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Abstract— Robots have been increasingly better at doing
tasks for humans by learning from their feedback, but still often
suffer from model misalignment due to missing or incorrectly
learned features. When the features the robot needs to learn
to perform its task are missing or do not generalize well to
new settings, the robot will not be able to learn the task
the human wants and, even worse, may learn a completely
different and undesired behavior. Prior work shows how the
robot can detect when its representation is missing some feature
and can, thus, ask the human to be taught about the new
feature; however, these works do not differentiate between
features that are completely missing and those that exist but
do not generalize to new environments. In the latter case,
the robot would detect misalignment and simply learn a new
feature, leading to an arbitrarily growing feature representation
that can, in turn, lead to spurious correlations and incorrect
learning down the line. In this work, we propose separating
the two sources of misalignment: we propose a framework for
determining whether a feature the robot needs is incorrectly
learned and does not generalize to new environment setups vs.
is entirely missing from the robot’s representation. Once we
diagnose the source of error, we show how the human can
initiate the realignment process for the model: if the feature
is missing, we follow prior work for learning new features;
however, if the feature exists but does not generalize, we use
data augmentation to expand its training and, thus, complete
the repair process. We demonstrate the proposed approach
in experiments with a simulated 7DoF robot manipulator and
physical human corrections.

I. INTRODUCTION

Communication is a key part of human life. When trans-
mitting an idea to someone, we create representations, or
models, of what we believe they are understanding or try-
ing to make us understand. Communication flows naturally
through this process until a behavior or response indicates
that the model might be wrong. For instance, in Figure 1 the
human wants the robot to transport a cup of coffee while
staying away from the laptop, but the robot has never seen
the laptop in this position – its model is different from the
human’s! At this point, an intervention is typically conducted
in the form of asking for an explanation or justification
for the unexpected behavior. This intervention, despite not
being constantly necessary, becomes crucial for the mutual
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Fig. 1: In a new environment, a laptop is encountered in
a position the robot has never seen it. It is, therefore, not
sure which (if any) of the features it learned during training
belong to it. By analyzing the corrections the human applies
to its trajectory in the vicinity of the laptop, the robot
i) infers the relation between its learned features and the
object (diagnosis), and ii) adjusts the features to this new
environment (repair).

understanding of the circumstances and the realignment of
the models. In our Human-Robot Interaction (HRI) example,
the human can explain to the robot how to repair misaligned
features by performing an intervention in the form of a
physical correction.

The need for seamless and effortless interactions like this
between humans and robots becomes fundamental as robots
become increasingly more apt to perform tasks for and with
humans. Misalignment happens when the robot’s model of
the human is incomplete, incorrect, or outdated, or when
the human’s model of the robot is similarly limited. It can
lead to misunderstandings and ineffective interactions that
are particularly undesirable when robots are expected to
interact with humans in a natural and intuitive manner. The
interventions can take the form of, albeit not being limited
to, demonstrations [1], corrections [2], comparisons [3] and
teleoperation [4].

Inverse reinforcement learning (IRL) is currently the most
popular method for robots to estimate preferences and goals
of those that surround them from their behavior, typically in
the form of a reward or cost function. Traditional methods in
IRL, however, assume that the human preferences are present
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in the robot’s representation. If this assumption does not
hold, the cost function the robot learns from the human’s
demonstrations and physical corrections is defective.

As in the previous example, in this work we consider
that humans can communicate their preferences to robots
by intervening on their trajectories by means of physical
corrections, entering the field of physical Human-Robot
Interaction (pHRI). To convey to the robot that it should
transport the cup of coffee far away from the laptop, the
human can push the robot’s arm to the side to prevent passing
above it. If the robot has a feature related to the distance to
the laptop in its feature representation, it will understand
the correction, update its model, and replan the trajectory
to continue further away from the laptop. But if it does
not – or if the feature was not trained to generalize to this
environment configuration – it will assign a wrong feature to
try to explain the correction, hindering the learning process.

We build upon previous work based on detecting mis-
alignment by estimating the robot’s confidence in human
corrections, only updating its knowledge if it is confident that
it understands the correction. One advantage of this approach
is avoiding learning from noisy actions when the human is
not optimal. However, we argue that even when the human
is optimal, the existence of misalignment associated with
the robot’s model can prevent the robot from understanding
the correction. In that case, we propose that there is more
information in the correction that the robot should take
advantage of, in order to repair the misalignment.

One well-known example of representation misalignment
is the shift in features at train vs. test time, due to the
difficulty of models to generalize to different settings. This
is referred to as distribution shift [5] and it is common in
IRL since interventions require human effort which renders
the generalization of the model to all unexplored settings
challenging. Consider, for example, that there was a vase
on top of the laptop during training. Now that the laptop is
in a different position, should the learned features change
with it, or are they instead related to the vase, which stayed
in the same place? In other words, which objects did the
features depend on? In this work, we enable robots to adapt
to distribution shifts by learning from the relation between
features and environment to disambiguate between incorrect
features that do not generalize to new environments and
completely missing features.

The main contributions of this work are:
• Misalignment diagnosis – when a robot detects mis-

alignment in its feature representation by not being able
to understand human input, we design a framework that
enables it to identify which features are misaligned,
and disambiguate between incorrectly learned features
that do not generalize to new environment setups and
entirely missing features from the robot’s model.

• Misalignment repair – we propose a framework that
enables robots to realign the misaligned features by
using data augmentation to generalize them to the new
task, and the missing features by asking the human for
new data about the feature.

• We evaluate the two methods on a 7DoF simulated
robotic arm that aims to align its representation to the
human’s, based on the physical torques received while
performing a task.

The remainder of this paper is organized as follows:
Section II gives an overview of related literature in the
field, Section III formulates an IRL framework to detect
confidence in the human input, and Section IV presents
and discusses our proposed methods to diagnose and repair
misaligned features. Finally, Section V evaluates how the
proposed framework works in a 7-DoF robotic manipulator,
and Section VI concludes with a discussion of some of the
advantages and open problems of our framework, as well as
suggestions for future research directions.

II. RELATED WORK

Inverse reinforcement learning is a popular framework
for learning cost functions from human demonstrations [6],
[7], which considers the human as a utility-driven agent that
chooses actions with respect to an internal cost function. As
an approach to Inverse Optimal Control that does not require
a model of the environment, it is particularly useful when the
cost functions are difficult or impractical to manually design.

Learning from corrections is another way of learning
from human input that can be a good complement and
advantageous in many situations where real-time and task-
specific learning is needed [8], [9]. Methods to incorporate
corrections in real-time to align robot and human preferences
have been shown to improve performance and adaptability
for HRI [2], [10], [11], [12].

Uncertainty in robot learning can be incorporated into
the representations learned by maintaining a probability
distribution over what the cost functions might be [13],
[14]. In [15], the authors proposed using a Kalman filter
to reason over the uncertainty of the estimated human
preferences from physical corrections. However, even by
keeping track of uncertainty, these works still assume that
the human preferences lie in the robot’s representation. In
[16] and [17], a formulation is proposed where the robot’s
representation does not necessarily have to fully capture
the human’s underlying preferences. The authors propose
learning the features proportionally to the robot’s confidence
in the human input, assuming low confidence to be a result
of noisy or suboptimal human actions and leaving for future
work expanding the robot’s feature representation. In [18],
the authors assume misalignment to be the result of missing
features in the robot representation and solve it by querying
the human for new input.

Generalization to new environments is a challenge in
IRL which typically requires training from demonstrations
rich enough to incorporate a wide variety of states of the
environment. Methods like transfer learning [19] exist to
adapt the learning in real-time or when the cost of retraining
the model is prohibitively high. Our proposed framework
fine-tunes the cost function to unexplored environments,
by adjusting its features according to the changes in the
environment.
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III. PROBLEM FORMULATION

In this section we formalize the IRL framework used to
teach a robot a cost function from offline feature demonstra-
tions, how this cost function can be continuously improved
from online human corrections, and how misalignment in the
cost functions of the human and robot can be detected online
by computing the robot’s confidence in the human input.

A. Offline cost learning from demonstrations

IRL is a technique used to infer a cost function C from a
given set of demonstrations D = {ξ1, . . . , ξD}. To make the
problem tractable, C is typically parametrized by a vector
θ ∈ Θ representing the preferences of the human for how to
perform the task, and the aim of the robot is to estimate these
parameters. If θ was known by the robot, the problem could
be treated as a Markov Decision Process (MDP). However,
uncertainty over θ turns it into a Partially-Observable MDP
(POMDP) formulation, with θ as a hidden part of the state.
In this setting, the human actions are thus observations about
θ under some observation model P (ξ|θ).

A popular decision-making model for human behavior is
the Boltzmann model, which considers humans as noisily-
optimal agents that typically choose control inputs that
approximately minimize their cost [20], [21]. According to
this model, the probability of giving a demonstration depends
exponentially on its cost Cθ(ξ):

P (ξ|θ) = e−Cθ(ξ)∫
e−Cθ(ξ̄)dξ̄

. (1)

By assuming {ξ1, . . . , ξM} i.i.d. and computing the maxi-
mum likehood with the Monte Carlo method, the estimated
parameters θ̂ are then the ones that maximize the probability
of the demonstrations:

θ̂ = argmax
θ
L(θ) ≈ D log

D∑
i=1

e−Cθ(ξi) −
D∑
i=1

Cθ(ξi). (2)

Once an estimate of the cost function has been computed
from training demonstrations, the robot then uses it to
perform its task accordingly.

B. Online cost update from corrections

In order to enable the learning process of the robot
to continuously adapt and adjust in real-time to different
settings, work has been developed to apt it to learn from other
sources of human input, such as physical corrections [2].

Formally, the problem can be formulated as a dynamical
system ẋ = f(x, uR + uH), where x is the state of the
robot including its position and velocity, uR is its action (e.g.
the torque applied at the joints) and uH the external torque
applied by the human. There is a true objective function
Cθ known by the human but not by the robot. One of the
conventional models to approximate the infinite-dimensional
space of possible cost functions is using basis functions [1],
[7], based on which the cost can be written as a linear
combination of features of the state, Cθ(x) = θTϕ(x), which
can be arbitrary mappings ϕ : Rd → [0, 1]. While the relevant
set of features ϕ is computed by the robot from feature

demonstrations during training, the weights, θ, denoting the
preferences of the human for performing the task, must be
adjusted to the task at hand. We use this model henceforth
throughout the paper. The correctional HRI framework is
described next.

a) The robot acts: The robot uses its estimate of θ̂
obtained from (2) to compute a trajectory ξR = {xt}Tt=0

that minimizes its current cost function Cθ, and finds the
control inputs {uR,t}Tt=0 to follow it. The cost of a trajectory
is written as Cθ(ξ) = θTΦ(ξ), where Φ(ξ) =

∑
x∈ξ ϕ(x) is

the sum of the features ϕ along the trajectory ξ. The policy
optimization scheme is given by

ξR = argmin
ξ

θ̂TΦ(ξ). (3)

b) The human corrects: If the robot follows a trajectory
that does not seem correct to a noisily-rational human, they
can, at a given time, choose to induce a joint torque uH to
deform the original trajectory to ξH . The deformed trajectory
is given by ξH = ξR + µA−1UH [2], where µ determines
the magnitude of the deformation, the matrix A ∈ RT×T

determines its shape, and UH = uH at the moment of the
correction and is 0 otherwise. The correction is done with the
goal of minimizing the cost, while also minimizing human
effort uH . Hence, the observation model from (1) can be
rewritten as

P (uH |ξR; θ) =
e−(θTΦ(ξH)+λ||uH ||2)∫

e−(θTΦ(ξ̄H)+λ||ūH ||2)dūH

, (4)

where λ symbolizes the trade-off between cost and human
effort.

c) The robot updates its knowledge: By computing the
difference between the sum of the features of the original
and deformed trajectories, the robot updates θ̂ as

θ̂ ← θ̂ − α(Φ(ξH)− Φ(ξR)), (5)

where α ≥ 0. More details on the derivations can be found in
[2], but the intuitive interpretation is that the feature weights
are updated based on the direction of the change of the
feature values between the original and deformed trajectories.
If the deformed trajectory passes further away from an object,
the weights of the corresponding distance-to-object feature
will increase.

C. Online misalignment detection

When a robot acts as described above, it takes the risk of
naively trusting every human action, thus possibly learning
from incorrect information. As mentioned in Section II,
methods exist in the literature for keeping track of uncer-
tainty, but a solution to the problem of whether the desired
features exist in the robot’s feature representation was, until
recently, missing.

In [16], a method was presented to study when human
corrections cannot be explained by the robot’s model. The
misalignment detection problem is tackled by adding a
rationality coefficient β ∈ [0,∞) to (4), to account for
uncertainty in how the human picks uH . The computation of
the two inference parameters, β and θ, can be separated into
two parts and consists of analyzing how efficiently the feature
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Algorithm 1 Misalignment detection

Require: ϕi for i = 1, . . . ,M
Require: ξR = argminξ θ̂

TΦ(ξ), for initial θ̂.
1: while goal not reached do
2: if uH ̸= 0 then
3: ξH = ξR + µA−1ũH

4: u∗
H computed from (6)

5: β̂ = k

2λ
(
∥uH∥2−∥u∗

H∥2
)

6: if β̂ small then
7: diagnose and repair misalignment() – Alg. 2
8: Recompute u∗

H and β̂
9: end if

10: θ̂ ← θ̂−α Γ(Φ(ξH),1)
Γ(Φ(ξH),1)+Γ(Φ(ξH),0) (Φ(ξH)− Φ (ξR)) .

11: ξR = argminξ θ̂
TΦ(ξ)

12: end if
13: end while

Detect
misalignment

values Φ(ξH) of the deformed trajectory can be explained by
each of the robot’s features. In a nutshell, the robot computes
Φ(ξH) and searches for corrections, u∗

H , from the original
trajectory, that could have achieved the same feature value
change. The smallest correction is the one that the human
would have performed if it was performing the correction
due to dissatisfaction with that feature. This is formulated as
the following constrained optimization problem:

min
ūH

||ūH ||2

s.t. Φ(ξR + µA−1ūH)− Φ(ξH) = 0.
(6)

Then, by computing how far the optimal correction u∗
H is

from the actual correction uH received, the robot estimates
its confidence β̂ in the human input uH :

β̂ =
k

2λ(||uH ||2 − ||u∗
H ||2)

, (7)

where k is the dimension of the action space.
Once we have an estimate of the confidence β̂, we can

compute the new posterior estimate of the human’s cost
function p(θ|Φ(ξH), β̂), and from it obtain the update rule

θ̂ ← θ̂ − α
Γ (Φ(ξH), 1)

Γ (Φ(ξH), 1) + Γ (Φ(ξH), 0)
(Φ(ξH)− Φ (ξR)) ;

(8)where

Γ (Φ(ξH), i) = P (E = i | β̂)P (Φ(ξH) | θ,E = i) , (9)

and E is a proxy variable for β̂. The interested reader is
referred to [16] for more details. It is, however, relevant to
point out that if the possibility of the representations being
misaligned is not taken into consideration, (8) simplifies
to (5).

Once θ̂ is updated, the robot goes back to the task at hand.

In summary, the robot updates the parameters θ̂ of the
cost function proportionally to its confidence β̂ on the human
correction. If some of its features can explain the correction,
such as the human pushing the robot arm in the opposite
direction of the laptop, β̂ is large and the weight θ̂ of
the distance-to-the-laptop feature is increased to represent

Fig. 2: Illustrative representation of detecting feature mis-
alignment and diagnosing its cause using our framework,
and the corresponding proposed solution to repair feature
representations in each case.

that the human cares more about the distance to the laptop
than previously estimated. If, on the other hand, β̂ is small,
such as in the case that the robot does not know about
the distance-to-laptop feature, no values of θ̂ can make
the cost function explain the correction; so θ̂ undergoes a
proportionally small update. This confidence-based model
update method is presented in Algorithm 1, and our proposed
method in line 7 which delves into what the robot can learn
from the corrections when the models are misaligned is
presented in the next section.

IV. MODEL ALIGNMENT
THROUGH FEATURE GENERALIZATION

In this section, we present how the cost function of the
robot can be improved based on the human corrections, even
when β̂ is low. Recall that a low value of β̂ means that
there is no θ that can make the cost function Cθ(x) =∑M

i=1 θi
∑T

t=0 ϕi (x
t) optimal in the light of the human

corrections. Hence, the misalignment of the cost function
has to be a result of a misaligned feature representation,
ϕR = {ϕ1, . . . , ϕM}; that is, ϕR ̸= ϕ̃H . It must be either
the case that a feature is missing, ∃ ϕ̃i ∈ ϕ̃H s.t. ϕi /∈ ϕR,
or that at least one feature is incorrect, ∃ ϕ̃i ∈ ϕ̃H s.t. ϕi ∈
ϕR, but ϕ̃i ̸= ϕi.

The only existing relevant approach in the current liter-
ature to overcome representation misalignment is to query
the human for more data, thus assuming that misalignment
stems from the first case, which is an incomplete feature
representation [18] (ϕ̃i /∈ ϕR). However, if the misaligned
features actually exist in the robot’s representation but were
incorrectly learned and do not generalize to new environ-
ments (ϕ̃i ̸= ϕi), this assumption can lead to spurious corre-
lations and incorrect learning down the line. To overcome
this problem, in this section we propose a framework to
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diagnose and repair model misalignment by differentiating
between the two sources of misalignment.

First, one common reason for ϕ̃H ̸= ϕR is the distribution
shift problem, i.e., that ϕR consists of features learned for a
specific training environment, which are not generalizable
for new environments that the robot acts in, and, thus,
become misaligned with the human’s features ϕ̃H in the new
environment. The challenge of generalizing features to new
settings stems from the fact that the features robots learn are
a function of all the objects, and their respective positions,
present in the environment at the moment of training, which
makes the generalization problem highly dependent on large
training datasets with different object positions.

Inspired by recent works on learning in real-time, in
this section we propose an approach to instead address the
generalization problem online as the robot performs the task,
simply from human corrections. We tackle questions like: if
the robot learns from feature demonstrations given when a
vase is on top of a laptop, when one of the objects is shifted,
should the feature learned from the demonstrations be shifted
as well? When acting in different settings where the objects
the robot has to interact with are in new positions, the
problem becomes understanding i) how the learned features
are related to the various objects, and ii) how they should
be repaired when objects are shifted. We divide this two-fold
problem into two main goals, which are each tackled in each
of the next subsections, and conclude the section with some
final remarks. The complete framework is schematically
illustrated in Figure 2.

Problem 1 (Misalignment diagnosis). Once misalignment
has been detected from (7), how can we identify if it stems
from existing features that have not generalized to the new
environment or completely missing features?

Problem 2 (Misalignment repair). After diagnosing the
misaligned features, how can we align the representations
by translating them to the new environment?

A. Diagnosing misaligned features

To make explicit the dependency of the state x on the
surrounding environment, we define it as in [16] according
to the position of the robot joints, and of the objects in the
environment. In this way, x = {R, o1, . . . , oN}. Since the
robot only has access to features ϕ = {ϕ1, . . . , ϕM} trained
in these states, we write them as ϕ(R, o1, . . . , oN ). Due to
the inexistence of a map between features and objects during
training, the question then becomes how the robot can repair
the features to ϕ̃(R̃, õ1, . . . , õN ), now adapted to the testing
setting. Here, õi represents the new position of object i, and
R̃ the new configuration of the robot.

When tasked with computing an optimal trajectory in the
new environment, the robot starts by computing a value for
how much each object has shifted, ∆i = oi − õi, for i =
1, . . . , N . Initially, the robot does not know which features
are of which objects so it plans its trajectory according to
(3), where Φ is the sum of the values of the trained features
ϕ(R, o1, . . . , oN ). If no corrections are received while it

Fig. 3: During training, two features ϕ1 and ϕ2 are learned.
At test time, the laptop is in a new position and the robot
receives a correction uH in its trajectory ξR. To diagnose the
misalignment, we analyse what the optimal correction u∗

H∆

would have been for the previous laptop position in case the
human was correcting for each of the features. (Left) The
optimal correction u∗

H∆ for ϕ1 would be very different from
uH , so β̂∆ is small. (Middle) The optimal correction for ϕ2

would, on the other hand, be similar to uH , so β̂∆ is large.
ϕ2 is thus a feature of the shifted object, and to repair the
misalignment it must be shifted to its new position (Right).

performs the task, the trained features did not belong to the
shifted objects so the robot can correctly perform the tasks.
If corrections are received but β̂, computed according to (7),
is large, then the features are still correctly represented and
the robot just has to update their importance θ̂ for that task
as in (8). If, on the other hand, β̂ is small, no θ̂ can ex-
plain the corrections and therefore the feature representation
ϕ(R, o1, . . . , oN ) has to be repaired to ϕ̃(R̃, õ1, . . . , õN ).

To compute the misaligned features from the correction,
we use a similar idea to that in Section III-C: we compute
a confidence in how well each feature can explain the
correction, but now taking into consideration that some
features might have to be shifted if they belong to the shifted
objects. We denote this new confidence β∆i , and compute it
according to

β̂∆i
=

k

2λ(||uH ||2 − ||u∗
H∆i
||2)

. (10)

The parameters are as in Section III-C, but the comparison is
now done between the human correction gotten, and the one
that would have been optimal for that feature if it belonged
to the shifted object.

The shifted optimal correction, u∗
H∆i

, is now computed
by shifting the original and deformed trajectories by ∆i as
if object i was still in the same position as in training, and in
that state computing the corresponding values for the trained
features. In order words, we need to compute the feature
values in a new state that was unexplored during training,
but whose values might be the same, if the feature belongs
to the shifted object, as those in a known training state. This
can be formulated as the constrained optimization problem

min
ūH

||ūH ||2

s.t. Φ(ξR +∆i + µA−1ūH)− Φ(ξH +∆i) = 0.
(11)
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Algorithm 2 Misalignment diagnosis and repair

Require: ξR, uH , ξH , ϕ(R, o1, . . . , oN ), R̃, õ1, . . . , õN

1: missing feature = 1
2: for ∆i = oi − õi do ▷ for each shift of an object
3: for ϕ1, . . . , ϕM do ▷ for each feature
4: Compute Φ(ξR +∆i), Φ(ξH +∆i)
5: Solve (11) to get u∗

H∆i

6: Solve (10) to get β̂∆i

7: if β̂∆i large then ▷ ϕk is conditioned on oi

8: inverse kinematics(EE +∆i)
9: Repair ϕ to ϕ̃ according to (12)

10: missing feature = 0
11: end if
12: end for
13: end for
14: if missing feature == 1 then ▷ entirely missing
15: Query human for feature demos ϕ̃M+1

16: end if

Diagnose
misalignment

Repair
misalignment

Repair
misalignment

Figure 3 illustrates how (11) computes what the optimal
correction for the different features would have been, if the
object had not changed position. Hence, β̂∆i

represents the
confidence of the robot on the ability of the features to
explain the correction, if these were shifted with the object.

An important condition must, however, be fulfilled.

Assumption 1. The corrections are performed by taking into
consideration one feature at a time.

This assumption enables us to compare the contribution of
each feature individually for the correction received. This
is a common assumption in the literature, including in the
methods in Section III, and has been shown to be reasonable
– for example, [10] studied the advantages of correcting a
robot performing IRL considering one feature at a time.

B. Repairing misaligned features
In the previous section we computed the confidence β̂∆i

of the robot on each feature ϕ for each shift ∆i. If this
confidence is small for all the features, none of them can
explain the correction received in the new environment. In
this case, the misalignment has to derive from a missing
feature, for which the robot was not trained. To repair this
misalignment the robot proceeds by asking the human for
data to learn the new feature. Details on how the cost function
can be augmented by learning new features from neural
networks can be found in [18].

If, on the other hand, the confidence β̂∆i
is large for a

certain feature under a certain shift, to repair the misalign-
ment the robot must realign the feature to the new position
of the object. This can be done according to

ϕ̃i(R̃, õ1, . . . , õN )← ϕi(R, o1 −∆1, . . . , o
N −∆N ), (12)

where ϕ̃i is the updated feature ϕi, õi is the new position
of the shifted object, and R̃ is the new position of the robot
joints, since the features are a function of not only the object
locations but also of the joint positions of the robot. The new
join positions R̃ can be computed using standard inverse

kinematics methods for a new end-effector (EE) position
shifted by ∆i.

The complete diagnosis and alignment framework is sum-
marized in Algorithm 2. Once the features are repaired, the
robot completes Algorithm 2 and returns to Algorithm 1. The
weights of the newly aligned features still need, however,
to be adjusted to the new environment. So from the same
correction uH , as before, the robot estimates the new u∗

H and
β̂. Based on these it then updates the weights θ̂ according
to (8), and can resume its trajectory according to (3), now
for Φ being the sum of the values of the aligned features
ϕ̃(R̃, õ1, . . . , õN ) from (12).

C. Remarks

Let us now discuss some details about the framework.
Multi-object dependent features: The proposed align-

ment framework presented in the previous subsections can be
directly applied to features that depend on multiple objects,
including concepts such as distance between objects, above,
near, aligned, etc. (more examples can be found in [22]). If
one of the objects is shifted in the test setting, like in the
case of the vase that was above the laptop during training
but moved, the above feature will not be relevant in the new
setting so the human will not correct the robot trajectory
near the moved vase object. The representation is therefore
not altered. Further, in the position where the objects were
during training, the robot will now be corrected to assign a
small weight θ to the feature.

Object uncertainty: We assumed that the robot knows
which objects have changed position. If this is not the case,
∆i is not uniquely known but the procedure can still be
repeated for multiple ∆i’s corresponding to the distance to
each of the training objects until the correct one is found.

New inference objects: Despite having been presented
for the case where objects are shifted between training and
testing settings, the framework can also be directly applied to
settings where new objects are present at testing time. Both
∆i and β∆i

are computed as before, and based on them the
robot evaluates if any of the features of the training objects
apply to the new object. The difference is that instead of
altering feature ϕi as in (12), a new one ϕM+1, is added. If
the new objects are the same or behavior-invariant versions of
the training objects (that is, the distinguishing characteristics,
such as color, do not change how the object should be
interacted with and therefore their features) – for example,
if a mobile phone is seen at testing but not training, the
robot could associate it with technology and therefore act as
it would with the computer. This assumption could then be
confirmed or denied by the human corrections received. This
can be extended by computing a probability P (õN+1 = oi)
of the new observations being behavior-invariant versions of
the known ones), then

ϕ̃M+1(R̃, õ1, . . ., õN ) = ϕi(R, o1 −∆1, . . ., oN −∆N ).
(13)

If they are completely new objects not seen during training,
ϕ̃M+1 is constructed from querying the human for new
feature demonstrations.
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Small and large β̂: The magnitude of the confidence
parameters β̂ and β̂∆i is crucial for defining misalignment.
We tune a threshold value offline by making use of the binary
variable E = {0, 1} defined in (9) as a proxy to β̂. In
[17], this threshold is computed via the Bayesian framework
P (E | β̂) ∝ P (β̂ | E)P (E) by fitting the distributions
P (β̂ | E) to data collected from controlled user interactions.

Complexity and real-time capability: Our algorithm
scales bilinearly with the number of features and of objects
shifted, and is applicable in any scenario with full observ-
ability where learning representations is a central problem
and which can allow for real-time corrections during task
execution. This can be extended from physical corrections
to other types of corrections such as comparisons and these
can potentially be given after task completion. Practical
examples can go from shared autonomy for assistive robotics
to computer vision for autonomous driving.

V. EXPERIMENTS

We evaluate our framework in a 7-DoF simulated JACO
robotic manipulator implemented in Pybullet in a 1.80 GHz
CPU. We added the ability for humans to correct the robotic
arm trajectory by applying a torque with the cursor. For
practical implementation details of learning from corrections
in this setting, the reader is referred to [17, Appendix A].
We study the behavior of the robot in an environment with
two objects: o1, a black rectangle representing a laptop, and
o2, a white cube representing a vase; and two features: ϕ1 :
distance-to-laptop, a large point cloud in the center; and ϕ2 :
distance-to-vase, a smaller point cloud on the bottom left
corner. The feature distances are computed from the position
of the end-effector of the robot to the center of the object.
Recall, however, that each feature ϕi(R, o1, o2), i = 1, 2 is
learned as a function of the robot position and both objects
in the environment, meaning that the robot does not know
which features belong to which objects.

At test time, the robot needs to transport a cup of coffee
across the table, in a new environment where, for example,
the laptop is in a different position õ1. Using TrajOpt [23],
the optimal trajectory ξR is computed and followed according
to (3), based on the trained features for the previous object
positions. Let us consider the case where the cup should be
transported in the vicinity of the position of the vase. In
this new environment, the human prefers the robot to keep
a bigger distance from it than during training, so it slightly
pushes the arm away from the vase to change the trajectory
of the robot. The robot follows Algorithm 1 and, through
β̂ from (7), computes that its current features (in particular,
the distance-to-vase) can explain the correction, so increases
the weight θ of this feature translating that it learned to stay
further away from the vase. In the rest of the section, we
analyze how our proposed framework performs when, on the
other hand, β̂ is small so the correction cannot be explained
by any of the existing features.

Let us now analyze the case where the trajectory passes
in the vicinity of the new laptop position, illustrated in
Figure 4. Since, unlike the robot, the human knows that the

Fig. 4: If the human correction uH cannot be explained by
the current features, the robot translates the original and
deformed trajectories ξR and ξH to the previous position
of the object and computes how well each of the features in
that state could explain the correction.

Fig. 5: Once a misaligned feature is identified, the robot can
successfully repair it according to the new object position.

distance-to-laptop feature should be taken into account when
performing a trajectory near the laptop, independently of its
position, it applies a torque uH to correct the trajectory to
ξH to pass further away from it. Since none of the robot’s
current features were trained for those states, they cannot
explain the correction so the robot follows Algorithm 2
to estimate β̂∆ as in (10). It computes what the values
Φ for the two trained features would be for the training
position of the laptop ξR +∆, as in Figure 3. In this case,
Φ(ξR) = Φ(ξH) = [0, 0]T , Φ(ξR + ∆) = [20.13, 0]T and
Φ(ξH + ∆) = [18.6, 0]T . From (11), it then computes the
optimal correction u∗

H that would have been applied to that
shifted trajectory according to each of the features. The
second elements are always zero because the distance-to-
vase feature is far away from all four trajectories. Therefore,
u∗
H = 0 since the cost of that feature is already minimized,

and the human has a preference for smaller corrections that
minimize their effort (4). For the distance-to-laptop feature,
on the other hand, the cost of the shifted deformed trajectory
is decreased, resulting in a u∗

H > 0, and equal to uH .
Therefore, from (10) we get a small β̂∆ for the former
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feature, but a large one for the latter, showing that the
distance-to-laptop feature explains the correction performed
near the new laptop position.

Once the robot learns that the distance-to-laptop feature
corresponds to the object shifted, we apply the framework
from Section IV-B to repair the feature values for the new
setting, ϕ̃(R̃, õ1, o2). Figure 5 shows how the feature values
change in the vicinity of the new (in purple) and previous
(in grey) positions of the object.

We evaluated β̂ and β̂∆ over multiple experiments with
random object shifts and robot trajectories, and the major
limiting factor was the new position of the object being close
to its original training position. Overall, it took around 0.5
seconds per feature and per object shifted to diagnose the
misalignment (compute β̂∆) and repair (shift) the misaligned
features. Compared to teaching the different features for mul-
tiple object positions during training, the amount of human
effort prevented with this method can be estimated from data
like [18, Figure 4]. Due to lack of space, implementation
details, a more detailed analysis, and more complex examples
will be linked in an extended version of this paper.

VI. CONCLUSIONS

In this work we argued that robots’ adaptation capabilities
should go beyond detecting when their representations are
misaligned with those of humans. We proposed a framework
that enabled them to diagnose the causes of the misalignment
– by distinguishing between misalignment caused by incor-
rect features that do not generalize to new environments, and
completely missing ones – and a method to repair the mis-
alignment in each of these scenarios. While the latter cause of
misalignment can be addressed by querying the human for
more feature data, solving the former required estimating
which objects the different learned features are related to.
Our framework has the advantage of being applicable while
the robot perfoms a task in real-time, leveraging information
from physical human corrections. In simulations we showed
that a robotic arm, trained to perform tasks for specific
states, could successfully use our framework to diagnose,
and augment, its misaligned features for new states in a new
environment.

A. Future work

In this paper we took a step toward fully generalizable
HRI. Solving model misalignment is a complex problem
that can result from varied misalignment sources. While we
distinguish between two – missing and incorrect features
that do not generalize to new environments – others, such
as features that have actually been learned wrongly due to
limited training data, remain a question to address in future
work. In the future, we would also like to present an extended
study of each of the remarks in Section IV-C, and consider
the possibility of allowing the robot to query the human in
case of ambiguity about which feature should be repaired.
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