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Abstract— We address nonlinear system identification
in a multi-agent setting, where each agent collects input-
output data from a different instance of the same process,
possibly in a different operating condition. In particular,
we introduce a novel scheme for nonlinear auto-regressive
with exogenous input (NARX) model identification where
agents make a tentative estimate of their individual pa-
rameters, based on local information only, while a cloud-
based application further manipulates these estimates so
as to disclose the common model structure and adjust the
values of the individual parameters around some reference
parameter vector. The proposed scheme is inspired by the
spectral regularization framework recently introduced in
multi-task feature learning and is shown to be competitive
against state-of-the art cloud-based algorithms addressing
the same problem but under more restrictive assumptions.

I. INTRODUCTION

The increasing use of connected devices and their
boost in computational power is progressively enabling
the proliferation of cloud-based systems [1]. Data col-
lected and partially processed at the edge level by local
units (the agents) can be communicated to a central
unit at the cloud level for further more computationally
intensive operations. If the devices are similar, data can
be jointly exploited to enhance the performance at the
single device level, in applications including estimation,
monitoring, prediction, diagnostics.

In this paper, we address the identification of similar
yet not identical models for multiple devices that are
operating in possibly different conditions and/or are
configured differently, such as, for instance, in the case
of a fleet of industrial assets or of vehicles, and in a
micro-grid aggregating multiple prosumers.

In particular, we focus on the identification of non-
linear discrete time dynamical models, a challenging
problem which has been extensively studied in the last
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few decades [2]. A frequently adopted discrete time
system representation is the Nonlinear Auto-Regressive
eXogenous input (NARX) model [3], which consists in
a nonlinear functional expansion of lagged inputs and
outputs, often expressed in a polynomial form, with
a linear-in-the-parameters structure that is particularly
convenient for parameter estimation purposes. On the
other hand, the number of terms in the expansion
grows rapidly with the model order and nonlinearity
degree, which motivates the need for the selection of
the appropriate terms to be included. Model structure
selection (MSS) is a combinatorial problem that is hard
to handle through an exhaustive search or statistical
indices like the Bayesian Information Criterion (BIC),
[4], employed in the linear case. This has motivated the
development of heuristic methods for the identification
of a parsimonious model, such as [5], [6].

The problem of joint MSS and parameter estimation
becomes even more complex in the framework consid-
ered in this paper. A multi-agent cooperative identifica-
tion algorithm is adopted in [7], where a cloud-aided
strategy based on the Alternating Direction Method
of Multipliers (ADMM) is used for the estimation of
both global and local models, where surrogates of data
only are transmitted to a central cloud to leverage the
similarities between agents. The method assumes that
the model structure is known and that the parameters
belong to some compact sets. A distributed scheme
for joint MSS and parameter estimation of a global
polynomial NARX model is instead proposed in [8],
assuming identical parameters for all the local models.
Accurate identification results are achieved even when
only a few agents have informative data.

We present in this paper a novel decentralized multi-
agent system identification and structure selection al-
gorithm. Inspired by some results in the multi-task
learning literature [9], we include in the identification
cost function a spectral regularization term [10], which
favors the model sharing some common structure, while
local data reveal whether the local parameters vectors
are identical or not. Our approach to decentralized
nonlinear dynamical system identification and structure
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selection rests on the optimization scheme proposed
in the multi-task feature learning algorithm [11]. The
resulting constrained optimization problem is convex
and computationally appealing, since it can be solved
efficiently by a block coordinate descent algorithm
exploiting the closed form of the block-minimizations
throughout the iterations, as in [11]. Convergence of
the proposed algorithm can be proven based on the
results in [12]. The proposed approach is able to estimate
both shared and local parameters like the scheme in
[7] and shares the same communication structure. It
also achieves the improved identification performance
and structure selection reliability of the scheme in [8],
without the restrictive assumptions of [7] and [8].

The remainder of the paper is structured as follows.
Section II introduces the NARX model identification
problem. The proposed collaborative identification al-
gorithm is presented in Section III and its performance
is discussed through numerical simulations in Section
IV. Finally, in Section V some conclusions are drawn.

II. PROBLEM STATEMENT

Consider N systems with scalar input un and output
yn, n = 1, . . . , N , and the same NARX structure:

yn(t) = g(xn(t);wn) + en(t), (1)

where vector xn(t) = [yn(t − 1) . . . yn(t − ny) un(t −
1) . . . un(t − nu)]

T collects lagged input and output
(ny and nu being suitable maximum lags), en(t) is a
scalar zero-mean additive white noise, and g(·;wn) is a
nonlinear function, common to all agents, parametrized
via a vector wn ∈ Rd of local coefficients. If we
express the nonlinear mapping g(·;wn) as a polynomial
functional expansion, then, system (1) takes the form:

yn(t) = ϕn(t)
Twn + en(t), n = 1, . . . , N, (2)

where ϕn(t) = ϕ(xn(t)) is the regressor vector whose
elements ϕj

n(t), j = 1, . . . , d, are monomials of the
lagged input and output in xn(t) up to some degree nd.

Suppose that N input-output data sets Dn =
{xn(t), yn(t)}Tn

t=1 are collected separately, possibly in
different experimental set-ups. Let σ2

n, n = 1, . . . , N ,
denote the corresponding output process variances. The
identification of the local parameter vectors wn in (2)
is formulated as the following constrained optimization
problem:

min
{wn},w0,D

1

N

N∑
n=1

[
Ln(wn) (3)

+ γ(wn − w0)
TD†(wn − w0)

]
+ β∥w0∥22

subject to: D ∈ Sd
+

tr(D) ≤ 1

range(W −W0) ⊆ range(D)

where W ∈ Rd×N is the matrix whose columns are
the agents parameters vectors wn, n = 1, . . . , N , W0 ∈
Rd×N has all columns identical to w0 ∈ Rd, Sd

+ denotes
the set of d × d real symmetric positive semidefinite
matrices, D† is the pseudoinverse of D, and Ln : Rd →
R defined as

Ln(w) =
1

σ2
nTn

(
Tn∑
t=1

(
yn(t)− ϕn(t)

Tw
)2

+ αn∥w∥22

)
(4)

is a standard least squares cost with L2 regularization
and weight αn ∈ R+, and accounts for the accuracy of
the identified NARX local model with parameter vector
w on the data set Dn.

In problem (3), w0 ∈ Rd plays the role of a reference
parameter vector shared across the agents, whose L2-
norm is penalized through β ∈ R+ to avoid overfitting
in the case of unknown model structure. The deviation
of each local parameter vector from w0 enters the cost
function through a quadratic contribution weighted with
the matrix D†, to be jointly optimized with w0 and
{wn}Nn=1. Coefficient γ ∈ R+ weights this term. If we
express D through its eigenvalue decomposition, i.e.,
D = UΛUT , with U ∈ Rd×d orthogonal and Λ diagonal
containing the eigenvalues λi ≥ 0, i = 1, . . . d, of D,
then,

D† = Udiag
(
λ†
1 . . . λ

†
d

)
UT (5)

where λ† = 1
λ for λ ̸= 0 and λ† = 0 otherwise. Term

N∑
n=1

(wn − w0)
TD†(wn − w0) = (6)

N∑
n=1

(UT (wn − w0))
T diag

(
λ†
1 . . . λ

†
d

)
UT (wn − w0)

is a special instance of the spectral regularizers for
multi-task structure learning discussed in [10] and it
accounts for the dispersion of the parameter vectors wn

around w0. More precisely, wn − w0 is projected onto
the axes of the orthogonal coordinate system defined
by U and the resulting features are weighted with the
corresponding λ†

i ’s. To minimize the contribution of
(wn − w0)

TD†(wn − w0) to the sum in (6), D should
be such that λi is large if feature i has a large dispersion
and small in the opposite case. Since in (3) the sum of
the λi’s is forced to be smaller than 1, then, they cannot
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all be large. This constraint together with the condition
on the range is encouraging the discovery of common
features. A term of the form (6) is indeed employed
in the Multi Task Feature Learning algorithm [11] to
promote a sparse common (latent) feature representation
shared by multiple tasks.

Model structure selection

In order to perform MSS, we adopt the Student’s t-
test as in [6] to establish the statistical relevance of each
regressor based on the optimal estimates wn resulting
from (3). In particular, denoting by tδ,N−d the 100(1−δ)
percentile of the Student’s t distribution with N − d
degrees of freedom, then the 100(1 − δ)% confidence
interval for each wj

n, namely the jth element in wn, is
given by:

[wj
n − σ̂jtδ,N−d , wj

n + σ̂jtδ,N−d] (7)

σ̂j being the variance of the estimated parameters, that
can be estimated as: σ̂2

j ≈ σ̂2
eP

jj
n , where σ̂2

e is the
estimated noise variance, obtained by scaling the mean
squared residual by a factor N/(N − d), and P jj

n is the
jth diagonal element of

P =

(
Tn∑
t=1

ϕn(t)ϕ
T
n (t)

)−1

.

If the interval (7) does not contain zero, wj
n is not

zero with confidence of 100(1 − δ)%. Otherwise, wj
n

is considered to be statistically irrelevant by agent n.
The corresponding monomial ϕj

n is removed from the
regressor vector only if all agents consider the jth com-
ponent wj

n of their local parameter vector wn statistical
irrelevant.

III. PROPOSED ALGORITHM

In this section we introduce a decentralized algorithm
to solve problem (3) resting on block-coordinate descent.
We start by noticing that problem (3) is convex as shown
in [11], where a similar cost function is considered. For
the minimizer to be uniquely defined and the block-
coordinate descent algorithm to converge, a cost per-
turbation is suggested in [11]. Accordingly, we modify
(3) as follows:

min
{wn},w0,D

1

N

N∑
n=1

Ln(wn) + β∥w0∥22 (8)

+
γ

N
tr
(
D−1

(
(W −W0)(W −W0)

T + εId
))

subject to: D ∈ Sd
++

tr(D) ≤ 1

where Sd
++ denotes the set of d × d real symmetric

positive definite matrices and the regularizer in (3)
has been equivalently written in trace form, with the
inclusion of εId, where Id denotes the d × d identity
matrix. Indeed, the perturbation keeps D non singular,
hence the use of D−1 and the removal of the range
constraint.

In the first step of our algorithm, each agent computes
a local estimate wl

n of its parameter vector wn by
minimizing Ln(wn) in (4), thus getting

wl
n = Vn

1

σ2
nTn

ΦnYn, (9)

where Φn = [ϕn(1) . . . ϕn(Tn)], Yn =
[yn(1) . . . yn(Tn)]

T , and

Vn =

(
1

σ2
nTn

ΦnΦ
T
n +

1

σ2
nTn

αnId

)−1

(10)

can be computed locally by each agent. The agents
transmit then wl

n to the central cloud-based unit, which,
based on these local estimates, solves the convex prob-
lem (8) via block-coordinate descent, thus obtaining wn,
n = 1, . . . , N, which are then sent back to the agents
to perform local t-tests using private data only. The test
outcome is codified in a binary vector bi ∈ {0, 1}d,
whose j-th element is 0 if wj

n is considered statistically
irrelevant by agent n, and 1 otherwise. Finally, these
binary vectors are sent to the cloud, where the common
model structure is coded by the binary vector

b = b1 ∨ b2 ∨ · · · ∨ bN , (11)

which has zero components only for those elements
of the parameter vector that are considered statistically
irrelevant by all the agents.

Algorithm 1 shows a pseudo-code description of the
proposed procedure. Information exchange in parame-
ters estimation has to be carried out only once, since
the iterations are all performed at the cloud level. This
communication scheme is more efficient than the one
proposed in [13], whose algorithm entails multiple ex-
changes between agents and central unit for each cycle.

We next derive the equations referenced in Algorithm
1 for computing all relevant quantities while running the
sequential steps of the block-coordinate descent.

Block-coordinate descent sequential steps

We start deriving the expression of w0 minimizing the
cost function in (8) for given wn, n = 1, . . . , N , and D,
which will turn out to be a function only of D and the
local estimates wl

n. To this purpose, we first compute
wn as a function of D and w0 by setting equal to zero
the derivative of the cost in (8) with respect to wn, thus

1633



Algorithm 1 Collaborative multi-agent identification

Require: {Φn, Yn}Nn=1, γ, αn, β, ε, Dini = Id · 1d , tolW
1. D ← Dini

2. Each Agent:
2.1. Compute Vn as in (10) and wl

n as in (9)
2.2. Transmit Vn, wl

n to the central unit
3. Central Unit:

3.1. While ∥W −Wprev∥ > ∥W∥ ∗ tolW do
3.1.1. Update w0 as in (17)
3.1.2. Update wn as in (15) for n = 1, . . . , N
3.1.3. Update D as in (19)

3.2. Transmit wn to agent n, for n = 1, . . . , N
4. Each Agent:

4.1. Compute bn
4.2. Transmit bn to the central unit

5. Central Unit:
5.1. Compute b as in (11)
5.2. Transmit b to the agents.

getting:

wn =
(
V −1
n + γD−1

)−1 1

σ2
nTn

ΦnYn

+
(
V −1
n + γD−1

)−1
γD−1w0.

(12)

By the matrix inversion lemma we can express the
inverse of V −1

n + γD−1 appearing in (12) as

Vn − VnγD
−1
(
Id + VnγD

−1
)−1

Vn,

which is equal to
(
Id + VnγD

−1
)−1

Vn. We can then
rewrite (12) as

wn =
(
Id + VnγD

−1
)−1 (

wl
n + VnγD

−1w0

)
, (13)

where wl
n is given in (9). If we now define

ŵn =
(
Id + VnγD

−1
)−1

wl
n (14)

Zn =
(
Id + VnγD

−1
)−1

we can rewrite (13) as

wn = ŵn + ZnVnγD
−1w0. (15)

Taking the derivative of (8) with respect to w0 and
setting it equal to zero, we get:

w0 =
(
βId + γD−1

)−1 γ

N
D−1

N∑
n=1

wn

which using (15) becomes:

w0 =
(
βId + γD−1)−1 γ

N
D−1

N∑
n=1

(
ŵn + ZnVnγD

−1w0

)
.

By defining

ŵ0 =
(
βId + γD−1

)−1 γ

N
D−1

N∑
n=1

ŵn, (16)

Z0 =
(
βId + γD−1

)−1 γ

N
D−1

N∑
n=1

ZnVn

we finally obtain

w0 =
(
Id − γZ0D

−1
)−1

ŵ0, (17)

which depends on D and wl
n, n = 1, . . . , N through

(16) and (14).
In the second step of the block-coordinate descent

method, we compute wn, n = 1, . . . , N , that minimizes
the cost function in (8). This is straightforward given the
previous calculations: we just need to plug in the value
of w0 obtained from (17) into (15).

In the third block-coordinate descent step, wn, n =
1, . . . , N , and w0 are fixed, and we just need to minimize
with respect to D the regularization cost

min
D

tr
(
D−1

(
(W −W0)(W −W0)

T + εId
))

subject to: {tr(D) ≤ 1, D ∈ Sd
++}

(18)

As shown in [10], this problem admits the optimal
solution

D(W ) =
((W −W0)(W −W0)

T + εI)
1
2

trace[((W −W0)(W −W0)T + εI)
1
2 ]
, (19)

Interestingly, in [10] problems of the form of (18) are
shown to reduce to the singular value decomposition
(SVD) of (W −W0), and matrix D, together with its
inverse D−1 used in the subsequent iteration of the block
coordinate descent, can be simply computed through
vector operations on the obtained SVD.

IV. NUMERICAL EXAMPLES

We consider three different scenarios. In the first
one, agents have to jointly identify the structure and
parameters of different instances of the same process.
In the second one, they need to estimate the parameters
of the same model with a known structure but from data
collected in different experimental setups. In the last sce-
nario, accuracy and scalability of the proposed algorithm
are examined by considering a given amount of data and
dividing it equally among a growing number of agents.
The algorithm for parameter estimation proposed in [7]
(hereafter referred to as ADMM-RLS) has been applied
to the last two scenarios for comparative purposes under
the assumption that local model parameters, besides
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being identical among the agents, belong to a known
compact set.

Scenario 1

We consider data generated by N = 4 NARX systems
of the form (2) with regressor vector

ϕn(t) = [yn(t−1) un(t−1) un(t−1)2 un(t−1)3]⊤

and wn reported in Table I, which were extracted from
a Gaussian distribution with mean [0.8, 0.4, 0.4, 0.4]⊤

and covariance matrix 0.1I4, where I4 denotes the
identity matrix of size 4. Each agent collects a dataset
of length 5000 obtained with un(t) ∼ WGN(0, 0.333)
and en(t) ∼ WGN(0, 0.1), WGN(µ, σ2) denoting a
White Gaussian Noise with mean µ and variance σ2.

Model selection is performed over a candidate regres-
sor pool including all monomials up to lags ny = nu =
3 and maximum degree nd = 3, for a total of 84 terms.

A Monte Carlo analysis has been carried out by
running Algorithm 1 on 100 different realizations of
un(t) and en(t), using the parameters in Table III. A
non-null β is employed to regularize the value of w0

over spurious regressors. Table I reports the parameters
estimation and structure selection results. The numerical
experiment confirms that, when the actual system struc-
ture is included in the model pool, then our algorithm
is able to correctly identify it together with the local
parameters.

Scenario 2

We consider the same NARX system

yn(t) = 0.5yn(t−1)+0.8un(t−1)+0.1un(t−1)2+en(t),
(20)

for N = 4 agents, and assume that each one collects
a dataset of length 5000 but in a different experimen-
tal setting. In particular, un(t) ∼ WGN(0, 0.0001),
n = 1, 2, 3 and u4(t) ∼ WGN(0, 1), while en(t) ∼
WGN(0, 0.0001), n = 1, 2, 3, 4. The first 3 agents
are then referred to as ”non-informative”, since the
nonlinear dynamics in system (20) is not excited enough

TABLE I: Algorithm 1: true and average estimate of the
parameters over 100 Monte Carlo runs.

Correct Selection 100%

w1
True value 0.7739 0.6658 0.4960 0.9413

Average estimate 0.7740 0.6688 0.4935 0.9414

w2
True value 0.1887 0.1192 0.2102 0.3386

Average estimate 0.1911 0.1212 0.2096 0.3382

w3
True value 0.6612 0.4317 0.5549 -0.2762

Average estimate 0.6598 0.4300 0.5552 -0.2765

w4
True value 0.2325 0.2278 0.6338 0.1345

Average estimate 0.2339 0.2290 0.6365 0.1339

TABLE II: ADMM-RLS parameters in scenario 2.

θ̂rls
n (0) ϕn(0) ρ1 ρ2 δ0n,1 δ0n,2

05 0.1I5 1 0.1 10−3I3 10−3I3

TABLE III: Parameters of Algorithm 1.

Scenario α γ β ε δ

1 10−3 10−3 0.01 10−5 0.9985

2 10−3 1 0 10−5 -

3 10−3 10 0 10−5 -

to identify the model structure based on each dataset
separately. We perform a Monte Carlo analysis by ex-
tracting 100 parameters instances of system (20) from
a normal distribution with mean w = [0.5, 0.8, 0.1]
and covariance matrix C = diag([0.4, 5, 5]). Blindness
of the data collected with respect to the presence of the
nonlinear regressor is verified for every instance by the
Orthogonal Forward Regression procedure in [5]. The
ADMM-RLS algorithm is run with the parameters in
Table II and with known uncertainties on the parameters
values of ±{1, 10, 15}%. Algorithm 1 uses the parame-
ters in Table III.

Figure 1 shows the distribution of the relative error
on the first entry global parameters estimate (w0 in our
algorithm) resulting from the Monte Carlo analysis. The
ADMM-RLS algorithm preserves a correct global pa-
rameters estimate only if the uncertainty around the true
value is restricted, and it quickly degenerates when it
grows. Algorithm 1, instead, displays a higher capability
of retrieving correct estimates of the parameters across
the simulations, without using any a-priori knowledge
on the parameters vector.

Scenario 3

We consider a dataset of cardinality 5000 collected
from system

y(t) = 0.7y(t− 1)u(t− 1)− 0.5y(t− 2)

− 0.7y(t− 2)u(t− 2)2 + 0.6u(t− 1)2 + e(t)

with u(t) ∼ WUN(−1, 1), e(t) ∼ WGN(0.04), where
WUN(lb, ub) denotes a White Uniform Noise in the
range [lb, ub]. We then partition the 5000 data among an
increasing number of agents. The purpose is to assess: i)
the estimation accuracy of Algorithm 1 compared with
ADMM-RLS and the solution where agents learn their
model independently through a L2-regularized Least
Squares based on their own data, and ii) the scalability
of Algorithm 1 as the number of agents increases. We set
the parameters of the ADMM-RLS algorithm as speci-
fied in Table II. The parameters are assumed to be known
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Fig. 1: Relative error distribution of the first parameter estimate
for the ADMM-RLS ±1% (purple), ADMM-RLS ±10%
(blue), ADMM-RLS ±15% (green) and Algorithm 1 (yellow).

with an uncertainty of ±10%. The parameter setting in
Table III is adopted for Algorithm 1. The weighting
coefficient for the regularization term in the independent
learning solution is set equal 0.001 . Table IV collects
the results. Specifically, we report the average across
the agents of the mean square output prediction error
(MSE) over a validation dataset of the same size as
the training one, and the average absolute relative error
on the parameters estimates |ew|. Table IV shows how
ADMM-RLS rapidly saturates to the maximum param-
eters uncertainty allowed by constraints. Both ADMM-
RLS and the multi-agent algorithms are more robust than
independent learning against the reduction of training
size for the agents because of the collaborative learning
scheme. Additionally, the computational robustness of
our decentralized scheme with respect to the increasing
number of agents involved is displayed in terms of
the number of alternating algorithm iterations required
on the cloud and the computational time in seconds
(internal clock of the calculator).

V. CONCLUSIONS

We introduced a novel decentralized, cloud-based
algorithm for nonlinear system identification in a multi-
agent framework, where each agent operates on a differ-
ent instance of the same system. The proposed algorithm
was inspired by some developments in multi-task feature
learning. Its superior performance with respect to a
state-of-the-art competitor was demonstrated through
some numerical examples. We are currently investigat-
ing possible application of the approach to predictive
maintenance. This requires further effort.

TABLE IV: Comparative analysis in scenario 3: average values
of the output prediction MSE (to be rescaled by 10−3) and
absolute relative error of the parameter estimate. Number of
iterations and time (in seconds, to be rescaled by 10−2) for
Algorithm 1.

# of agents 4 8 16 32 64 128 256 512
data per agent 1250 625 312 156 78 39 19 9

MSE
ADMM-RLS 45 47 57 59 63 68 77 98
Algorithm 1 36 37 38 40 42 46 57 85
Ind. agents 37 37 39 40 44 52 78 237

|ew|
ADMM-RLS 7 8 10 10 10 10 10 10
Algo 1 6 6 6 5 3 5 14 40
Ind. agents 13 17 30 44 58 87 156 351

Algo 1 iter. 2 2 3 4 9 11 14 18
Algo 1 Time 6 2 2 1 1 1 2 5
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[2] J. Sjöberg, Q. Zhang, L. Ljung, A. Benveniste, B. Delyon,
P. Y. Glorennec, H. Hjalmarsson, and A. Juditsky, “Nonlinear
black-box modeling in system identification: a unified overview,”
Automatica, vol. 31, no. 12, pp. 1691–1724, 1995.

[3] I. J. Lentaritis and S. A. Billings, “Input-output parametric
models for non-linear systems part i: deterministic non-linear
systems,” International Journal of Control, vol. 41, no. 2, pp.
303–328, 1985.

[4] P. Palumbo and L. Piroddi, “Seismic behaviour of buttress dams:
nonlinear modelling of a damaged buttress based on ARX/NARX
models,” Journal of Sound and Vibration, vol. 239, pp. 405–422,
2000.

[5] Y. Guo, L. Z. Guo, S. A. Billings, and H. L. Wei, “An iterative
orthogonal forward regression algorithm,” International Journal
of Systems Science, vol. 46, pp. 776–789, 2015.

[6] A. Falsone, L. Piroddi, and M. Prandini, “A randomized al-
gorithm for nonlinear model structure selection,” Automatica,
vol. 60, pp. 227–238, 2015.

[7] V. Breschi, A. Bemporad, and I. V. Kolmanovsky, “Cooperative
constrained parameter estimation by ADMM-RLS,” Automatica,
vol. 121, p. 109175, 2020.

[8] F. Bianchi, A. Falsone, M. Prandini, and L. Piroddi, “Non-
linear system identification with model structure selection via
distributed computation,” in 2019 IEEE 58th Conference on
Decision and Control (CDC), 2019, pp. 6461–6466.

[9] Y. Zhang and Q. Yang, “A survey on multi-task learning,” IEEE
Transactions on Knowledge and Data Engineering, vol. 34,
no. 12, pp. 5586–5609, 2022.

[10] A. Argyriou, C. Micchelli, M. Pontil, and Y. Ying, “A spectral
regularization framework for multi-task structure learning.” in
Advances in Neural Information Processing Systems, vol. 20, 01
2007.

[11] A. Argyriou, T. Evgeniou, and M. Pontil, “Convex multi-task
feature learning,” Machine learning, vol. 73, pp. 243–272, 2008.

[12] L. Grippo and M. Sciandrone, “On the convergence of the
block nonlinear Gauss–Seidel method under convex constraints,”
Operations Research Letters, vol. 26, no. 3, pp. 127–136, 2000.

[13] T. Evgeniou, M. Pontil, and O. Toubia, “A convex optimization
approach to modeling consumer heterogeneity in conjoint esti-
mation,” Marketing Science, vol. 26, pp. 805–818, 11 2007.

1636


