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Abstract— We analyze Log-Linear Learning (LLL) in a
networked multi-agent system with stubborn players that can
influence other players but do not update their actions. We are
interested in the robustness of LLL against stubborn players
in a coordination game setup in which the players have to
decide between a status quo and an innovative practice that is
inherently superior to the status quo. We investigate the impact
of interaction network topology and the payoff gain offered by
the innovation on the steady state behavior of the population
in the presence of stubborn agent/s. We present conditions for
the robustness of various networks, namely a class of 3-regular
networks, n×n grid networks, and Erdős-Rényi (ER) random
networks. For these networks, we derive the threshold values
of the payoff gain for which the system behavior is robust to
the presence of stubborn players under LLL.

I. INTRODUCTION

In the field of population dynamics, a key research chal-
lenge involves analyzing the influence of the actions taken
by a small subset of the population on the global behavior
of the network. For instance, the fields of sociology and
epidemiology investigate the spread of ideas, decisions, and
diseases through a population based on the interactions
among individuals. This problem of diffusion of behavior
is typically investigated under the setup of network coordi-
nation games (see for instance [1], [2], [3], [4], [5], [6], and
[7]).

An underlying assumption in the current population dy-
namics literature is that the agents within the studied popu-
lation are homogeneous, meaning that all players’ decision
strategies are identical, and the agents follow some form
of noisy best/better response dynamics (see for instance the
setups in the references [1]–[7]). This model oversimplifies
the behavior of large populations of players since individuals
can have diverse decision strategies. As a result, it is worth
exploring whether a few players with notably different de-
cision strategies can influence the long-term behavior of the
population.

In this paper, we focus on a scenario in which a few stub-
born individuals are introduced into the system. We define
stubborn agents as those that can influence the decisions of
other players but they do not update their own actions. Our
objective is to establish the implication of having stubborn
player/s on the long-run behavior of the overall population
in network coordination games. In particular, we deal with
the problem of finding conditions based on game parameters
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and network structures that assist in changing the otherwise
stochastically stable states. This paper is based on our
earlier work [8], in which we introduced a novel notion of
robustness to quantify the impact of heterogeneous players.
Here, we extend our analysis of stubborn players for some
important classes of networks such as 3-regular networks,
3× 3 grid networks, and Erdos-Renyi networks.

In the recent literature on evolutionary game theory, the
robustness of stochastic learning dynamics towards player
heterogeneity has been examined in various aspects. In [9],
authors investigated the robustness of behavioral rules when
1) a single agent takes different actions at different times 2)
different agents follow different behavioral rules 3) agents
update their actions synchronously. Their analysis was based
on an asymmetry property of the learning dynamics. The
authors in [10] examined the robustness of stochastically
stable states to simultaneous action updates.

The impact of interaction structure and behavioral rule
on equilibrium behavior is widely studied in the literature
on games in networks. In [11], authors showed that best
response dynamics lead to the spread of risk-dominant equi-
librium in coordination games over a network of players.
They presented conditions on the payoff parameter for which
an action becomes the best response of all the players in the
network. The impact of heterogeneous player preferences on
the heterogeneity in steady state behavior is investigated in
[12] and a class of networks is identified that exhibit this
behavior. In [13], [14], and [15], authors evaluated the influ-
ence of a static adversary on the performance of the system
evolving under graphical coordination games. In particular,
they determine the relation between the complexity of the
adversary’s strategy, the level of the adversary’s knowledge
about the system, and the degradation of efficiency in the
overall system. In [16], authors studied the effect of the
degree of rationality of a player on the risk-dominant Nash
equilibrium [17] under best response dynamics.

Motivated by the analysis mentioned above, we are in-
terested in the scenarios under which a network becomes
robust to the presence of stubborn agents for classes of
some important networks such as 3-regular networks, m×n
grid networks, and Erdos-Renyi networks.Our objective is to
understand how can a stubborn agent exploit the interaction
structure, and which factors are responsible for assisting this
behavior.

II. SETUP

We consider a 2× 2 symmetric coordination game played
over a network in which each player i interacts with a
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subset of players. In a coordination game, each player has
two action choices, namely A, which typically represents
an innovation, and B, which represents the status quo. Let
Ai = {A,B} be the set of actions of player i. The payoff
matrix for a two player coordination game is shown in Fig.
1, where α is called the payoff gain of innovation A over
B.

A B
A 1 + α, 1 + α 0, 0
B 0, 0 1, 1

Fig. 1. Payoff matrix of a 2× 2 coordination game.

The interaction network is represented by a connected and
undirected graph Γ(V,E) in which the vertex set corresponds
to the set of players N = {1, 2, ...., n}, and the edge set
corresponds to the interactions between the players. If an
edge i ∼ j between players i and j exists in the edge set E,
then we say that i and j are neighbors. Let Ni represents the
set of neighbors of player or node i i.e. Ni = {j ∈ N | i ∼
j ∈ E}. The total payoff for a player is obtained by summing
the payoffs obtained from each individual interaction with all
of its neighbors in the set Ni.

Action profile at any time step t is an n−dimensional
vector σ ∈ {A,B}n. We will also represent σ as σ =
(σi, σ−i), where σi is the action of player i and σ−i is
the vector of actions of all the player other than i. Given
an action profile σ, let ησA(i) and ησB(i) be the fraction of
the neighbors of i playing actions A and B, respectively,
i.e., ησA(i) + ησB(i) = 1. For notational convenience, we will
suppress σ in ησA(i) and ησB(i).

The payoffs of player i for actions A and B given σ−i

are Ui(A, σ−i) = ηA(i)(1 + α) and Ui(B, σ−i) = ηB(i),
respectively. Player i’s best response is to select an action
that maximizes its payoff from its interaction with the neigh-
boring players, i.e., action A belongs to Bi(σ−i), which is
the best response set of player i, if Ui(A, σ−i) ≥ Ui(B, σ−i).
Let 1A and 1B be the n-dimensional vectors that represent
the action profiles where all the players are playing actions
A and B, respectively. Furthermore, 1kA/1

k
B represents the

state where k players have switched to action B/A and
the remaining N − k players continue to play action A/B,
respectively.

A. Learning Dynamics

We consider an update rule in which the players update
their strategies based on noisy best response dynamics. One
such dynamics is Log-Linear-Learning (LLL), which was
originally proposed in [3]. In LLL, players update their
actions at discrete time steps. At each time t, one player,
say player i, is selected uniformly at random. All the other
players repeat their actions from previous step t − 1. The
selected player updates its action from σ = (σi, σ−i) to
σ′ = (σ′

i, σ−i) with probability

pi(σ
′

i, σ−i) =
e−

1
τ [Ui(σ

∗
i ,σ−i)−Ui(σ

′
i,σ−i)]∑

σ̄i∈Ai

e−
1
τ [Ui(σ∗

i ,σ−i)−Ui(σ̄i,σ−i)]
, (1)

where σ∗
i is the best response of player i to σ−i at time t

and τ is the noise in decision making. The probability of
selecting an action σi decreases as the utility of that action
relative to the best action decreases. This relative utility is
called the resistance of the transition from an action profile
σ to σ′, and is defined as

R(σ, σ′) = Vi(σ−i)− Ui(σ
′, σ−i), (2)

where Vi(σ−i) := maxσi∈Ai
Ui(σi, σ−i). A path P =

{σ0 → σ1 → σ2 → · · · → σk} is a sequence of joint
action profiles such that each subsequent action profile is a
result of a single player update. The resistance of the path
is the sum of resistances of each transition, i.e. R(P ) =∑k

i=1 R(σi−1, σi). Given any two states σ and σ′, R(σ, σ′)
is the resistance of the minimum resistance path from σ to
σ′.

Log-linear learning induces a regularly perturbed Markov
chain with perturbation parameter τ over the set of joint
action profiles with a unique stationary distribution µτ (σ)
[1]. A state is said to be stochastically stable if and only if
limτ→0 µ

τ (σ) > 0. A state is stochastically stable if it has
a positive probability in the stationary distribution as noise
vanishes.

B. Analysis Approach
To determine stochastically stable states, we will employ

Radius(Rd) and Coradius(CR) based analysis, which was
originally proposed in [18] and was later extended for LLL
in [19]. The Radius and Coradius of a state σ are defined as

Rd(σ) = min{R(σ, σ′) | R(σ′, σ) ̸= 0}, and (3)

CR(σ) = max{R(σ′, σ) | R(σ′, σ) ̸= 0}. (4)

Here, Radius is a measure of how easy it is to leave a state
and Coradius is a measure of how difficult it is to reach
a particular state from any other state. Note that state and
action profile are used interchangeably throughout the paper.
According to Prop.2 of [19], given an action profile σ, if
Rd(σ) > CR(σ) then σ is stochastically stable state. Thus,
the Rd-CR criteria of Prop. 2 is typically a sufficient condition
to characterize the stochastic stability of a given state.

Next, we establish that for a two-action coordination game
setup, Rd-CR criteria is a necessary condition as well.

Proposition 1: For a network coordination game with the
pairwise payoff matrix given in Fig. 1, an action profile σ is
stochastically stable if and only if Rd(σ) > CR(σ).

Proof: In the coordination game of Fig. 1, there are
two candidates for stochastically stable profiles 1A and 1B .
Let PA,B and PB,A be the minimum resistance path from
1A to 1B and from 1B to 1A, respectively. Then, the Radius
and Coradius of the two profiles are

Rd(1A) = R(PA,B) and CR(1A) = R(PB,A).

Rd(1B) = R(PB,A) and CR(1B) = R(PA,B).

Since Rd(1A) = CR(1B) and CR(1A) = Rd(1B), it
is obvious that either Rd(1A) > CR(1A) or Rd(1B) >
CR(1B). Which ever profile satisfies this criteria will be
the unique stochastically stable profile.
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III. ROBUSTNESS AGAINST SINGLE STUBBORN PLAYER

Consider a coordination game with the payoff matrix given
in Fig. 1 with α ∈ (0, 1). The game is played over a network
in which all the players are updating their actions using LLL.
We refer to this framework with homogeneous players as the
standard setup. If we incorporate a few stubborn players in
the standard setup, we will characterize the resulting setup
as a heterogeneous setup with players that never update their
actions and always play action B. Our goal is to assess the
influence of stubborn players on the population’s behavior,
assuming that the other players update their strategies using
LLL. To measure the impact of the stubborn players, we
employ the concept of robustness, which was first introduced
in [8].

Definition 3.1: [8] Let S be the set of stochastically
stable action profiles for stochastic learning dynamics in the
standard setup, and let σ be an element in S. Suppose all
the players in a subset H ⊂ N are replaced with stubborn
players, and let SH be the set of stochastically stable action
profiles in the heterogeneous setup. Then, σ = (σH , σ−H)
is robust to stubborn players in H if there exists a σ′ in SH

such that σ′
−H = σ−H .

Thus, a stochastically stable action profile is robust to
stubborn behavior if the behavior of the remaining population
remains unchanged when any subset H of players is replaced
with stubborn players.

In the following section, we will derive the conditions
under which a class of 3-regular networks and n × n grid
networks are robust against the addition of a single stubborn
player. These networks are considered because of their
significance in the population dynamics literature [11]. An
important characteristic of these networks is that there does
not exist any central node with an overwhelming influence
on the rest of the network like the central node in the wheel
network. Even within these networks, we demonstrate that a
single player has the potential to alter the long-run behavior
of the entire population.

A. 3-Regular networks

A 3-regular network, also known as a cubic network, is
a graph in which every node has exactly three neighbors.
We consider a subset of 3-regular networks that have non-
overlapping neighborhood sets.

Definition 3.2: A 3-regular network has non-overlapping
neighborhood sets if for any node pair i and j such that
j ∈ Ni and i ∈ Nj , Ni ∩Nj = ϕ.

We first present an algorithm for computing the minimum
resistance paths for 3-regular networks with non-overlapping
neighborhood sets.

Definition 3.3: Given an undirected network Γ in which
N = {1, ....n} is the node set, let C be a subset of N . A
node i in the set N is covered by C if either i belongs to
C or Ni ∩ C ̸= ϕ, where Ni is the neighborhood set of i.
Furthermore, if |Ni ∩C| = k, we say that i is k-covered by
the set C.

Minimum Resistance Path Algorithm: We consider a 3-
regular network with N nodes and non-overlapping neigh-
borhood sets. Given a covering set C ⊂ N , let CN be the set
of nodes in N that are covered by C. Let Ck by the covering
set after k iterations of the algorithm presented below.

1) [Step: 0 Initialize] C0 = ϕ, and C0
N = ϕ.

2) [Step: 1 Add first node to the covering set ] C1 =
{i1}, where i1 is a randomly selected node from N
and C1

N = {i1} ∪ Ni1 . Since each node is connected
with 3 other nodes, |CN,1| = 4.

3) [Step 2] Select a node i2 from the set Ni1 and add it
to C1, which results in C2 = C1 ∪ {i2} and C2

N =
C1

N ∪ Ni2 . Since i2 and i1 are already in C1
N , we get

|C2
N | = |C1

N |+ (3− 1).
4) [Step: k : Add subsequent nodes to the covering set

] Select a node ik such that ik ∈ Ck−1
N \Ck−1 and ik

has two uncovered neighbors. Add ik to Ck−1, which
results in Ck = Ck−1 ∪ {ik} and Ck

N = Ck−1
N ∪ Nik .

Repeat the above step until all the nodes in the set N
are at least 1-covered. After k steps of the algorithm, we
will have |Ck

N | = 4+2(k−1). Let k′ be the number of
steps after which all the nodes are at least one covered.
Then, 4 + 2(k′ − 1) = N =⇒ k′ = N−2

2 .
5) [Add node for 2-coverage] After all the nodes are 1-

covered, add one more element iF ∈ Ck′

N to Ck′
and

let the final set be denoted as CF . As a result of this
final node, at least one of the nodes in CF

N will be two
covered by CF .

As the algorithm terminates, sequence in the set CF gives
us a path from an initial node i1 to some terminal node.
To better explain the steps of the minimum resistance path
algorithm, we demonstrate its steps for Peterson network. A
Peterson graph is a 3 regular graph with 10 nodes and 15
edges as shown in Fig. 2(a).

1) Lets initialize C1 with node 1 i.e. C1 = {1}, C1
N =

{1, 2, 4, 6}, |C1
N | = 3 + 1 = 4

2) For i2 = 6 , C2 = {1, 6}, C2
N = {1, 2, 4, 6, 5, 10},

|C2
N | = |C1

N |+ 2 = 6
3) Let i3 = 5, C3 = {1, 6, 5},

C3
N = {1, 2, 4, 6, 5, 10, 3, 7}, |C3

N | = |C2
N |+ 2 = 8

4) Let i4 = 10, C4 = {1, 6, 5, 10},
C4

N = {1, 2, 4, 6, 5, 10, 3, 7, 9, 8},
|C4

N | = |C3
N |+ 2 = 10

5) Since all the nodes are converted to 1−covered nodes
in the previous step, we add an additional node to C4

to make a node 2−covered i.e. CF = {1, 6, 5, 10, 4}.
The question that arises is how this algorithm is relevant
to our robustness analysis. In the RD − CR analysis, we
have to compute minimum resistance paths between states
1A and 1B . For a 3-regular network with non-overlapping
neighborhood sets, this algorithm gives us one such path
without explicitly computing and comparing the resistances
of all possible paths. In particular, starting from 1B and 1A,
the sum of the resistances of the path {i1, i2, . . . , iF }, which
are the nodes in the set CF , gives us the Radius and the
Coradius of the action profile 1B , respectively, in the absence
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Fig. 2. Examples of 3-regular network with non-overlapping neighborhood

of any stubborn player.
The inclusion of a stubborn player that always plays action

B only introduces a change in the choice of initial node
i1. When computing the Coradius of 1B , we start with the
configuration 11

A (stubborn player always plays B). Then,
the stubborn node is selected as i1 because we are interested
in computing a minimum resistance path that leads to state
1B . However, the stubborn node does not incur any resistance
since it always plays action B. Therefore, the resistance path
will be P = {11A, 12A, . . . , 1B}. Switching a node that is a
neighbor of a stubborn node gives us the minimum resistance
of the switch from 11A to 12A. We get a minimum resistance
path if we follow our minimum resistance path algorithm.
While computing the radius of 1B , a node that is not covered
by a stubborn node is selected as i1 to maximize its impact
on the network. Selecting a node from the neighborhood set
of the stubborn player will not have the maximum impact
since the stubborn player cannot be influenced.

Theorem 3.1: Given a 3-regular network with non-
overlapping neighborhood sets such that any neighboring
node pair (i, j) satisfies Ni ∩ Nj = ϕ, action profile 1A
is robust against a single stubborn player if α > 2/(N − 2).

Proof: Suppose we start with configuration 1A. Then,
applying the minimum resistance path algorithm, the resis-
tance of the first noisy action is R(1A, 1

1
A) = 3(1 + α).

Afterward, each of the remaining noisy actions will have
a resistance of R(1k

A,1
k+1
A ) = 2(1 + α) − 1 = 1 + 2α.

Minimum resistance from 1A to 1B is R(1A, 1B) = 3(1 +
α) + N−2

2 (1 + 2α). Starting from the other extreme of 1B

and applying the minimum resistance path algorithm, the
resistance of the first noisy action will be R(1B ,1

1
B) = 3.

Each of the remaining noisy actions will have a resistance
of R(1k

B ,1
k+1
B ) = 2− (1+α) = 1−α. Thus, the minimum

resistance from 1B to 1A is R(1B , 1A) = 3 + N−2
2 (1− α).

To check for the robustness of 1A against a single stubborn
player, we place a single stubborn player in the network.
Then, the effective resistance from 11A to 1B is R(11A, 1B) =
N−2
2 (1+2α). And the effective resistance from 1B to 11A is

same as R(1B , 1A). For 1A to be stochastically stable, we
should have R(11A, 1B) > R(1B , 1

1
A), which results in the

desired condition α > 2/(N − 2).
Illustrative examples:

1) A cube network is also a type of 3-regular network con-
sisting of 8 nodes and 12 edges as displayed in Fig. 2(b).
Node 1 is stubborn at B. The outcome of the minimum
resistance path algorithm is the path C = {1, 2, 3, 5} for

Radius and C = {8, 7, 4, 6} for Coradius. Radius and
Coradius of these paths are Rd(1B) = 3+3(1−α), and
CR(1B) = 3(1+2α). For α > 1/3, the cube network is
robust to the placement of a single stubborn agent.

2) Generalized Petersen graphs G(n, k), as shown in Fig.
2(c) for n = 6 and k = 2, belong to the family of 3-
regular graphs constructed by joining the nodes of an
outer polygon comprising n nodes and inner star polygon
of same size, inner polygon is formed such that each
of its node is connected to the node at kth distance.
For this particular network, given that node 1 is made
stubborn, a minimum resistance path from 11A to 1B and
1B to 11A, as computed using the minimum resistance path
algorithm, are {1, 2, 3, 4, 5, 6} and {n, n+1, . . . , 2n−1},
respectively, where nodes are numbered as shown in Fig.
2(c). The corresponding resistances of these paths are
R(11A → 1B) = 5(1 + 2α), and R(1B → 11A) =
3 + 5(1 − α). Thus, α > 1/5 results in the robustness
of 1A.

We have seen examples of 3-regular networks where a single
stubborn player can alter the stochastically stable action
profile if the payoff parameter satisfy certain condition. In
general, increasing the number of stubborn agents relaxes
the condition on the payoff parameter. Now the question
arises, can there be a scenario when addition of a set of
stubborn agents do not have any impact on the population
behavior at all, no matter how large that set is. To illustrate
this point concretely, we present a condition for d−regular
network under which no number of stubborn agents can alter
the equilibrium behavior.

Proposition 2: Any d ≥ 3 regular network is robust to
addition of any number of stubborn players if α > d− 2.

Proof: Consider a finite d ≥ 3 regular network with N
total players out of which N −2 nodes are stubborn. Radius
of action profile 1B is r and CR(1B) = 0 for α ≥ d − 2
and CR(1B) = α − (d − 2) for α < d − 2. It is apparent
that for α > d− 2, network is robust to placement of N − 2
stubborn agents.

This result is helpful from system design perspective and
provides a sufficient condition for robustness.

B. 2D Grid Network

Next, we consider a family of m×n grid networks. These
networks are important because they are studied extensively
in the context of network coordination games. We first
present the robustness result for the square grid network and
later extend it for any m× n grid network.

Theorem 3.2: An n × n square grid network with n2

agents is not robust to the addition of a single stubborn player
if α < 2/(n2 − n− 2).

Proof: We begin the proof with an example of 4 × 4
grid network and then extend the analysis to a general n×n
grid network. Since the internal nodes have a maximum
degree, one of the internal nodes is made stubborn at action
B to analyze the worst-case impact of a single stubborn
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Fig. 3. Minimum resistance paths between the states 11A and 1B in the grid network. Blue nodes are the players with action B, white nodes are the
players with action A, and stubborn players are shaded with red.

agent. The minimum resistance paths of transitioning from
action profile 11A to 1B and 1B to 11A are shown in Fig. 3.
These paths are obtained by sequentially selecting nodes that
can switch to noisy action with minimum resistance. Based
on this approach, there exist multiple minimum resistance
paths and Fig. 3 presents one particular instance. Radius and
Coradius of action profile 1B are Rd(1B) = 2+5(1−α), and
CR(1B) = 3(1+2α)+3α+3(2α). Comparison of Rd and
CR gives us the condition that for α < 1/5 action profile
1B is stochastically stable. An n×n grid consists of 4 corner
nodes with degree 2, 4(n−2) boundary nodes with degree 3
and (n−2)2 internal nodes with degree 4. While computing
the Coradius of 1B , it is evident that corner nodes always
switch with the resistance of α, boundary nodes switch with
the resistance of 1 + 2α, and internal nodes switch with the
resistance of 2α. Radius and Coradius of the action profile
1B are Rd(1B) = 2 + 2(n − 2)(1 − α) + (1 − α), and
CR(1B) = (n− 2)(1+2α)+ (n− 3)(1+2α)+3α+((n−
2)2 − 1)(2α). Comparing the above two, Rd is greater than
CR if α < 2/(n2 − n− 2).

Corollary 3.3: An m × n rectangular grid network with
m × n agents is not robust to addition of single stubborn
player if α < 2/(mn− 2n+m− 2).
The above result is a direct extension of the the result proved
in Thm. 3.2.

IV. ROBUSTNESS RESULTS FOR MULTIPLE STUBBORN
PLAYERS

This section is concerned with the problem that for a given
value of α, what is the minimum number of players, such that
if they are fixed at playing action B, LLL will ensure that
action B is eventually played everywhere. In other words,
what is the minimum number/set of stubborn agents such
that 1B becomes the stochastically stable action profile? We
consider Erdős-Rényi (ER) random networks for the analysis
of multiple stubborn players.

An Erdos-Renyi(ER) graph, denoted by G(N, p), is a
random graph with N vertices and an edge is formed
between any two vertices with probability p. ER graphs are
important as they serve as baseline models for statistical
comparisons. In this network model, the parameter p can
be interpreted as the degree of influence that the players
have on each other. For ER networks, we presented results
with a single stubborn player in [20]. Now we are extending
the analysis for multiple stubborn players and providing

a sufficient condition on the threshold of α such that the
network is no longer robust to k stubborn players.

Theorem 4.1: An ER graph with N nodes and connec-
tivity p is robust to the presence of k stubborn players if
α > 2k/(N − k − 1).

Proof: Let k be the number of stubborn players and
N be the total number of players in the network. Here we
assume that the stubborn players have the same level of
influence on the rest of the population as that of any other
players. In the random network setup, the utility function
of any player, say player i, is the expected utility. Let
nA and nB be the number of homogeneous players other
than i playing actions A and B, respectively such that
nA +nB = N − 1− k. Then, the utility function of player i
is Ui(A, a−i) = pnA

N (1+α), and Ui(B, a−i) = pnB

N + p k
N .

Consider the case when all players are initially playing action
B. Then, the resistance of going from 1B to 11B is

R(1B , 1
1
B) =

p(N − 1− k) + pk

N
=

p(N − 1)

N
. (5)

Also, the resistance of going from 1kA to 1k+1
A , where k ≥ 0,

is
R(1kA, 1

k+1
A ) =

p(N − k − 1)(1 + α)

N
− pk

N
. (6)

We are interested to find out the condition for which 1A
remains stochastically stable, i.e. R(1kA → 1k+1

A ) > R(1B →
11B). A simple comparison gives the desired condition on the
value of α above which the network is robust to the addition
of k stubborn players, i.e. α > 2k/(N − k − 1).
Similarly, based on the proof of Proposition 1, which es-
tablishes Rd(1A) = CR(1B) and CR(1A) = Rd(1B), it
becomes clear that the network loses its robustness against
the addition of k stubborn players when α is less than
2k/(N − k − 1).
If the strategic player has the same level of influence as
the other players in the population, then we need k stubborn
players, as specified by Thm. 4.1, to alter the behavior of the
entire population. Whereas, if we assume that the strategic
player can have a higher level of influence than the rest of
the population, then we would require less stubborn players
to cause contagion to 1B . This higher influence is modeled
by ph, where ph is the probability that the strategic player
has an any edge with any other player in the network.

Corollary 4.2: In a random ER graph of connectivity
p, and let ph be the connectivity of strategic players, the
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(a) k = 6, α = 0.329, ph =
p = 0.3

(b) k = 6, α = 0.229, ph =
p = 0.3

(c) α = 0.9, k = 8, ph = 0.7,
p = 0.3

(d) α = 0.9, k = 10, ph = 0.7,
p = 0.3

Fig. 4. Evolution of population in ER network in the presence of k stubborn players with N = 50 ,noise τ = 0.2, and 1× 106 iterations.

minimum number of stubborn players required to make it
non-robust are ⌈(pNα)/(pα+ 2ph)⌉.

Simulation results for ER network: To verify the result
in the Thm. 4.1 and Cor. 4.2, we simulated a population
with N = 50 players. In Fig. 4(a) and 4(b), random network
is generated with parameter p = ph = 0.3, Payoff gain is
α+ ϵ in Fig. 4(a) and α− ϵ in Fig. 4(b), with ϵ = 0.05 and
α is computed from the threshold given in Thm. 4.1. The
players update their actions using LLL with τ = 0.2. All
players are initialized with random actions and simulated for
106 iterations. Blue graph represents the fraction of players
playing action A and red graph represents fraction of players
playing action B. For Fig. 4(c) and 4(d), a stubborn player
is included in the population with ph = 0.7. Parameter
ph indicates that the stubborn player has more influence
over other players compared to the rest of the nodes in the
network. Also, k is ⌈(pNα)/(pα + 2ph)⌉ − 1 for Fig. 4(c)
and ⌈(pNα)/(pα+2ph)⌉+1 for Fig. 4(d). The results show
that k stubborn players were not successful in changing the
behavior of the population from 1A to 1B for the cases when
number of stubborn players are less than threshold given in
Cor. 4.2, whereas when number of stubborn players exceeds
this threshold, 1B becomes the equilibrium action.

V. CONCLUSION

In this paper we have analyzed the impact of stubborn
player/s in coordination games played over network of play-
ers under log linear learning dynamics. We have provided
sufficient conditions for the robustness of stochastically sta-
ble states for a class of networks including 3-regular network,
n × n grid network and ER network. These networks have
uniform degree distribution, which means no single player
have an advantage to influence the nodes more than any
other node. Our results highlight that robustness property of
log linear learning are function of payoff parameter α, for
a certain value of α same network is robust and for other it
becomes non-robust. For ER network, we have established
results both for uniform and variable degree distribution.
Furthermore, we have provided a graph theoretic algorithm
for the computation of minimum resistance paths in 3-regular
networks which are required for the computation of radius
and coradius in stochastic stability analysis.
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