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Abstract— We present a novel computational framework for
density control in high-dimensional state spaces. The considered
dynamical system consists of a large number of indistinguish-
able agents whose behaviors can be collectively modeled as
a time-evolving probability distribution. The goal is to steer
the agents without collision from an initial distribution to
reach (or approximate) a given target distribution within a
fixed time horizon at minimum cost. To tackle this problem,
we propose to model the drift as a nonlinear reduced-order
model, such as a deep network, and enforce the matching
to the target distribution at terminal time either strictly or
approximately using the Wasserstein metric. The resulting
saddle-point problem can be solved by an effective numerical
algorithm that leverages the excellent representation power
of deep networks and fast automatic differentiation for this
challenging high-dimensional control problem. A variety of
numerical experiments were conducted to demonstrate the
performance of our method.

I. INTRODUCTION

Recent years have witnessed an emerging research in-
terest in optimal control problems with large collective of
agents, such as drones, robots, and vehicles [4], [11]. Such
problems appear in many real-world applications, including
surveillance over a large region, time-sensitive search-and-
rescue, infrastructure inspection and maintenance, among
many others. Meanwhile, the cost of manufacture, including
the builtin electrical components and batteries, has reduced
significantly during the past decades. This enables swarming
of agents a cost-effective strategy for sophisticated tasks
otherwise difficult to accomplish. In practice, the devices
used in swarm are often of small size and thus have lim-
ited computation and communication power. Hence optimal
swarm control, designing efficient algorithms that can steer
the agents to achieve specified high-level tasks in a way that
accommodates the high dimensionality of the system [37],
becomes particularly important.

A. Related Work

Optimal control of large collective of agents has been
commonly considered in the context of density control based
on mean-field models [12], [44], [27]. The idea of mean-
field models is to characterize the collective behaviors of the
agents in the swarm using a time-evolving probability density
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function, which are solutions of some partial differential
equations (PDEs). In these models, the probability density
does not depend on the number of agents, but only on
the state space of individual agents. Nevertheless, direct
computation of these PDEs can still be computationally
prohibitive due to the high dimension of the state space.
Thus, most existing works on density controls approximate
the density functions based on spatial discretization [1] or
using kernel density estimation [2], [14]. The work [14]
designed velocity field to make swarms density converges
to the desired/commanded density distribution. In [42], the
authors presented a density control by improving Smoothed
Particle Hydrodynamic (SPH) [34] method with collision
free condition, where one defines the density of an agent
as the weighted sum of distances to its neighbors within a
certain range. A data-driven approach was proposed in [9]
to learn the control by estimating the Koopman operators.
In [41], the authors provided a control strategy to steer
the state from an initial distribution to a terminal one with
specified mean and covariance, which is also called nonlinear
covariance control. Also see [7], [8], [21] for related works.

Density control is closely related to optimal transport
[38]. Several groups have combined Wasserstein metric and
optimal control to develop relevant control algorithms. For
instance, [5] develops Wasserstein proximal algorithms to
solve a density control problem, where a nonlinear drift
term is considered. In [3], the authors discussed the optimal-
ity conditions for optimal control problems in Wasserstein
spaces. In [40], a Wasserstein based robust control was
developed to resolve the issue that uncertain variables are
unavailable. In [22], the authors proposed a novel model-
predictive control (MPC) method for limiting the safety risk
when the distribution of the obstacles is set to be within an
ambiguity set, which is measured by the Wasserstein metric.
In [23], terminal cost as Wasserstein distance and finding
the parameters of normalizing flow [10] by minimizing the
terminal cost have been considered. In [13], the authors pre-
sented a primal-dual formulation of optimal control problem
with existence proof and efficient numerical method, similar
method can also be found in [17] where the problem is solved
by a Mean Field Game (MFG) approach. In [16], the authors
calculated the individual agent trajectory by alternating two
gradient flows that involve an attractive potential, a repelling
function, and a process of intermittent diffusion, in which
way a large group of robots is employed to accomplish the
task of shape formation.

Optimal control over discrete state spaces can be cast
as Markov chain models as shown in [1]. For optimal
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control with continuous state spaces, the density dynamics
are determined by the corresponding continuity equation or
Fokker-Planck equation. For instance, [35], [36] provided
both theoretical analysis and numerical methods of the
optimal control to achieve target equilibrium density. In
[6], the dynamics of the control was discretized in time
and a multi-marginal optimal transport scheme was used to
solve the problem. In [24], the authors developed a method
to solve the optimal transport based control using Voronoi
Tessellation coverage. A distributed algorithm for density
estimation to reduce the computational cost is proposed in
[43]. Multi-agent optimal control has been widely applied
in the domain of robotics in recent years. For a general
introduction, we refer to [15]. In particular, [45] presents the
work of using reinforcement learning to control multi-robot
system. Furthermore, [29], [39], [33] carefully designed
an objective function to minimize the control energy and
meanwhile keeping collision-free conditions. Parameterizing
controls using neural networks was also considered in [33].

B. Main contributions of this work

In this work, we propose a novel method to compute the
optimal control u which steers an initial density as close as
possible to a target density at a prescribed terminal time,
while minimizing the control cost. The major advantage of
the proposed method is that it can be readily applied to
the cases with high-dimensional state spaces, where com-
putation of the associated continuity equation or Fokker-
Planck equations is prohibitive using existing approaches.
In our approach, this issue is effectively tackled by using
a large number of synthesized agents whose trajectories
can be easily evaluated using decoupled ODEs or SDEs.
Therefore, our approach does not require any spatial dis-
cretization using finite difference and element methods or
any basis representations, and the expected cost function
values can be accurately approximated using empirical ex-
pectations, which allows our method to scale to much higher
dimensions that are traditionally considered computationally
infeasible. Moreover, the proposed method can readily adopt
parallel computation because of the decoupling, and hence
the computation can be done very fast by leveraging the
power of standard deep learning computation framework.
We also provide convergence analysis, including the rate
of convergence, of the numerical algorithm for solving the
resulting saddle-point problem. We validate our approach
in numerical simulations that include complex scenarios in
various tests with dimension up to 100.

C. Notations

Throughout this paper, we use | · | to denote the ab-
solute value of a scalar and Euclidean norm of a vector.
Furthermore, ∥·∥ denotes the matrix norm induced by vector
Euclidean norm. We also use ∥ · ∥· to denote function norms
where the space is specified in the subscript ·. The spatial
domain is denoted by Ω, which is assumed to be a closed
and quasiconvex subset of Rd. Integrals over Ω or Ω × Ω
are written without subscript for notation simplicity unless

otherwise specified. We use µ to denote standard Lebesgue
measure on Rd. We use ∇ to denote the gradient with respect
to the state variable x. Gradient and partial derivatives with
respect to any other variables will be indicated by their
subscripts. We denote N the set of positive integers and
[n] := {1, . . . , n} for notation simplicity.

II. PROPOSED METHOD

In this section, we develop a general computational frame-
work for solving density control over high-dimensional state
spaces. To maximize applicability of our framework, we use
the following prototype mean-field model of density control
with any user-defined (running) cost functional c:

min
u

E
[∫ T

0

c(xt, u(xt)) dt
]
+ γD(ρT , ν) (1)

where xt ∈ Ω is the dynamic following:{
dxt = u(xt)dt+ σ(xt)dWt,

x0 ∼ ρ0,
(2)

which represents any indistinguishable agent in the swarm
to be controlled. In (1), ρ0 is a given initial population
density, ν is a given target population density, D is a metric
that measures the distance between two probability densities,
γ > 0 is a user-chosen weight parameter, and ρ(t, ·) is the
density of xt for any t with short hands ρ(0, ·) = ρ0(·) and
ρ(T, ·) = ρT (·). The time evolution of ρ(t, ·) is governed by
the Fokker-Planck equation:

∂tρ = −∇ · (ρu) + 1

2
⟨∇2, σσ⊤ρ⟩, (3)

where ⟨∇2, A(x)⟩ :=
∑

i,j ∂
2
xixj

aij(x) for any matrix-
valued function A(x) = [aij(x)] ∈ Rd×d. The goal of
(1) is to find the optimal control u : Ω → Rn that steers
the population characterized by xt with initial distribution
ρ0 to approximate the target distribution ν at terminal time
T with minimal overall cost. The parameter γ weighs the
matching of terminal density to ν against the overall cost. If
an exact matching to ν at T is desired, then γ can be cast
as the Lagrangian multiplier and solved jointly with u. For
simplicity, we will only consider the case with soft-penalty
on the matching as given in (1) in the present work. In what
follows, we will discuss the choice of cost functional c and
density distance D to instantiate (1).

a) Cost functional: The density control problem (1)
allows for a general class of cost functional c : Ω×Rn → R.
Typical optimal control problems with minimal energy use
c(x, u) = 1

2 |u(x)|
2. If there is a component u0(xt) due

to environmental force in u, then the cost functional can
be set to c(x, u) = 1

2 |u(x) − u0(x)|
2. In many real-world

applications, the swarm with density ρ(t, ·) is realized by
a number of agents. In such cases, it is necessary that the
agents do not collide with each other throughout the control
process. To this end, one can impose additional penalty when
any two agents become too close. For example, at any time
t, such penalty function can be set to (the average should
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be over all agents different from the input variable x but we
use the following for notation simplicity):

1
N

∑N
i=1 V (x, x

(i)
t )

(
≈

∫
V (x, y)ρ(t, y) dy

)
, (4)

where the approximation in the parenthesis holds as N →
∞, and V is an interactive potential defined as V (x, y) =
c ln |x − y| or V (x, y) = c|x − y|−α for some constants
c, α > 0, etc. The purpose of V is to incur larger cost when
two agents move closer. A cost functional including such
interactive potential can effectively prevent collisions.

b) Distance D between densities: We use the 1-
Wasserstein distance, also known as the Earth Mover’s
Distance (EMD), as the distance D to measure the difference
between the terminal density ρT and target density ν. For
any pair of densities (ϱ, ν), their 1-Wasserstein distance is
defined by

D(ϱ, ν) = inf
{∫
|x− y| dπ(x, y) : π ∈ Π(ϱ, ν)

}
, (5)

where Π(ϱ, ν) denotes the set of joint distributions on
Ω×Ω whose marginal densities are exactly ϱ and ν. The 1-
Wasserstein distance defined in (5) quantifies the minimum
total cost to transfer probability density ϱ to ν (and vice
versa), and its optimal solution π∗ describes how the transfer
should be made. In real-world applications, the 1-Wasserstein
distance is an appropriate metric for the density control
problem (1)—its value indicates how much additional efforts,
measured using the standard Euclidean distance, are needed
to move the agents to reach the target distribution in case
the matching is not exact at terminal time T . Moreover, 1-
Wasserstein distance allows two densities to have different
supports, which could be problematic for other density
distance measure such as Kullback-Leibler (KL) divergence.

Despite the various advantages of Wasserstein distance,
its computation can be challenging due to the optimization
process required in (5). However, for 1-Wasserstein distance,
one can derive its dual form given by [38]:

D(ϱ, ν) = sup{Eϱ[ϕ]− Eν [ϕ] : Lip(ϕ) ≤ 1}, (6)

where ϕ is the dual variable and Lip(ϕ) denotes the Lipschitz
constant of ϕ. As Ω is quasi-convex, we can relax the
constraint Lip(ϕ) ≤ 1 to ∥∇ϕ(x)∥ ≤ 1 for all x ∈ Ω a.e.,
where ∇ϕ(x) is the weak derivative of ϕ with respect to
x, and ∥∇ϕ(x)∥ is the induced 2-norm of ∇ϕ(x) and thus
its maximal singular value. This allows us to use nonlinear
reduced-order models, such as deep neural networks, to
parameterize ϕ and apply various techniques such as spectral
normalization to enforce the constraint ∥∇ϕ(x)∥ ≤ 1.

c) Complete model and approximations using deep net-
works: The optimization problem for solving the control
problem (1) is given by

inf
u

sup
ϕ
E(u, ϕ) (7)

with constraint ∥∇ϕ(x)∥ ≤ 1 to hold for x ∈ Ω a.e., and the
objective functional E is given by

E(u, ϕ) := E
[∫ T

0

c(xt, u(xt)) dt
]
+γEρT

[ϕ]−γEν [ϕ]. (8)

As both u and ϕ are in infinite-dimensional function spaces,
we need a finite-dimensional representation of them for nu-
merical computation. This can be achieved by approximating
them using linear or nonlinear reduced-order models. In
particular, we will use deep neural networks to parameterize
u and ϕ as uθ and ϕη respectively. Here θ, η ∈ Rm (we
assume both are m-dimensional for notation simplicity here,
but they can be different in practice) denote their trainable
network parameters, such as their weights and biases. The
approximation power of deep neural networks has been
justified by the universal approximation theorem (e.g., [20]).

In addition to using finite-dimensional representations uθ
and ϕη , we also need to approximate the integrals and
expectations in (8) for numerical computations. In this work,
we use the particle dynamics (2) if the agents are given
and fixed, or simulate a large number of particles following
(2) otherwise, to avoid direct computation of ρ(t, ·). More
precisely, we approximate the saddle-point problem (7) with
deep neural network representations uθ and ϕη and particle
dynamics as follows

min
θ

max
η

E(θ, η) (9)

where the objective function given by

E(θ, η) :=
1

N

N∑
i=1

(
c(x

(i)
t , uθ(x

(i)
t ))+γϕη(x

(i)
T )

)
−γEν [ϕη].

The last term in E can also be replaced with empirical
expectation (γ/M)·

∑M
j=1 ϕη(z

j) for M i.i.d. samples {z(j) :
j ∈ [M ]} drawn from ν. For simplicity, we also assume that
θ, η ∈ Θ and Θ is a compact set in Rm. Then the optimal
solution θ to (9) is the parameter of uθ approximating the
optimal control u in (1).

Remark 1. If the target distribution ν is given as M fixed
discrete points Z := {z(j) : j ∈ [M ]}, then we can also set
D to the Chamfer’s distance between the two point clouds
XT := {x(i) : i ∈ [N ]} and Z:

N∑
i=1

min
1≤j≤M

|z(i)T − z
(j)|2 +

M∑
j=1

min
1≤i≤N

|x(i)T − z
(j)|2. (10)

The Chamfer’s distance between XT and Z given in (10)
is a promising alternative to measure the difference between
these two clouds when N and M are moderately small (e.g.,
dozens). We will show in our experiment that the proposed
method can also be applied using this Chamfer distance.

d) Numerical computations: An important feature of
the saddle-point formulation (9) for solving the optimal
control problem (1) is that we can leverage parallel com-
putation to effectively handle the large number of simulated
trajectories. More precisely, for any fixed θ, we can use the
Euler-Maruyama method (or the Euler method if σ = 0) to
generate trajectories

x
(i)
t+h = x

(i)
t + hu(x

(i)
t ) +

√
hσ(x

(i)
t )δ

(i)
t (11)

for discrete time points t = 0, . . . , ⌊T/h⌋−1 where h > 0 is
the time step size and δ(i)t are i.i.d. standard normal random
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variables for all t and i. Therefore, the objective function
E(θ, η) given in (9) can be computed explicitly. Then we
can use automatic differentiation to obtain the gradients of E
with respect to θ and η, which is crucial to solving the saddle-
point problem (9). In particular, we consider the objective
function

L(θ) := max
η∈Θ

E(θ, η). (12)

The optimal solution θ to (9) is thus the minimizer of L(θ),
whose full gradient with respect to θ can be computed by
solving the maximization problem (12), as shown in the
following lemma (whose proof can be found in [30]).

Lemma 1 (Gradient of L). Let L be defined in (12). Then
for any fixed θ, the gradient ∇θL(θ) at θ is given by

∇θL(θ) = ∂θE(θ, η(θ)), (13)

where η(θ) ∈ argmaxη{E(θ, η) : ∥∇ϕη∥ ≤ 1}.

Lemma 1 suggests a practical implementation to compute
∇θL(θ): calculate the partial derivative of E(θ, η) with
respect to θ with η held fixed, then substitute η by the max-
imizer η(θ) of the problem (12). Since (12) is constrained,
the gradient mapping, defined by G(θ) := τ−1[θ − Π(θ −
τ∇θL(θ))], is used as the convergence criterion of θ [18],
[28], [25]. Note the gradient mapping reduces to the gradient
∇θL(θ) for unconstrained case. In the following theorem
(the proof can be found in [30]), we show that for any ε > 0
the standard stochastic gradient descent scheme based on
∇θL(θ) (i.e., stochastic gradient is unbiased and has bound
variance) is guaranteed to push the gradient mapping G(θ)
to 0 with ε accuracy within O(ε−1) iterations in the ergodic
sense. For simplicity, we assume both θ and η are of the same
dimension m and lie in the same closed Euclidean ball in
Rm. The results can be easily generalized to the case where
they have different dimensions m and m′ and are in some
convex compact subsets of Rm and Rm′

respectively.

Theorem 1. Suppose the parameters θ and η are bounded in
a ball centered at origin with radius R > 0, namely, we have
Θ := {θ : |θ| ≤ R}. For any ε > 0, let {θj} be a sequence
of the network parameters of uθ generated by the stochastic
gradient descent algorithm, where ∇θL(θ) is approximated
by the empirical expectation using samples as in (9). If the
sample complexity is N = O(ε−1) in each iteration, then
min1≤j≤JE[|G(θj)|2] ≤ ε after J = O(ε−1) iterations.

In practice, we found that using a small number of
iterations to solve the inner maximization problem with any
fixed θ appears to perform the best. The pseudocode to solve
the saddle-point problem (9) is given in Algorithm 1. The
symbol ∇̂ and ∂̂ stand for stochastic gradient and partial
derivative using mini-batch samples of Xt. The selection of
parameters will be given in Section III.

III. EXPERIMENTS
We validate Algorithm 1 (ODC) on both synthetic and

realistic data sets. For specific examples, we also test Al-
gorithm 1 using Chamfer distance 10, referred to as ODC-
Chamfer. It is easier to implement ODC-Chamfer since the

Algorithm 1 Optimal Density Control (ODC)

1: Input: Samples X0 = {x(i)0 : i ∈ [N ]} following initial
distribution ρ0, samples following target distribution ν,
time horizon T > 0, step size h, maximum outer and
inner iteration numbers K1 and K2.

2: Initialize: Neural networks uθ, ϕη .
3: for kout = 1, . . . ,K1 do
4: Generate trajectories Xt = {x(i)t : i ∈ [N ]} using (11)

with 0 ≤ t ≤ T .
5: Compute running cost E(θ, η) in (9).
6: for kinn = 1, . . . ,K2 do
7: Update η ← η + τ∇̂{EρXT

[ϕη]− Eν [ϕη]}.
8: end for
9: Update θ ← θ − τ ∂̂θE(θ, η).

10: end for
11: Output: uθ.

Chamfer distance has a closed-form expression and hence
the inner iteration 1 of ODC can be eliminated.

A. Synthetic Data

We first evaluate our model on several synthetic data sets,
termed by Synthetic-1, Synthetic-2 and Synthetic-3. The
state spaces of Synthetic-1 and Synthetic-2 are 3 and 100
dimensional, while Synthetic-3 is 2-dimensional respectively.
We set the control uθ = ∇ψθ, where ψθ is a fully connected
neural network with 3 hidden layers and 36 nodes per layer.
We also set the dual function ϕη as a fully-connected neural
network with 6 hidden layers and 256 nodes per layer.
We use tanh as the activation function for all layers. We
implement and test Algorithm 1 using PyTorch and train
the networks using the built-in optimizer Adam [26] with
learning rate 10−4. This optimizer appears to have improved
efficiency compared to SGD empirically. Furthermore, we
use spectral normalization to enforce ∥∇ϕη∥ ≤ 1 [32]. We
initialize all network parameters with Xavier initialization
[19] and train uθ according to Algorithm 1 ODC (or ODC-
Chamfer if the number of agents is small and the target
locations are fixed). When ODC is used, we set the size of
simulated agents at each time point as N = 2, 000, and use
1, 500 points as the training set and the other 500 data points
for testing. The step size h and time horizon T are set to 0.1
and 1 respectively. We choose outer iteration number as 104

and inner iteration number for approximating Wasserstein
distance as 6, for all synthetic experiments.
Synthetic-1: We first apply Algorithm 1 ODC with noise
term in a state space of dimension d = 3 for two instances
(two different pairs of initial-target densities), denoted by
Syn-1-a and Syn-1-b, respectively. The initial and target dis-
tributions are mixtures of Gaussians. We set the perturbation
noise σ = 0.01. The controlled density and target density
are respectively shown as the green and blue point clouds in
Figure 1, which shows that the controlled density in green
correctly moved from the initial at t = 0 to the blue target
density at t = 1 in the presence of perturbations in both
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Syn-1-a and Syn-1-b.

(a) Syn-1-a:t=0 (b) Syn-1-a:t=1 (c) Syn-1-b:t=0 (d) Syn-1-b:t=1

Fig. 1: Results of ODC on Synthetic-1 datasets for two
instances (Syn-1-a) and (Syn-1-b) in [−10, 10]3. The green
point clouds indicate the controlled density, and the blue
cloud points indicate the target density. (a) and (b) show
the densities at t = 0 and t = 1 respectively for Syn-1-a. (c)
and (d) show Syn-1-b.

Synthetic-2: We test the control using a large number of
agents in a state space of dimension d = 100. We simulate
2 pairs of initial-target densities and name them as Syn-2-
a and -b. For Syn-2-a and Syn-2-b. We used ResNet and
Normalizing Flow to parameterize the control u in Syn-2-
a and Syn-2-b respectively in the bottom row. We plot the
controlled density in green point clouds and target in blue as
above, and show the projections of them onto the first three
coordinates (x1, x2, x3) for t = 0 and t = 1 in Figure 2.

(a) Syn-2-a:t=0 (b) Syn-2-a:t=1 (c) Syn-2-b:t=0 (d) Syn-2-b:t=1

Fig. 2: Results of ODC on Synthetic-2 datasets for two
instances (Syn-1-a) and (Syn-1-b) on [−10, 10]100 (plots
show projections to the first three dimensions). The green
point clouds indicate the controlled density, and the blue
cloud points indicate the target density. (a) and (b) show
the densities at t = 0 and t = 1 respectively for Syn-1-a. (c)
and (d) show Syn-1-b.

(a) Syn-3:t=0 (b) Syn-3:t=10 (c) Syn-3:t=20 (d) Closest Dist

Fig. 3: Results of ODC on Synthetic-3 for collision pre-
vention on [0, 200]2. The black point clouds indicate the
controlled density, the blue cloud points indicate the target
density at times (a) t = 0 (b) t = 10 (c) t = 20. Plot
(d) shows the minimum distance between agents (top curved
line) over time period [0,20], which is constantly above the
minimum distance tolerance 1.0 (bottom horizontal line).
Synthetic-3: We also test Algorithm 1 (ODC) with an
interaction potential with V (x, y) = |x−y|−2 in (4) to avoid

agent collision on a 2D example. The agents are indicated by
the black points, and the target distribution is indicated by
the blue points in Figure 3. The left three panels in Figure
3 show them at initial time t = 0, middle time 10, and
terminal time 20. The rightmost figure shows the minimum
pairwise distance (top curved line) of the controlled agents
stays around 1.4 until near the terminal time. It is consistently
above the required minimum pairwise distance tolerance 1.0
(bottom horizontal line) of the target sample points, showing
that the learned control avoided collisions between the agents
during their movements.

(a) Real: t=0 (b) Real: t=0.5 (c) Real: t=1

Fig. 4: Results on real data. The controlled density (red) and
the target density (light blue) are shown at normalized times
(a) t = 0, (b) t = 0.5 and (c) t = 1.

B. Real Data

In this experiment, we aim to control a group of Au-
tonomous Underwater Vehicles (AUVs) to reach a target
distribution. This experiment is motivated by the 16-month
AUV ocean deployment (Processes driving Exchange At
Cape Hatteras, PEACH) near Cape Hatteras, North Carolina,
a highly dynamic region characterized by confluent western
boundary currents and convergence in the adjacent shelf
and slope waters. Due to the AUVs limited forward speed,
the motion of AUV is highly influenced by the ocean
flow field v. We define the cost functional as r(x, u) =
1
2E[

∫ T

0
|u(xt) − v(xt)|2dt]. The input flow map in this

simulation is given by a 1-km horizontal resolution version
of the Navy Coastal Ocean Model [31] made available by
J. Book and J. Osborne (Naval Research Laboratory, Stennis
Space Center). In the AUV experiment, multiple vehicles
were deployed repeatedly in the same domain, to sample
the variability in the position of the Hatteras Front. Since
the AUVs were deployed at similar locations throughout
the 16 months of experiment, we collect the starting and
goal positions from all experiments as the initial and target
distribution of the system. We aim to move the AUVs to the
surround of target location on distribution level. Since the
data size is small (10 samples only), we augment the data
by generating Gaussian samples around the given locations,
thus the final distributions is a mixture of Gaussians. Then we
apply Algorithm 1 (ODC) to the data and show the controlled
density (red) and target density (blue) at normalized time
t = 0, 0.5, 1.0 in Figure 4. The network uθ is parameterized
as a ResNet with three layers and each layer has 36 nodes.As
we can observe, the initial density gradually moves to the
target density under the guidance of the learned control uθ.
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IV. CONCLUSION

In this paper, we develop a novel computational framework
for density control. We formulate the control problem with
running cost and penalize inaccurate matching to target
density using Wasserstein metric. The control problem is
reformulated as a saddle-point optimization problem of the
control and the dual function of the Wasserstein distance.
Both of the control and the dual function are parameter-
ized as neural networks which can handle high-dimensional
problems without any spatial discretization or basis repre-
sentations. We validated the promising performance of this
method on several synthetic and real data sets.
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