{h(t, u1, u2, x)− h(t, u1, u2, X)}| ≤ C2(u1, u2)δ,

and
|E{g(xn)− g(X(T ))}| ≤ C3(u1, u2).

Let C1(u1, u2) = (T−t0)C2(u1, u2)+C3(u1, u2), the proof
is completed.

The payoff approximation lemma helps to prove that the
upper and lower value functions of δ-game G1 and SDG G2

are also well approximated with the scale of O(δ).
Theorem 2 (Value approximation): There exists C > 0,

independent of δ, such that

|V1
− (t0, x0)−V2

− (t0, x0) | ≤ Cδ,

and
|V1

+ (t0, x0)−V2
+ (t0, x0) | ≤ Cδ.

Proof: Without loss of generality, we only need to
prove the approximation for the lower value function. Let
V1

− (t0, x0) = J1(t0, x0, u
(1)
1 , u

(1)
2 ) and V2

− (t0, x0) =

J2(t0, x0, u
(2)
1 , u

(2)
2 ). For ease of notation, we omit t0, x0

in J1 and J2 in this proof without causing any confusion.
According to the definition of the lower value function, it

follows that

J1(u
(1)
1 , u

(2)
2 ) ≤ J1(u

(1)
1 , u

(1)
2 ) ≤ J1(u

(2)
1 , u

(1)
2 ),

J2(u
(2)
1 , u

(1)
2 ) ≤ J2(u

(2)
1 , u

(2)
2 ) ≤ J2(u

(1)
1 , u

(2)
2 ).

(11)

Furthermore, Lemma 3 reveals that

|J1(u
(1)
1 , u

(2)
2 )− J2(u

(1)
1 , u

(2)
2 )| ≤ C1(u

(1)
1 , u

(2)
2 )δ,

|J1(u
(2)
1 , u

(1)
2 )− J2(u

(2)
1 , u

(1)
2 )| ≤ C1(u

(2)
1 , u

(1)
2 )δ.

(12)

Let C = max{C1(u
(1)
1 , u

(2)
2 ), C1(u

(2)
1 , u

(1)
2 )}, we have

|J1(u
(1)
1 , u

(1)
2 )− J2(u

(2)
1 , u

(2)
2 )|

≤|J1(u
(1)
1 , u

(2)
2 )− J2(u

(1)
1 , u

(2)
2 )|

≤Cδ.

(13)

Now that the SDG G2 approximates well with respect to
the upper and lower functions of δ-game, it helps to develop
a sufficient condition to ensure the existence of the game
value of the original game G0.

Theorem 3: A sufficient condition for the existence of
a game value for the game G0, i.e., V0

− (t0, x0) =
V0

+ (t0, x0) , is that Isaacs’ condition holds for any δ ∈
(0, 1): for all (t, x, p, A) ∈ [0, T ]× Rd × Rd × Sd, there
is

H−(t, x, p, A) = H+(t, x, p, A) := H(t, x, p, A),

where

H−(t, x, p, A) = sup
u2(t)∈U

inf
u1(t)∈U

{⟨p,AeAδXt + Γt⟩

+
1

2
tr [δΣtA] + h(t, x, u1(t), u2(t))

}
,

and

H+(t, x, p, A) = inf
u1(t)∈U

sup
u2(t)∈U

{⟨p,AeAδXt + Γt⟩

+
1

2
tr [δΣtA] + h(t, x, u1(t), u2(t))

}
.

Proof: Given δ ∈ (0, 1), if the Isaacs’ condition holds,
we can conclude that the value of the SDG G2 exists, i.e.,
V̄−

δ (t0, x0) = V̄+
δ (t0, x0). For the classical theories on the

Isaacs’ condition, please refer to some surveys, e.g., [16].
According to the definition of mixed strategy and Theorem

2, it follows that

|V− (t0, x0)−V+ (t0, x0) |
= lim

δ→0
|V1

− (t0, x0)−V1
+ (t0, x0) |

= lim
δ→0

|V1
− (t0, x0)− V̄−

δ (t0, x0) + V̄−
δ (t0, x0)

− V̄+
δ (t0, x0) + V̄+

δ (t0, x0)−V1
+ (t0, x0) |

≤ lim
δ→0

|V1
− (t0, x0)− V̄−

δ (t0, x0) |+ |V̄−
δ (t0, x0)

− V̄+
δ (t0, x0) |+ |V̄+

δ (t0, x0)−V1
+ (t0, x0) |

≤ lim
δ→0

|V̄−
δ (t0, x0)− V̄+

δ (t0, x0) |+ 2Cδ

=0.

(14)

Corollary 1: If there exist functions h1 and h2 such that
h(t, x, u1(t), u2(t)) = h1(t, x, u1(t)) + h2(t, x, u2(t)), the
game value exists for the game G0.

Remark 1: The proposed sufficient condition for the ex-
istence of game value is inclusive, as it encompasses a
vast majority of the commonly employed payoff functions,
including but not limited to the linear quadratic game and a
variety of other games.
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V. SIMULATION

A. Simulation Setup

For a one-dimensional differential game with mixed strat-
egy G0, suppose Γt = γ ∈ R, constant Σt = σ ∈ R and
A ∈ R < 0. In this section, we let A = −1, B1 = B2 = 1,
γ = 1, σ = 25 and x0 = 2. We numerically simulate the
dynamics of the δ-game G1 and the weak approximated game
G2, where δ is set as 0.01. For simplicity, we suppose that
B1u1k +B2u2k is a uniformly distributed random variable.
Since its expectation and variance are γ and σ respectively,
we have B1u1k +B2u2k ∼ Uni(γ −

√
3σ, γ −

√
3σ).

B. Results and Analysis

0 1 2 3 4 5
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(a) A trajectory of the approximated
stochastic differential equation
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(b) Approximation errors of the first
two moments

Fig. 1. Simulation of a one-dimensional differential game with mixed
strategies. (a) presents the dynamics of the weak approximated game G2;
(b) shows the approximation errors between G1 and G2 on the first two
moments

Fig. 1(b) verifies the approximation error between δ-
game G1 and the weak approximated game G2 is indeed
of the scale O(δ). Therefore, it is reasonable to use the
dynamic of game G2 to analyze the game G1. G2 has a huge
advantage for analyzing the game dynamic in this simula-
tion setting, because it shows explicitly the distribution of
state Xt, which asymptotically converges to an equilibrium
Gaussian distribution N

(
− γ

AeAδ ,− δσ
2AeAδ

)
. When δ is fixed,

the expectation and variance are determined by γ and σ
respectively.

The dynamic of G2 is presented in Fig. 1(a). The expected
value of Xt given by x0e

−θt + ξ
(
1− e−θt

)
approaches ξ

exponentially with a decay rate of −θ. However, the variance
of Xt given by δσ

2θ

(
1− e−2θt

)
increases from zero to a

limiting value of δσ
2θ . The transition time point between the

descent phase and the fluctuation phase is determined by
equating the expected value of Xt∗ to the square root of its
variance. When t < t∗, descent dominates, and when t > t∗,
fluctuation dominates.

In a pursuit-evasion game setting, γ represents the pur-
suer’s prediction error on the expected strategy of the evader
at each δ step, and σ quantifies how random the mixed
strategies are. Intuitively, the pursuer desires to minimize γ
and σ so that the expected distance is 0 and the fluctuation
is so small that with a high probability, the distance is
maintained in an acceptable scale.

VI. CONCLUSIONS

In conclusion, this paper contributes to the differential
games with mixed strategies by demonstrating the effec-
tiveness of the weak approximation method in analysis. By
defining mixed strategy in terms of stochastic processes with
independent increments, the study provides a comprehen-
sive framework for exploring the novel strategic behavior
generated by mixed strategies. Moreover, the establishment
of sufficient conditions for ensuring the existence of game
value enhances the practical applicability of the approach.
The precise approximation of the payoff function achieved
through the proposed weak approximation method also in-
creases the accuracy and reliability of the results. Future
researches include designing optimal game strategies and
generalizing the weak approximation method to the time-
variant systems.
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