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Abstract— This work investigates traffic control via controlled
connected and automated vehicles (CAVs) using novel controllers
derived from the linear-quadratic regulator (LQR) theory.
CAV-platoons are modeled as moving bottlenecks impacting the
surrounding traffic with their speeds as control inputs. An iterative
controller algorithm based on the LQR theory is proposed along
with a variant that allows for penalizing abrupt changes in platoon
speeds. The controllers use the Lighthill-Whitham-Richards (LWR)
model implemented using an extended cell transmission model
(CTM) which considers the capacity drop phenomenon for a realistic
representation of traffic in congestion. The effectiveness of the
proposed traffic control algorithms is tested using a traffic control
example and compared with existing proportional-integral (PI)- and
model predictive control (MPC)- based controllers from the literature.
A case study using the TransModeler traffic microsimulation software
is conducted to test the usability of the proposed controller in a
realistic setting. It is observed that the proposed controller works
well in both settings to mitigate the impact of the jam caused by a
fixed bottleneck. The computation time required by the controller
is also small making it suitable for real-time control.

Index Terms— Traffic control, Moving bottleneck control,
Connected and autonomous vehicles, Linear-quadratic regulator.

I. INTRODUCTION

The advent of connected and autonomous vehicle (CAV)
technology has led to the opening of unforeseen avenues in the
field of traffic control [1]. Compared to fixed actuators such
as variable speed limit (VSL) signs [2] and boundary flow
controllers [3], control using CAVs offers greater flexibility as
it allows actuators to move in space in a desired manner, therefore,
allowing them to be present at desired locations at desired times.
In addition to that, using CAVs is relatively cheaper than using
fixed actuators which need to be specifically deployed only for
the single purpose of traffic control whereas CAVs can be used for
other applications like sensing. Also, CAV-based control can be
effective in communities with low compliance rates to traditional
fixed actuators as their physical presence ahead of drivers would
make it impossible for them to avoid the control.

Given the advantages mentioned above, it is essential to explore
this potential of traffic control via CAVs by developing new
control methodologies that treat CAVs as moving actuators. In this
work, we consider the problem of maximizing the mean speed
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(MS) of traffic through traffic jam dissipation by controlling the
speed of CAV-platoons that act as rolling roadblocks blocking the
entire flow of traffic at their location. The main focus of this work
is on proposing and investigating a new controller implementation
for this problem in a linear-quadratic regulator (LQR) framework
which has not been explored in the literature and comparing it with
existing approaches from the literature in terms of performance
and computational tractability for real-time control.

Several studies in the past decade have considered the problem
of moving bottleneck control of traffic to improve traffic flow. In
[4], the authors have proposed a proportional-integral (PI)-type
feedback regulator to perform traffic control by controlling the
speed of CAV-platoons. PI-based controllers can produce the
desired improvements in traffic flow when coupled with certain
arbitrary constraints on vehicle speeds but do not generally
guarantee optimal control. In [5], the authors propose a model
predictive control (MPC)-based speed control algorithm to control
the traffic via CAV-platoons subject to the travel time reduction.
Their proposed speed control algorithm is optimal but requires
solving a nonlinear optimization problem at each time-step
which is highly time-consuming, especially for large networks
with several links and junctions, as it requires performing the
simulation several times, and therefore can be infeasible for
real-time control. Note that here we are only interested in studies
that use CAV-platoons as moving bottlenecks for traffic control.
Readers are referred to [1] for an extensive review of other use
cases associated with CAVs in the realm of traffic control.

To overcome the time requirement issue of the MPC-based
control algorithm and make a balance between the quality of the
speed control algorithm and its computational requirements, we
formulate the traffic control problem in the form of an LQR-based
optimization problem which regulates the states around an
equilibrium point while utilizing the structure of the state-space
dynamics of the system. In this work, we utilize the macroscopic
traffic model presented in [5] which incorporates the capacity
drop phenomenon as it allows for realistic control. We also present
a microscopic traffic simulation-based case study that tests the
usability of the proposed controller in the real world. Such a study
is absent in [4], [5] which only consider macroscopic simulation.

Given the main research gap in this area is the absence of
an optimal controller offering fast computation of controls for
real-time moving bottleneck control of traffic and the absence of a
study on the moving bottleneck controllers under realistic settings,
the present study makes the following contributions:

• An LQR-based controller design with macroscopic model
dynamics is proposed to control the speeds of CAV-platoons
allowing for mitigation of the effect of jam-forming
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bottlenecks in the traffic stream. Also, the impact of various
parameters of the LQR-based controller is investigated with
respect to its performance in solving the given problem.

• A variant of the LQR-based controller allowing for a
penalty on large changes in control inputs over consecutive
time-steps is developed and shown to reduce the magnitude
of fluctuations in the controlled speeds allowing for safe and
realistic control.

• We present a comparison of the proposed LQR-based
controllers with existing MPC-based [5] and PI-based
[4] controllers in terms of computational tractability and
performance using macroscopic simulation.

• The performance of the proposed LQR-based controller is
further investigated using a microscopic traffic simulation
setup to assess its applicability and utility under realistic
settings of traffic flow.

The remainder of the paper is organized as follows: Section
II describes the traffic dynamics model used in this work. The
problem statement with the LQR-based solution scheme and
algorithms is presented in Section III. Section IV analyzes the
proposed approach in a macroscopic setting, and compares it with
existing approaches from the literature. Section V further analyzes
the proposed approach with the help of a microsimulation-based
case study. The paper is concluded with Section VI which also
proposes directions for future work.

Notations: We denote the vectors and matrices by lowercase
and uppercase bold symbols, respectively. The set of m-
dimensional real-valued vectors and n×p real-valued matrices
are respectively denoted by Rm and Rn×p. The identity matrix of
dimension q is represented by Iq. The set-theoretical minimum and
maximum operators are denoted by min and max, respectively.

II. TRAFFIC DYNAMICS MODEL

We present the state-space formulation for the traffic dynamics
model considered in this work. The flow of traffic across a highway
stretch with no on-ramps or off-ramps is modeled using the first-
order LWR model [6], [7] while accounting for the capacity drop
phenomenon [8]. The model is implemented using a Godunov
scheme [9] which is proposed previously in [5] and is an extension
of the classical Cell Transmission Model (CTM) implementation
[10]. Within this, the highway stretch is divided into NL segments
of equal length L (km) and the time horizon is divided into NT

smaller duration of T (sec) each such that the Courant-Friedrichs-
Lewy (CFL) condition [11]: T≤L/vf is satisfied where vf refers
to the free-flow speed of traffic. Let NCAV be the total number
of controlled CAV-platoons currently on the modeled highway
stretch. The traffic dynamics model is given as follows:

ρi[k+1]=ρi[k]+
T

L
(ϕi−1(ρi−1[k],u[k])−ϕi(ρi[k],u[k]),

∀i∈{1,...,NL}, where ρi[k] represents the traffic density (vehicles
per unit length) in Segment i at time index k, u[k] ∈ RNCAV

denotes the control input and is given as

u[k]=
[
u1[k] ··· uNCAV

[k]
]T

, (1)

where uj[k],∀j ∈ {1, ... ,NCAV} denotes the control speed of
CAV-platoon j in the traffic stream. ϕi(.,.) is the actual traffic
flow (vehicles per unit time) that leaves Segment i and is given as

Fig. 1. Three segments of the modeled highway stretch along with two
CAV-platoons and the corresponding states written underneath. Arrows indicate
the direction of traffic flow.

ϕi(ρi[k],uj[k])=min{Di(ρi[k],uj[k]),Si+1(ρi+1[k])}, (2)

assuming the CAV-platoon j is in Segment i at time index k.
Figure 1 presents a schematic of the highway stretch with the
two elements- Segments and CAV-platoons along with their
associated states written underneath each label. Here, Di(·,·) and
Si+1(·) denote the traffic demand for Segment i and the supply
for Segment i+1, respectively. Demand refers to the traffic flow
wanting to leave a segment while supply refers to the traffic flow
that can enter a segment. The demand and supply functions are
defined using minimum functions of the state and input variables.
Interested readers are referred to [12] for the exact mathematical
definitions which are omitted from this paper for brevity. In the
sequel, for convenience, we denote the demand, supply, and actual
flow with the function names followed by the time index without
mentioning the inputs required to calculate each. The position
of CAV-platoon j on the highway is denoted by pj[k] where its
evolution over time is given as

pj[k+1]=pj[k]+Tv̄j(ρi[k],ρi+1[k],uj[k]), (3)

where v̄j(ρi[k],ρi+1[k],uj[k]) denotes the speed of CAV-platoon
j during time index k. Note that uj[k] is the control speed of the
CAV-platoon or the speed prescribed to the CAV-platoon by the
controller while v̄j is the realized speed of the CAV-platoon which
depends on the demand and supply conditions besides the control
speed.

The realized speed and the corresponding final position of the
CAV can be calculated according to conditions presented in [4],
[12] which use the demand and supply conditions of the various
segments besides the control speed. Two additional parameters
namely platoon length lj (m) and the minimum supply needed for
the platoon to pass to the next segment Smin are also used in these
calculations. The state-space equation can therefore be written as

x[k+1]=Ax[k]+Gf(x[k],u[k]), (4)

where the state vector x[k]∈RNL+NCAV is defined as

x[k]=
[
ρ1[k] ··· ρNL

[k] p1[k] ··· pNCAV [k]
]T

,

and the input vector u[k] is the same as in (1). Let nx :=NL+
NCAV be the number of states and nu :=NCAV be the number
of inputs. The matrix A=Inx

, matrix G∈Rnx×nx is a diagonal
matrix representing the coefficients of the nonlinearities in the
dynamics, and the vector-valued function f :Rnx×Rnu →Rnx

represents the nonlinearities in the evolution of traffic density and
the position of the CAVs with time which consist of differences
of nested minimum functions (2) as well as CAV-platoon speeds
obtained from nested conditional statements. The presence of such
nonlinearity in the state space makes it necessary for control prob-
lems based on the model to utilize nonlinear optimization schemes.
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III. PROBLEM STATEMENT
AND LQR-BASED TRAFFIC CONTROL ALGORITHMS

The underlying traffic control problem addressed in this work
is defined as follows:

Problem 1. Given the nonlinear traffic dynamics (4), control
the speed of CAV-platoons entering the highway stretch at known
time-steps to mitigate the adverse effects of a traffic jam formed
in the middle of the stretch.

Problem 1 can be defined in the form of an optimization
problem as follows:

min
u[k]

J(x[k],u[k])

s.t. (4)
u[k]∈U (5)

where the cost function J(x[k],u[k]) is any function whose
minimization ensures an improvement in the traffic conditions
which can be in terms of an increase in the overall speed of traffic
or a decrease in the overall congestion level on the highway in
terms of traffic density. Here, the decision variables u[k] are the
speeds of the CAV-platoons on the highway stretch. The essential
constraints include the state-space dynamics (4) while the speeds
of these platoons can also be constrained to an arbitrary set U.

In the present work, the optimization problem (5) is formulated
in the LQR optimization framework [13]. For linear systems, this
results in a horizon-based optimization problem that aims to regu-
late the states and inputs of the system around the zero point taking
into account the system dynamics over a given number of future
time-steps with the help of a state-feedback law for the control
input in the form u[k]=K[k]x[k] where K[k] is called the gain
matrix and is calculated using existing formulae from the literature.
For nonlinear systems, an LQR-based optimization problem can be
written by linearizing the system around an equilibrium point over
the length of the horizon and regulating the difference between the
actual state/input and the equilibrium state/input around the zero
point which results in the control input trying to bring the system
closer to the equilibrium states. In the context of traffic control,
these equilibrium states and inputs are assigned values that result
in an improvement in the state of traffic. In this case, the control
input is defined by the following state-feedback law which takes
into account the selected equilibrium states and inputs:

u[k]=−K[k]x[k]+u∗[k]+K[k]x∗[k], (6)

whereK[k]∈Rnu×nx and (x∗[k],u∗[k]) denote the time-varying
LQR state-feedback matrix and the time-varying equilibrium
point of the nonlinear system (4) at time index k, respectively.

To obtain the gain matrix K[k] at any time-step for controlling
the nonlinear system within the LQR framework, the Gauss-
Newton LQR (GN-LQR) algorithm [13] can be applied. The
same is presented in the remainder of this section along with
a variant of the GN-LQR algorithm that penalizes changes in
control inputs over consecutive time-steps. Various parameters
of these algorithms are investigated in the ensuing sections in the
context of traffic control using moving bottlenecks.

A. The Gauss-Newton LQR (GN-LQR) algorithm

Here, we present an iterative LQR algorithm called the GN-
LQR algorithm [13] which can be used to solve the LQR optimiza-
tion problem (5) for the given nonlinear system (4). We introduce
the following notation before presenting the GN-LQR algorithm:
N : horizon length.
N-step input and state matrices:

U :=
[
u[0] ··· u[N−1]

]
,

X :=
[
x[0] ··· x[N ]

]
.

Corresponding time-varying equilibrium counterparts:

U∗ :=
[
u∗[0] ··· u∗[N−1]

]
,

X∗ :=
[
x∗[0] ··· x∗[N ]

]
.

Corresponding control input difference matrix:

δU :=
[
δu[0] ··· δu[N−1]

]
,

Linearized state-space matrices:

Â[k]=A+GAf [k], B̂[k]=GBf [k], (7)

where
Af [k] : The derivative matrix of f(x[k],u[k]) w.r.t. x∗[k],
Bf [k] : The derivative matrix of f(x[k],u[k]) w.r.t. u∗[k].
The LQR cost function to be minimized:

J(x[k],u[k]):=Jx(x[k])+Ju(u[k]), (8)

where

Jx(x[k]):=

N−1∑
k=0

(x∗[k]+δx[k])TQ(x∗[k]+δx[k]),

Q :The LQR state-weight matrix,Q⪰0,

Ju(u[k]):=

N−1∑
k=0

(u∗[k]+δu[k])TR(x∗[k]+δu[k]),

R :The LQR input-weight matrix,R≻0.

The goal of the algorithm is to minimize the above objective
function given the state-space dynamics (4) along with physical
bounds on the speeds. The GN-LQR algorithm [13] can be
summarized in Algorithm 1. To the standard algorithm, we also
add a step to impose a non-negativity constraint and an upper
bound on the speed equal to the free-flow speed.

B. The Gauss-Newton LQR algorithm with a penalty on variation
in inputs

The controls produced at any time-step using the GN-LQR
controller are independent of the controls in the previous time-
steps. Due to this, the optimal controls can vary significantly over
consecutive time-steps as is observed in Section IV. Since these
controls are executed by CAV-platoons that are traveling within
a traffic stream comprised of both autonomous and human-driven
vehicles, the latter of which can sometimes have high reaction
times, large changes in control inputs over consecutive time-steps
can result in life-threatening collisions due to vehicles not braking
in time. To avoid such circumstances, here we present a variant of
the LQR optimization problem which applies a penalty on changes
in control inputs over consecutive time-steps thus preventing large
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Algorithm 1: The GN-LQR Algorithm
1 input: State-space matrices A, G, nonlinear function

f , initial state x[0], horizon length N , LQR weight
matrices Q, R, error tolerance ϵ, maximum number of
iterations M , initial guess for equilibrium control inputs
U∗, and initial guess for initial equilibrium state x∗[0].

2 set: current iterate
i=0, U=U∗, δU=U−U∗, δx[0]=x[0]−x∗[0].

3 repeat
4 for k=0,...,N−1 do
5 compute: Â[k],B̂[k] via (7) around

the time-varying equilibrium point (x∗[k],u∗[k])
of nonlinear dynamics (4) at time index k.

6 set: δx[k+1]=Â[k]δx[k]+B̂[k]δu[k].
7 compute: x∗[k+1] via nonlinear dynamics (4).

8 ▷ Solve the Gauss-Newton optimization
problem for controller gains K[0],...,K[N−1]

9 set: P [N ]=0
10 for l=N,...,1 do
11 set: P [l−1]=Q+Â[l−

1]TP [l]Â[l−1]−Â[l−1]TP [l]B̂[l−1]×(R+
B̂[l−1]TP [l]B̂[l−1])−1B̂[l−1]TP [l]Â[l−1].

12 for k=0,...,N−1 do
13 set: K[k]=(R+

B̂[k]TP [k+1]B̂[k])−1B̂[k]TP [k+1]Â[k].
14 set: δu[k]=−K[k]δx[k].

15 set: δU=
[
δu[0] ··· δu[N−1]

]
16 set: U=min{max{U∗+δU ,0},vf},

U∗=U , i=i+1.
17 until ∥δU∥<ϵ or i>M
18 compute: u[0] via (6) using K[0].
19 output: u[0].

changes in control inputs. The implementation of the optimization
problem is derived based on [14] which prescribes the inclusion
of an additional term in the LQR objective function penalizing
variations in control inputs. This is achieved by modifying the state-
space formulation of the system by defining a new state which
is an augmentation of the original state vector and the original
control input vector and a new control input vector that captures
the change in control input. A new weight matrix R′ is introduced
in the LQR optimization problem that governs the fluctuations in
the control inputs. A larger magnitude of elements in R′ implies
a larger penalty on the change in control inputs over consecutive
time-steps whereasR′=0 implies no penalty is imposed. The GN-
LQR algorithm presented in the previous section can be modified
to obtain the new algorithm which is referred to as GN-LQR-with-
penalty (GN-LQRP) in the remainder of the paper and is omitted
for brevity. More details on the same can be found in [12].

IV. NUMERICAL STUDY AND IMPLEMENTATION

In this section, we investigate the performance of the proposed
control algorithms for moving bottleneck-based traffic control
with the help of a macroscopic simulation and compare it with

existing PI- [4] and MPC-based [5] controllers. This is followed
by a microsimulation-based case study using the Transmodeler
6.1 [15], [16] traffic simulation software to test the near real-world
performance of the controller and to learn the advantages and gaps
in applying the controller in the real world. All macroscopic sim-
ulations applying the CTM model are performed using MATLAB
R2021b running on a 64-bit Windows 10 with a 2.2GHz IntelR
CoreTM i7-8750H CPU and 16GB of RAM while the microscopic
simulations are performed on a 64-bit Windows 10 with a 2.3GHz
IntelR CoreTM i7-11800H CPU and 16GB of RAM.

A. Scenario description and evaluation metrics

The traffic is modeled using the dynamics presented in Section
II. We consider an 8 km long highway stretch with no on-ramps
or off-ramps which is divided into 16 even segments of length
0.5 km each. A total duration of 2 hr is considered for the
example with time divided into steps of the duration of 10 sec each.
The following values of traffic flow parameters are used for the
fundamental diagram considered in this work [12]: critical density
ρc = 60 veh/km, free-flow speed vf = 100 km/hr, congestion
wave speed wc=38 km/hr, maximum density ρm=320 veh/km,
maximum flow qcap=6000 veh/hr, and capacity drop parameter
α=0.83, similar to [5]. We consider a platoon length of 4.5 m
which essentially implies platoons of one CAV per lane, and
Smin = 10. The initial density on all the segments is set to
20 veh/km. The supply available at the downstream end of the
highway is set to qcap while the demand wanting to enter at the
upstream end of the highway starts and ends at 1900 veh/hr with a
value of 5490 veh/hr from 120 to 600 seconds. A reduced flow area
is simulated on the highway by reducing the outflow of Segment 13
to 5400 veh/hr for the first hour after which the flow of the segment
is restored to maximum capacity. The impact of the control is
measured using three metrics, the Total Travel Time (TTT) in
veh·hr, the Total Travel Distance (TTD) in veh·km, and the Mean
Speed (MS) in km/hr which are defined similarly to [5] as follows:

TTT:=TL

NT∑
k=1

NL∑
i=1

ρi[k], TTD:=TL

NT∑
k=1

NL∑
i=1

ϕi[k], and

MS:=TTD/TTT.

where T, L, NT , and NL are the duration of each time-step, the
length of each segment, the total number of time-steps in the
simulation, and the total number of segments in the considered
highway stretch, respectively. In general, a lower TTT, a higher
TTD, and a higher MS are desirable — The closer the traffic
density is to the critical density, the better the values of these
metrics as the traffic is free-flowing and at the maximum flow
possible. Therefore, at each implementation of the LQR-based
controllers we select such equilibrium states for linearization
which improves the values of these metrics. Besides these metrics,
we also consider the Average Computation Time (ACT) for
each controller which is defined as the average time required to
compute the control inputs at any time-step during the simulation.
We assume that controlled vehicles enter the stretch every 15
time-steps starting from time-step 60 to time-step 600 of the
process horizon. Figure 2 presents the simulated traffic densities
in the presence of the reduced flow and without any control
implementation. The metrics for this case are presented in Table I.
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Fig. 2. Density (veh/km) evolution in the uncontrolled case with the reduced
bottleneck flow.

B. A note on proposed controller tuning

Analysis of the tuning is omitted from this paper for brevity and
only important results are presented. Interested readers are referred
to [12] for detailed analysis related to tuning of the proposed
controller parameters. In this work, N=3 is chosen for GN-LQR
while N=50 is chosen for GN-LQRP. Regarding the maximum
number of iterations, it is observed that the best performance of
the GN-LQR controller is achieved at the number of iterations = 1.
For this analysis, the LQR objective weight matrices are defined

as diagonal matrices in the form Q =

[
wQINL 0

0 0NCAV

]
,

R= wRINCAV
, and R′ = wR′INCAV

where wQ,wR,wR′ ∈ R.
It is observed that a larger magnitude of wQ compared with wR

results in a better performance. Also, increasing the magnitude
of wR′ , naturally results in further degradation in the performance
as the reduction in speeds is further restricted. The values
wQ=100, wR=1, and wR′ =30 are found suitable in this study.
Additionally, the equilibrium density is set to 59 veh/km and the
equilibrium speed is set to 99 km/hr. The values are set a little
below ρc and vf to allow for Jacobian calculation which requires
a small perturbation of solutions around the equilibrium solution.

C. Comparison of GN-LQR and GN-LQRP with PI- and
MPC-based controllers

Here, we present the results obtained from using the proposed
algorithms and compare them with those obtained from using the
PI- and MPC-based controllers which are implemented the same
as in [4] and [5], respectively. Table I presents the values of the
evaluation metrics for all controller implementations for the given
scenario. It is observed that the GN-LQR and GN-LQRP algo-
rithms result in a significant improvement over the uncontrolled
scenario. The density evolution plots are presented in Figure 3. The
improvement is achieved by creating smaller controlled reductions
in segment flows (by reducing the CAV-platoon speeds) upstream
of the bottleneck segment (Segment 13). Since the outflow of
segments decreases with an increase in density above ρc, reducing
the flow of traffic in small amounts in the upstream segments
thereby increasing their density in small amounts while preventing
higher densities in the bottleneck segments results in overall higher
flows across all the segments. This is the underlying idea behind
moving bottleneck control which is correctly executed by the LQR-
based controllers. For the PI-based controllers, we obtain optimal
gains for the given scenario by setting up a nonlinear optimization
problem with the objective of maximizing the MS. For the MPC-
based controller the weights and horizon length are set the same as
in [5]. The studies [4], [5] also prescribe a lower bound of 60 km/hr
for the control speed to account for a low reaction time of human

Fig. 3. Density (veh/km) evolution on the highway stretch with [left] GN-LQR
and [right] GN-LQRP controllers.

TABLE I
EVALUATION METRICS WITH DIFFERENT CONTROLLERS.

Scenario TTT TTD MS CT
No Control 1,019.0 78,998 77.5 -

PI (lower bound 60 km/hr) 820.8 78,741 95.9 7.1051
PI (no lower bound) 1,017.5 78,741 77.3 1.5982

MPC (lower bound 60 km/hr) 840.6 78,741 93.6 2.8729
MPC (no lower bound) 848.7 78,741 92.7 3.3722

GN-LQR (N=3) 832.5 78,741 94.5 0.0058
GN-LQRP (R′=30I,N=50) 839.7 78,741 93.7 0.0884

Fig. 4. Density (veh/km) evolution on the highway stretch with PI-based control
with an [left] optimal gains and lower bound of 60 km/hr, and [right] optimal
gains and no lower bound.

Fig. 5. Density (veh/km) evolution on the highway stretch with MPC-based
control with a [left] lower bound of 60 km/hr, and [right] no lower bound.

drivers and prevent accidents due to sudden speed drops. This
is implemented by projecting the controller speed to the bounds.
However, with increased connectivity and autonomy in vehicles,
it is possible to expect no plausible limit to what the speeds can
be dropped to. In this study, we, therefore, also test the controllers
with and without a lower bound on the speed.

Figures 4 and 5 present the density evolution plots for the PI-
and MPC-based controllers with and without a lower bound. The
PI-based controller with a lower bound reduces the impact of the
bottleneck while the controller without a lower bound, results in no
improvement in the MS over the uncontrolled case. In the second
case, the best value of the gains that minimize the controller error,
results in blocking all the vehicles at the upstream end but this
results in a small MS and hence the gains selected in this case are
such that the controller does not affect the traffic conditions at all.
The MPC-based controller results in an improvement in the traffic
condition in both cases. To assess the speed variation using the dif-
ferent controllers we present the speed profile of CAV-platoon 11
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Fig. 6. CAV-platoon speed profile for platoon 11 with [left] PI-based controller
with a lower bound, and MPC-based controller with and without lower bound,
and [right] GN-LQR controller and GN-LQRP controller with R′=30I.

that enters the highway at time-step 210 in Figure 6. The speed pro-
files for the PI-based and the GN-LQRP controllers are observed to
be the smoothest with a gradual reduction in speeds. The GN-LQR
and the MPC-based controller without a lower bound result in large
abrupt changes in speeds for the platoon within a time-step. The-
oretically, such variations in speed are possible within a time-step
(which is equal to 10 seconds) however, they can be unsafe under
high reaction times. While the MPC-based controller with a lower
bound prevents as high of speed fluctuations as in the GN-LQR
and MPC-based without a bound, we can still observe fluctuations
close to 40 km/hr which is the shift from the maximum speed to
the lower bound value. This shows that the lower fluctuations are
not a property of the controller (as in the case of GN-LQRP) but
an artifact of the lower bound which is arbitrarily imposed.

Table I also presents the computation time (CT) in seconds for
all the controllers which refers to the ACT in the case of MPC- and
LQR-based controllers and to the offline computation time for gain
calculation in the case of PI-based controllers. In the current work,
the PI-based controller only requires offline gain computation and
there is virtually no real-time computation time for the controller.
Although in cases when the offline gains do not work as expected
due to different realization of the traffic conditions than expected,
then real-time computation of gains may be required. The CT
for the LQR-based controllers mostly comprises the time to
compute the derivatives of the state space equation with respect
to the equilibrium states and inputs and is almost two orders of
magnitude smaller than the CT for the MPC-based controllers.

V. MICROSIMULATION CASE STUDY

In this section, we reproduce the traffic control scenario using
a realistic microscopic traffic simulator and use it to test the
performance of the GN-LQR control algorithm under a realistic
setting. The micro-simulation is performed using TransModeler
6.1 [15], [16] while the control algorithm is implemented using
MATLAB R2021b. The GISDK API in TransModeler is used
to interact with the controller.

A. Simulation setup

The setup of the highway stretch and the traffic demands are
consistent with the traffic scenario presented in Section IV. The
highway stretch is designed with three lanes with a maximum
capacity of 2000 veh/hr/lane. A bottleneck is generated by a
work zone (a lane-changing guide signal with a 30% compliance
rate) on Segment 13. The microscopic simulation parameters are
carefully tuned to reproduce the bottleneck and the capacity drop
which are consistent with the scenario described in Section IV.

Fig. 7. Density (veh/km) evolution on the highway stretch in microsimulation
for the different scenarios: [left] no control with bottleneck, [right] with control.

TABLE II
METRICS FOR SCENARIOS TESTED IN THE MICROSIMULATION

Scenarios TTT TTD MS
No bottleneck 949 78,708 82.94

No control with bottleneck 1,059 78,724 74.34
GN-LQR-based control with bottleneck 991 79,333 80.05

The CAV-platoons consist of three vehicles traveling side-by-side
acting as rolling roadblocks trying to block all traffic behind them
and not allowing any vehicles to pass by. These CAV-platoons
enter the network every 150 seconds. Note that there are three
different update frequencies used in the microsimulation namely
the simulation step update frequency which is 10Hz, the state
variables and controller update frequency which is 0.1Hz, and
the controlled CAV-platoon speed update frequency is 1Hz. The
traffic densities across the highway stretch and the position of
the CAV-platoons on the stretch at the current time-step are
obtained from the microsimulation and passed to the GN-LQR
controller (Algorithm 1) which prescribes control speeds to the
CAV-platoons on the stretch. The other inputs to the controller
are obtained from the CTM model described in Section II.
B. Simulation result

Table II presents the values of the evaluation metrics obtained
from the microscopic traffic simulation both in the presence and
absence of a bottleneck on the highway as well as in the case in
which control is implemented using the GN-LQR algorithm to
mitigate the impact of the bottleneck. Figure 7 presents the density
evolution plots with a bottleneck both with and without control. It
is observed that the GN-LQR algorithm results in an improvement
in MS compared to the uncontrolled scenario. In the controlled
scenario, TTD is increased due to the extra CAV-platoons (36
platoons and 108 vehicles in total) sent into the highway stretch.
The TTT is reduced using the LQR-based controller compared to
the uncontrolled scenario. In the controlled case, the size of the
jam created by the bottleneck is reduced in both space and time as
the congestion wave propagates over a smaller duration. Figure 8
presents a space-time diagram of the trajectories of all vehicles over
the simulation duration, with the red lines indicating the trajectories
of the CAV-platoons. Observing the trajectories of the platoons
along with their impact on the surrounding traffic provides further
insights into the performance of the controller. It is seen that the im-
provement is achieved by slowing down the vehicles about to join
the jam thus creating larger gaps behind the jam that allow for the
congestion wave to dissipate (see Figure 8 zoomed-in area for more
details). The jams created by this slowing down of vehicles behind
the existing jam are rather small and dissipate on their own or with
the help of gaps created by the CAV-platoons that follow. This is
similar to the observations made in the case of the macroscopic
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Fig. 8. Vehicle trajectory space-time diagram for the controlled scenario (the color of each trajectory point reflects the speed of the vehicle at the time, and the
CAV-platoons trajectories are labeled with red lines): [top] the left lane, [middle] the middle lane, [bottom] the right lane.

simulation-based analysis and provides preliminary confirmation
of the usability of the controller in a realistic setting. Interested
readers are referred to [12] for results related to the implementation
of the other controllers in a microscopic simulation setting.

VI. CONCLUSIONS AND FUTURE DIRECTION

From the above analysis, it is observed that both GN-LQR and
GN-LQRP controllers are able to reduce the negative effects of
fixed bottlenecks on the highway stretch. The performance of the
GN-LQR controller is comparable to the MPC-based controller
(with and without lower bound on control speeds) and the PI-based
controller (with lower bound on control speeds) at small values of
N while the performance of GN-LQRP is comparable to the other
controllers at a larger N=50. The PI-based controller without a
lower bound on the control speed does not improve the condition
of traffic. Both LQR-based controllers outperform the MPC-based
controller in terms of computation time for each controller run.
Based on obtained results, LQR-based controllers are almost two
orders of magnitude faster than the MPC-based controller. The PI-
based controller is the fastest as it only requires the offline computa-
tion of the gains. However, this is contingent upon the existence of
a reliable way to compute the gains offline. The controls obtained
from all the controllers are plausible in terms of maximum
acceleration/deceleration requirements for vehicles to achieve the
prescribed speeds. However, accounting for human reaction times,
the PI-based controller (with a lower bound on the control speed)
and the GN-LQRP controller offer the safest and most realistically
achievable controls. In the microsimulation-based study, the LQR-
based controller is observed to improve the traffic conditions
compared to the uncontrolled scenario resulting in a reduction in
the size of the jam created by the bottleneck on the highway stretch.

Future directions of this work include the extension to
large-scale road networks with the incorporation of junctions.
Other forms of control such as ramp metering and variable
speed limits can also be tested for incorporation into the current
framework by considering the corresponding controls as inputs
to the system thus allowing for integrated control. Also, robust
control with unknown parameters in the realistic setting remains
unsolved for this control problem and can be explored by testing
and evaluating more scenarios in microsimulation.
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