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Abstract— This paper introduces hierarchical optimization
algorithms to solve, in a data-driven manner, an uncertain
resource allocation problem over a two-layered tree network. In
this optimization problem, the root of the tree aims to minimize
the cost of procuring a certain resource, the demand for which
is uncertain and originates at the leaves of the network. The
demand is to be met with a certain probability which is rep-
resented as chance-constraints. We assume that data regarding
the uncertain demand is available at each leaf of the network
and we design a general framework of hierarchical optimization
procedures where the chance-constrained allocation problem is
solved using the available data with the constraint that the
data is not transferred to the root. Our hierarchical procedure,
termed the abstraction-allocation framework, is adapted to
three data-driven algorithms for solving the chance-constrained
problem: the scenario method, sample average approximation,
and distributionally robust optimization. In our framework,
the middle layer of the network facilitates the abstraction and
allocation when information flows from leaves to the root and
the other way around, respectively.

I. INTRODUCTION

Network resource allocation problems appear in various
application domains, such as, managing the electrical power
grid and handling the supply chain logistics. These problems
are inevitably affected by uncertainties and this is more so
in a modern power grid, where the number of uncertain
demand and supply components are increasing rapidly. While
a central coordinator can make decisions about how much
resource needs to be allocated to which part of the network,
this process quickly becomes intractable when the number
of uncertain components increase, the data related to them
explodes to high volumes, and much of this data is not shared
with the central node due to privacy and security concerns. In
addition to this challenge, another prevalent characteristic of
these resource allocation problems is the natural hierarchical
structure of the network, mostly caused by geographical
positioning. For example, the solar panels in a neighborhood
affect the energy balance and power characteristics of the
distribution grid that they are connected to but they have
less impact on another city geographically far from them.
Bearing the above mentioned challenge and the structure of
the problem in mind, in this paper we explore hierarchical
optimization routines as a framework for solving chance-
constrained resource allocation problem. Our novelty and
contribution is the introduction of this framework that can
be viewed as a structure that can include further distributed
and decentralized subroutines.

The authors are with the Engineering and Technology Insti-
tute Groningen, University of Groningen. Email: {yifan.liu,
a.k.cherukuri}@rug.nl.

1) Literature review: Distributed and decentralized opti-
mization have been popular for a while, see [1] for a survey
of methods, however there is less attention on applying these
algorithms to infrastructure networks. Recently in [2], [3]
hierarchical approaches for solving deterministic network
optimization problems were explored. However, these works
did not consider any uncertainty affecting the optimization
problems. Concerning decentralized or distributed methods
solving stochastic optimization problems over an infrastruc-
ture network, some works focus on scenario methods [4],
[5] for approximating the uncertain constraints. While the
optimization problems in there are richer in the form of
constraints and objective function, they do not explore a
hierarchical setup. Our attempt in the current paper is to
take a step towards bridging these two lines of research.

For our setup, in addition to the popular scenario ap-
proach [6], we also consider the sample average approxi-
mation [7], and distributionally robust optimization [8], [9],
[10]. The later two lead to a mixed-integer optimization prob-
lem that need to be solved over a network. In this way, our
work also relates to distributed mixed-integer optimization
problems [11], [12], [13]. Finally, we refer to [14], [15],
where the two-layer architecture, similar to ours, is used in
a federated learning setup.

2) Setup and contributions: We consider an undirected
two-layered tree network designed for resource allocation,
where the root of the network procures a resource from
an external source and distributes it to the leaf nodes via
the middle layer. The demand of the resource at the leaves
is uncertain and the demand needs to be met collectively
across the network with high probability. This is encoded
using joint chance constraints. The probability distribution
of the demand is unknown but the data regarding it is
assumed to be known. The key restriction is that the data
is only known at the leaves and it is not transferred to the
root of the network. We consider three data-driven solution
approaches for handling the chance constraints: scenario
method, sample average approximation, and distributionally
robust optimization. Each of these methods involve solving a
deterministic optimization problem for which we design our
hierarchical framework.

The hierarchical procedure involves three phases. The first
one is the abstraction phase where the middle layer col-
lectively determines how much resource would be required
by each of them for satisfying the demand under each of
the data-driven methods. The middle layer communicates
this information to the root. The second phase consists of
solving the optimization problem by the root where the cost
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Fig. 1: A two-layer network G = (V, E) for which resource allocation
problem is defined. The root of the tree is denoted by rt. The children of
the root, represented by chd(rt), form the middle layer. The leaves of the
network form the set L. The solid lines represent the tree network and the
dashed lines the communication between the middle layer nodes.

of procuring the resource is minimized. The third phase
allocates the resource to the leaves via the middle layer that
obtained the optimized resource from the root. We provide
the abstraction and allocation procedures for each of the data-
driven methods mentioned above. We conclude the paper
with a discussion including future extensions.

3) Notation: Let R, R≥0, and Z denote the set of real,
nonnegative real, and integer numbers. For a positive integer
n, we denote [n] := {1, . . . , n}. Given two vectors u ∈ Rm

and v ∈ Rn we denote their concatenation as (u; v) ∈ Rm+n.
The number of elements in a set S is denoted by |S|. The
n-dimensional vector of all ones is represented by 1n.

II. PROBLEM STATEMENT

Consider a two-layered tree network represented by an
undirected graph G := (V, E), where V and E ⊆ V × V
stand for the nodes and edges of the network, respectively 1.
The root of the tree (rt) is responsible for procurement of a
certain resource from some external source and the resource
is then distributed among the leaves of the network via the
middle-layer, see Figure 1 as an example. We consider the
case where the demand of the resource is uncertain at each
leaf of the network. Considering this setup, we aim to solve
the following joint chance-constrained problem (JCCP):

min
(y,{yℓ}ℓ∈L)

c(y) (1a)

s. t. y ≥
∑
ℓ∈L

yℓ, (1b)

P[yℓ ≥ uℓ,∀ℓ ∈ L] ≥ 1− ϵ, (1c)

where L ⊂ V is the set of leaves of the tree graph G,
the objective function c : R≥0 → R≥0 is convex, ϵ ∈
(0, 1), and P is the distribution of the random variable
u := (u1;u2; . . . ;u|L|). The objective function stands for

1For a graph, a path is an ordered pair of vertices such that each
consecutive pair of vertices is an edge. A graph is connected if there is
a path between every two vertices. A cycle is a path that starts and ends at
the same vertex. A graph is acyclic if it contains no cycle and an acyclic
connected graph is called a tree.

the cost incurred by the root in procuring the resource for
the network, the latter is represented by the decision variable
y ∈ R. The constraint (1b) indicates that the procured
resource for the network needs to be larger than the collective
requirement of each of the leaves, which is given in (1c).
Specifically, all leaves together wish to fulfill the uncertain
demand uℓ with probability at least 1− ϵ.

Given the problem data c, P, ϵ, and the graph, the root
can solve the optimization problem (1) and allocate the
resource to leaves as per the obtained optimizer. However,
there are two challenges that need to be dealt with. First, the
probability distribution P is often not known and one needs to
rely on sample-based methods to approximate the solution of
the problem. Second, in a network resource allocation setup
as ours, the data is not available at the root. Moreover, the
dataset of the entire network can possibly be so large that it
cannot be handled by a central computational unit. On the
other hand, the entire dataset need not be required to make
a meaningful approximation of the optimizer. Thus, keeping
these challenges in mind, our work proposes designing a
hierarchical optimization routine where we compute the
solution of (1) without transferring the entire data across
the network. Our routine will be a meta algorithm given in
Section III, implementing which requires simple computation
in case of some data-driven solutions and further distributed
algorithmic subroutines in some others.

III. HIERARCHICAL OPTIMIZATION ROUTINES FOR JCCP

Here, we present our algorithm that will solve problem (1)
using samples and hierarchical information exchange. To this
end, we assume that N samples Û := {û[1], û[2], . . . , û[N ]}
of the uncertainty u are available with the constraint that
each leaf ℓ ∈ L only knows Ûℓ := {ûℓ[1], ûℓ[2], . . . , ûℓ[N ]}
where ûℓ[i] is the component of û[i] corresponding to ℓ.
In case these samples are drawn in an i.i.d manner from the
distribution P, the solutions obtained from our algorithm will
have desirable statistical guarantees. However, our methods
themselves do not require this assumption as our focus is on
algorithmic aspects.

The general procedure proposed in our work is termed,
abstraction-allocation framework, given as Algorithm 1. Be-
low we provide a brief explanation of the steps.

[Informal description]: The procedure admits as
input the cost c that is known to the root and
samples Ûℓ and violation level ϵ that is known to
each of the leaf ℓ ∈ L. The algorithm starts with
computing the abstraction uabs,m for each m ∈
chd(rt) in Line 1 using the samples {Ûℓ}ℓ∈Lm

that the leaves Lm connected to the node m know
and information exchange with other nodes in
chd(rt) which is denoted in a general way by I.
We denote this procedure of generating uabs,m by
the map Abst. The exact definition of this map will
vary based on the data-driven method employed to
solve JCCP. The computed uabs,m is sent to the
root (see Line 2), and the root solves a determinis-
tic optimization problem (2) in Line 3. The optimal
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solution gives a resource value for each node m ∈
chd(rt) denoted as ȳabsm , which is sent to m by
the root (see Line 4). The last step (Line 5) is the
allocation to the leaves, which is executed by the
middle-layer. Each node m ∈ chd(rt) allocates
yallℓ to ℓ ∈ L which is determined by the map
Allo. Similar to the abstraction map, we prescribe
the exact definition of Allo later, depending on the
data-driven method.

Algorithm 1: Abstraction-allocation framework
Input : Root: cost function c; Leaves: samples

Ûℓ and tolerance ϵ
/* Stage 1: Abstraction */
Each m ∈ chd(rt) executes:

1 Computes uabs,m ← Abst({Ûℓ}ℓ∈Lm
, I)

2 Sends uabs,m to the root
/* Stage 2: Optimization */
Root executes:

3 Solves:
min c(y)

s. t. y ≥∑
m∈chd(rt) ȳm,

ȳm ≥ uabs,m, ∀m ∈ chd(rt),

(2)

and sets the optimizer as (yabs, {ȳabsm }m∈chd(rt))
4 Sends ȳabsm to m ∈ chd(rt)
/* Stage 3: Allocation */
Each m ∈ chd(rt) executes:

5 Sets {yallℓ }ℓ∈Lm ← Allo(ȳabsm )
6 Sends yallℓ to each ℓ ∈ L

Below we proceed to explore the data-driven methods and
the Abst and Allo maps that will specify the hierarchical
algorithms related to them. We also emphasize on how these
maps can be computed with information exchange between
each middle-layer node and the leaves associated to it.

A. Scenario Method

The first sample-based procedure that we explore to
solve (1) is the scenario method [16]. In here, the chance-
constraint (1c) is replaced with a set of constraints, each one
of them imposes the constraint yℓ ≥ uℓ for a data point
from Ûℓ. In particular, we obtain the following deterministic
optimization problem

min
(y,yvec)

c(y) (3a)

s. t. y ≥ 1⊤
|L|y

vec, (3b)

yvec ≥ û[i], ∀i ∈ [N ], (3c)

where yvec := (y1; y2; . . . ; y|L|) is the vector of all decision
variables {yℓ}. Note that the above problem is equivalent to

min
(y,yvec)

c(y) (4a)

s. t. y ≥ 1⊤
|L|y

vec, (4b)

yvec ≥ umax, (4c)

where umax := (umax,1, ;umax,2; . . . , umax,|L|) with
umax,ℓ := maxi ûℓ[i] for all ℓ ∈ L. This simple observation
guides us in defining the abstraction and allocation maps that
will consequently form Algorithm 1 for the scenario method.
We define abstraction as

Abst({Ûℓ}ℓ∈Lm
, I) :=

∑
ℓ∈Lm

umax,ℓ. (5)

and the allocation as

Allo(ȳabsm ) :=

{
yallℓ :=

umax,ℓ∑
ℓ∈Lm

umax,ℓ
ȳabsm

∣∣∣ ℓ ∈ Lm

}
.

(6)

Namely, the abstraction map aggregates the maximum value
umax,ℓ among the samples obtained by each leaf node and the
allocation map distributes ȳabsm proportional to umax,ℓ. Note
that importantly, there is no need for nodes in chd(rt) to
communicate with each other. The following result summa-
rizes the formal guarantee of the algorithm under the above
defined maps.

Proposition III.1. (Guarantee for Algorithm 1 under scenario
method): The output (yabs, {yallℓ }ℓ∈L) of Algorithm 1 with
the maps Abst and Allo defined in (5) and (6), respectively,
is an optimizer of the scenario problem (3).

The proof can be deduced by noting that following two
sets, each corresponding to problems (4) and (2), respec-
tively, are equal:

F1 := {y ∈ R | ∃{yℓ}ℓ∈L s.t. (y, {yℓ}ℓ∈L) is feasible for (4)},
F2 := {y ∈ R | ∃{ȳm}m∈chd(rt) s.t. (y, {ȳm}m∈chd(rt))

is feasible for (2)}.
The intuition behind the abstraction-allocation mechanism
for the scenario method is simple. The result is facilitated
by the fact that the inequality defining chance-constraint is
straightforward. Our wish is to explore more general cases in
future where such abstraction and allocation maps can be de-
fined without any communication between nodes in chd(rt).
But for now, we investigate other data-driven methods of
solving (1) where such communication is necessary.

B. Sample Average Approximation (SAA)

In this method, the probability distribution P defining
the chance constraint (1c) is replaced with the empirical
distribution

P̂ :=
1

N

N∑
i=1

δû[i]

defined using the data set Û . Here, δû[i] stands for the delta
function placed at the point û[i]. The thus formed optimiza-
tion problem is termed as the sample average approximation
(SAA) of JCCP (1) and is given as

min
(y,yvec)

c(y) (7a)
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s. t. y ≥ 1⊤
|L|y

vec, (7b)

P̂[yvec ≥ u] ≥ 1− ϵ. (7c)

Here, we recall that yvec collects all yℓ variables and u ∼ P̂.
To obtain the hierarchical procedure of solving the above
problem, we reformulate (7) following [17] and [18] as a
mixed-integer linear program (MILP). Introducing for each
i ∈ [N ], a binary variable zi ∈ {0, 1}, we write

min
(z,y,yvec)

c(y) (8a)

s. t. y ≥ 1⊤
|L|y

vec, (8b)

yvec − û[i] + 1|L|ziM ≥ 0, ∀i ∈ [N ], (8c)

1⊤
Nz ≤ Nϵ, (8d)

z ∈ {0, 1}N , (8e)

where M is a large positive number satisfying M >
2maxi∈[N ] ∥û[i]∥∞. Note that if zi = 0, then the con-
straint (8c) reads as yvec ≥ û[i]. On the other hand, if zi = 1,
then yvec − û[i] + M1|L| ≥ 0, which is trivially satisfied.
Thus, the number of samples for which yvec ≥ û[i] is not
satisfied is bounded by constraint (8d). The problem (8) is
equivalent to (7), which means that the set of values y and
yℓ components take at the optimizers of both problems are
same. To solve (8) in a hierarchical manner, the nodes in
chd(rt) need to handle constraints (8c) to (8e) collectively
by agreeing upon the samples for which zi = 0. To this
end, we propose that nodes in chd(rt) solve the following
problem among themselves:

min
(z,yvec)

1⊤
|L|y

vec (9a)

s. t. yvec − û[i] + 1|L|ziM ≥ 0, ∀i ∈ [N ], (9b)

1⊤
Nz ≤ Nϵ, (9c)

z ∈ {0, 1}N . (9d)

Note that the objective function of the above problem is
separable among chd(rt), that is, one can write the objective
as

∑
m∈chd(rt)

∑
ℓ∈Lm

yℓ. However, the constraints (9b)-
(9d) are coupled as they all need to agree on the variable
z. Therefore, no single node in chd(rt) can solve the
above problem and so, we appeal to distributed optimization
routines. Once chd(rt) find the solution of (9), each node
in chd(rt) computes the abstraction map.

To arrive at a distributed method for (9), we first provide a
reformulation. For each m ∈ chd(rt), consider the variable
αm ∈ R that will stand for

∑
ℓ∈Lm

yℓ. Then, the reduced
version of (9) is given as

min
(z,{αm})

∑
m∈chd(rt) αm (10a)

s. t. αm − 1⊤
|Lm|û

[m][i] + zi|Lm|M ≥ 0,

∀i ∈ [N ], ∀m ∈ chd(rt), (10b)

1⊤
Nz ≤ Nϵ, ∀m ∈ chd(rt), (10c)

z ∈ {0, 1}N , (10d)

where û[m][i] := (ûℓ[i])ℓ∈Lm
stands for the components of

û[i] that are held by leaves ℓ ∈ Lm. Problems (10) and (9)

are equivalent in the sense that the set of z-components of
optimal solutions of both problems are same. That is, if
(z∗, {α∗

m}) is an optimizer of (10), then (z∗, (yvec)∗) with

(yvec)∗ℓ := max
i∈[N ]

ûℓ[i]− z∗i M

is an optimizer of (9) and one can verify that (yvec)∗ defined
in the above manner satisfies α∗

m =
∑

ℓ∈Lm
(yvec)∗ℓ . On the

other hand, if (z∗, (yvec)∗) is an optimal solution of (9),
then (z∗, {α∗

m}) with α∗
m =

∑
ℓ∈Lm

(yvec)∗ℓ is an optimizer
of (10). Next, we move to solving (10) in a distributed
manner. To this end, we define local variables (z(m), α(m))
for each m ∈ chd(rt), where z(m) ∈ {0, 1}N is an estimate
of z and α(m) := (α

(m)
m̄ )m̄∈chd(rt) is a vector belonging to

R|chd(rt)|, where α
(m)
m̄ is the estimate of αm̄ held by agent

m. Using these variables, the consensus version of (10) is

min
{(z(m),α(m))}

∑
m∈chd(rt) e

⊤
mα(m) (11a)

s. t. α(m)
m − 1⊤

|Lm|û
[m][i] + z

(m)
i |Lm|M ≥ 0,

∀i ∈ [N ], ∀m ∈ chd(rt), (11b)

1⊤
Nz(m) ≤ Nϵ, ∀m ∈ chd(rt), (11c)

(z(m), α(m)) = (z(m̄), α(m̄)),

∀m, m̄ ∈ chd(rt), (11d)

z(m) ∈ {0, 1}N , α(m) ∈ R|chd(rt)|,

∀m ∈ chd(rt), (11e)

where em ∈ R|chd(rt)| is a vector with all entries zero
except the one corresponding to m. The above problem takes
a consensus-MILP for which a distributed algorithm was
developed in [19]. The consensus-MILP takes the form

min
{x(m)}

∑
m∈chd(rt)

c⊤mx(m), (12a)

s. t. x(m) ∈ Xm, ∀m ∈ chd(rt), (12b)

x(m) = x(m̄), ∀m, m̄ ∈ chd(rt), (12c)

x(m) ∈ Rnr × Znz , ∀m ∈ chd(rt), (12d)

where Xm is a polyhedron. We comment on the parallelism
between (11) and (12). Let (z(m), α(m)) in the former
problem be the variable x(m) in the later. The objective
function is linear and separable in both problems. The
linear constraints (11b) and (11c) are captured in (12b).
Finally, consensus and integer constraints in (11d) and (11e)
respectively are represented as (12c) and (12d). Having es-
tablished the similarity, assume now an undirected connected
communication graph Gchd := (chd(rt), Echd) among the
nodes chd(rt). Over this communication network, chd(rt)
execute Algorithm 1 from [19] and solve problem (11) in a
distributed manner.

We omit the details of the algorithm due to space con-
straints. We do make a note that in literature there are not
many works on solving MILP’s in a distributed manner and
among these, the algorithm in [19] is the only one that
considers a separable cost structure with consensus on integer
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variables and provides a rigorous convergence guarantee for
the algorithm.

As a result of the distributed algorithm from [19], each
m ∈ chd(rt) has access to component ((z(m))∗, (α(m))∗)
of the optimizer of problem (11). Then, the node m sets

y∗ℓ = max
i∈[N ]

ûℓ[i]− (z(m))∗i |Lm|M

for all ℓ ∈ Lm. Using this, the abstraction and allocation
maps to solve the sample average approximation (7) of JCCP
using Algorithm 1 are given as

Abst({Ûℓ}ℓ∈Lm
, I) :=

∑
ℓ∈Lm

y∗ℓ , (13)

and

Allo(ȳabsm ) :=

{
yallℓ :=

y∗ℓ∑
ℓ∈Lm

y∗ℓ
ȳabsm

∣∣∣ ℓ ∈ Lm

}
. (14)

We give the formal guarantee of the algorithm under the
above defined maps as follows. The proof follows exactly
the same way as that of Proposition III.1.

Proposition III.2. (Guarantee for Algorithm 1 under SAA):
The output (yabs, {yallℓ }ℓ∈L) of Algorithm 1 with the maps
Abst and Allo defined in (13) and (14), respectively, is
an optimizer of the joint chance-constraint problem using
sample average approximation (7).

C. Distributionally Robust Optimization (DRO)

Here, we consider a distributionally robust (DR) approach
of solving the JCCP using ideas from [8], [9], and [10]. The
general DR framework involves considering the worst-case
value for the objective function or the constraint over a set
of distributions and optimizing for it [20]. These sets of
distributions are commonly termed as ambiguity sets. Given
the dataset Û and a suitable radius θ > 0, we define the
Wasserstein ambiguity set as

Mθ
N :=

{
P ∈ P

(
R|L|

)
| dW(P, P̂) ≤ θ

}
(15)

with dW (P1,P2) = infP∈H(P1,P2) EP [∥w − v∥], where w ∼
P1, v ∼ P2, and H (P1,P2) represents the set of all distribu-
tions on R|L| × R|L| with marginals P1 and P2. Using this
definition, we present the DR chance-constrained problem as

min
(y,yvec)

c(y) (16a)

s. t. y ≥ 1⊤
|L|y

vec, (16b)

Q[yvec ≥ u] ≥ 1− ϵ,∀Q ∈Mθ
N . (16c)

The last constraint is the robust one in the sense that the
chance-constraint needs to hold for all distributions in the
ambiguity set. To solve the problem in a hierarchical way, we
first give the reformulation of (16) based on [8, Proposition
2] as an MILP:

min
(z,s,t,y,yvec)

c(y)

s. t. y ≥ 1⊤
|L|y

vec,

ϵNt− 1⊤
Ns ≥ θN,

yvec − û[i] + 1|L|ziM ≥ 1|L|(t− si), ∀i ∈ [N ],

M(1− zi) ≥ t− si, ∀i ∈ [N ],

z ∈ {0, 1}N , t ∈ R, s ∈ R≥0,

where M > 0 is a suitably large positive constant. Similar
to the previous section on sample average approximation,
to determine the abstraction map, the nodes chd(rt) would
require to solve among themselves the following problem

min
(z,s,t,yvec)

1⊤
|L|y

vec (17a)

s. t. ϵNt− 1⊤
Ns ≥ θN, (17b)

yvec − û[i] + 1|L|ziM ≥ 1|L|(t− si), ∀i ∈ [N ],
(17c)

M(1− zi) ≥ t− si, ∀i ∈ [N ], (17d)

z ∈ {0, 1}N , t ∈ R, s ∈ RN
≥0. (17e)

In the above problem, the objective function is separable,
however, nodes in chd(rt) need to agree upon variables
(z, s, t) to handle the constraints collectively. Thus, we
again make use of the distributed algorithm proposed in
the previous section. To this end, we first rewrite the above
problem in a reduced form as done in (10). We obtain:

min
(z,s,t,{αm})

∑
m∈chd(rt) αm (18a)

s. t. ϵNt− 1⊤
Ns ≥ θN, (18b)

αm−1⊤
|Lm|û

[m][i]+zi|Lm|M≥|Lm|(t−si),
∀i ∈ [N ], ∀m ∈ chd(rt), (18c)

M(1− zi) ≥ t− si, ∀i ∈ [N ], (18d)

z ∈ {0, 1}N , t ∈ R, s ∈ RN
≥0. (18e)

The above problem is equivalent to (17). It is in the sense that
the set of (z, s, t)-components of optimal solutions of both
problems are same. Given this reduced form, we proceed
to write the consensus-MILP form for which the distributed
algorithm from [19] can be employed by chd(rt) to solve the
problem. Let (z(m), s(m), t(m), α(m)) for each m ∈ chd(rt)
be local variables, where z(m) ∈ {0, 1}N , s(m) ∈ RN

≥0, and
t(m) ∈ R are estimates of z, s, and t, respectively, and
α(m) := (α

(m)
m̄ )m∈chd(rt) with α

(m)
m̄ being the estimate of

αm̄ held by m. Then, we obtain the consensus-MILP:

min
∑

m∈chd(rt) e
⊤
mα(m) (19a)

s. t. ϵNt(m) − 1⊤
Ns(m) ≥ θN, ∀m ∈ chd(rt), (19b)

α(m)
m −1⊤

|Lm|û
[m][i]+z

(m)
i |Lm|M≥|Lm|(t(m)−s(m)

i ),

∀i ∈ [N ], ∀m ∈ chd(rt), (19c)

M(1− z
(m)
i ) ≥ t(m) − s

(m)
i ,∀i ∈ [N ],

∀m∈chd(rt), (19d)

(z(m), s(m), t(m), α(m)) = (z(m̄), s(m̄), t(m̄), α(m̄)),

∀m, m̄ ∈ chd(rt), (19e)

z(m) ∈ {0, 1}N , α(m) ∈ R|chd(rt)|, s(m) ∈ RN
≥0,

t(m) ∈ R, m ∈ chd(rt). (19f)
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Given the above form, the distributed algorithm from [19]
can be implemented and each m ∈ chd(rt) obtains the com-
ponent ((z(m))∗, (s(m))∗, (t(m))∗, (α(m))∗) of the optimizer
of (19). Using this, the abstraction map is given as

Abst({Ûℓ}ℓ∈Lm
, I) :=

∑
ℓ∈Lm

y∗ℓ , (20)

where y∗ℓ = ûℓ[i]−(z(m)
i )∗|Lm|M+|Lm|((t(m))∗−(s(m)

i )∗).
Furthermore, the allocation is

Allo(ȳabsm ) :=

{
yallℓ :=

y∗ℓ∑
ℓ∈Lm

y∗ℓ
ȳabsm

∣∣∣ ℓ ∈ Lm

}
. (21)

The formal guarantee of the algorithm under the above
defined maps is given as follows.

Proposition III.3. (Guarantee for Algorithm 1 under DRO):
The output (yabs, {yallℓ }ℓ∈L) of Algorithm 1 with the maps
Abst and Allo defined in (20) and (21), respectively, is
an optimizer of the joint chance-constraint problem using
distributionally robust optimization (16).

Remark III.1. (Communication and information exchange):
The abstraction-allocation framework when applied to the
scenario method, SAA, and DRO, creates a different require-
ment on the information to be exchanged among various
agents. In scenario, the data at leaves need not be shared with
anyone, the middle layer need to communicate with each
other, and there is only one round of information transfer
up and down the tree. On the other hand, in SAA and
DRO, the data needs to be shared with the middle layer,
the middle layer needs to communicate with each other for
several iterations, but the information only travels once up
and once down through the tree. This last aspect is central
in all our methods and prevents several interactions between
the root and the leaves. In future, we wish to further explore
problems that can be solved with such a one-round restriction
on information flow up and down the tree. •

IV. CONCLUSIONS

We have presented a hierarchical framework for solving a
simple uncertain network resource allocation problem. The
details of the hierarchical routine, that is the abstraction
and allocation procedures, are presented for three data-
driven methods of handling chance constraints. We make the
following remarks regarding our framework and its potential
future extensions:

• In our proposed framework, we only had one round
of communication up and down the tree. This was
facilitated by the simple nature of the function appearing
in the probabilistic constraint. There are other problems
that can be tackled under this single-round communica-
tion. Beyond this, we wish to explore in future the range
of problems that would require iterative communication
throughout the network.

• We only considered a two-layer tree network and scalar
decision variables. In a typical electrical power network,
for example, the tree has multiple levels at the distribu-
tion grid and there are other restrictions on the power

flow that for example, control the voltage around the
nominal point. It would be quite interesting to study
the abstraction-allocation routines for such constraints.

• Chance-constraints are one way of handling resource
satisfaction under uncertainty. Adapting our methods
to a more flexible and coherent risk-metric such as
the conditional value-at-risk is another interesting and
relevant direction to pursue.
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