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Abstract— In the past decade, artificial-intelligence-based
(AI-based) techniques have been widely applied to design con-
trollers over cyber-physical systems (CPSs) for complex control
missions (e.g., motion planning in robotics). Nevertheless, AI-
based controllers, particularly those developed based on deep
neural networks, are typically very complex and are challenging
to be formally verified. To cope with this issue, we propose
a secure-by-construction architecture, namely Safe-Sec-visor
architecture, to sandbox AI-based unverified controllers. By
applying this architecture, the overall safety and security of
CPSs can be ensured simultaneously, while formal verification
over the AI-based controllers is not required. Here, we consider
invariance and opacity properties as the desired safety and
security properties, respectively. Accordingly, by leveraging a
notion of (augmented) control barrier functions, we design a
supervisor to check the control inputs provided by the AI-based
controller and decide whether to accept them. At the same time,
a safety-security advisor runs in parallel and provides fallback
control inputs whenever the AI-based controller is rejected for
safety and security reasons. To show the effectiveness of our
approaches, we apply them to a case study on a quadrotor
controlled by an AI-based controller. Here, the initial state of
the quadrotor contains secret information which should not be
revealed while the safety of the quadrotor should be ensured.

I. INTRODUCTION

The past decade has witnessed remarkable achievements
in artificial intelligence (AI) in many domains, such as
natural language processing and image recognition. In the
near future, plenty of AI-based controllers are also expected
to be deployed in modern cyber-physical systems (CPSs)
to accomplish complex control missions; typical scenarios
include autonomous driving vehicles and smart buildings [1].
Nevertheless, verification of many AI-based controllers, par-
ticularly those developed based on deep neural networks,
is a challenging task that is shown to be nondeterministic
polynomial-time complete (NP-complete) in general [2].
Meanwhile, modern CPSs are typically safety-critical [3] and
prone to various security threats [4]–[6] due to the tight
interaction and information exchange between their cyber
and physical components. Therefore, lack of verifying AI-
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Fig. 1. Safe-Sec-visor architecture for sandboxing AI-based controllers
concerning both safety and security properties.

based controllers might lead to disastrous consequences in
real-life CPSs in terms of safety and security concerns.

In this paper, we focus on those CPSs in which AI-
based controllers are deployed. In particular, we aim at
providing formal guarantees regarding safety and security
simultaneously over those CPSs without formally verifying
the AI-based controllers. Concretely, inspired by the results
in [7], [8], we propose a new architecture utilizing the
idea of sandbox [9], namely Safe-Sec-visor architecture (see
Fig. 1), for sandboxing AI-based unverified controllers. In
particular, the proposed architecture consists of a safety-
security advisor, and a supervisor that contains a safety
monitor and a security monitor. At run-time, the supervisor
decides whether to deploy the AI-based controller to control
the system based on the decision of the safety and security
monitors. The safety monitor rejects the AI-based controller
whenever it endangers the overall safety of the system.
Similarly, the security monitor is in charge of rejecting those
control inputs from the AI-based controllers that would result
in a violation of the desired security properties. In case the
AI-based controller is rejected, the safety-security advisor is
responsible for ensuring the overall safety and security of
the system. Note that the safety-security advisor is supposed
to be deployed as less as possible since it only focuses
on keeping the system safe and secure, and we, therefore,
need to exploit the functionalities offered by the AI-based
controller.

Our contribution. To the best of our knowledge, this is
the first work that introduces an architecture for sandboxing
AI-based unverified controllers to provide formal guaran-
tees regarding safety and security properties simultaneously
over control systems with continuous state and input sets.
Here, we would also like to mention those existing results
(e.g. [10], [11]) in which formal guarantees are achieved
by appropriately incorporating the desired objectives in the
reward functions when training AI-based controllers. Com-
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pared with these results, the desired safety and security
properties are decoupled from the construction of the AI-
based controller in our proposed architecture. Therefore, our
architecture can provide formal guarantees for any type of
AI-based controllers regardless of their design.

Related work. To synthesize controllers enforcing safety
properties while providing formal guarantees, discretization-
based techniques (e.g., [12]–[14]) and discretization-free
approaches (e.g., [15], [16]) have been developed in several
results. The analysis of various security properties for CPSs
has also attracted considerable attention in the literature [4],
[5]. Particularly, for security properties formulated as various
opacity notions, there have been some results dealing with
their formal analysis over CPSs [17]–[19]. In [20], [21],
a discretization-free scheme was introduced to synthesize
secure-by-construction controllers which ensure safety and
security properties simultaneously. Note that the results
mentioned above focus on synthesizing controllers directly
enforcing desired safety and security properties without inter-
playing with any AI-based unverified controllers.

In the context of providing safety guarantees over control
systems while deploying AI-based unverified controllers,
some system-level, correct-by-construction schemes [22]
have been proposed without requiring formal verification
over those AI-based controllers. For example, shields [23]
can be used to correct erroneous control inputs at run-
time to ensure safety over discrete systems (e.g., [24]) and
continuous-space systems (e.g., [25]). Reachability analysis-
based techniques [26], [27] can also be leveraged to provide
safety guarantees by checking the intersection between the
unsafe and reachable sets of the systems. Alternatively,
Simplex architecture (e.g. [28]) deploys a Lyapunov-function-
based recovery region to achieve safety guarantees by reg-
ulating the unverified controllers. Later, the results in [29]
deploy reachability analysis to enlarge the recovery region;
[7] introduces a new architecture, namely Safe-visor archi-
tecture, to sandbox AI-based unverified controller and ensure
the overall safety of CPSs. The results in [8], [30] further
improve those in [7] by allowing more complex properties
and enlarging the modeling framework. Note that all results
above only focus on ensuring safety over control systems
while deploying AI-based controllers.

II. PRELIMINARY AND PROBLEM FORMULATION

A. Notation and Preliminary

We denote by R and N the set of real numbers and non-
negative integers, respectively. These symbols are annotated
with subscripts to restrict them in a usual way, e.g., R>0

denotes the set of positive real numbers. For a, b ∈ R (resp.
a, b ∈ N) with a ≤ b, the closed, open and half-open intervals
in R (resp. N) are denoted by [a, b], (a, b), [a, b), and (a, b],
respectively. Given N∈N≥1 vectors xi∈Rni , with i∈ [1;N ],
ni∈N≥1, and n=

∑
i ni, we denote the concatenated vector

in Rn by x = [x1;. . .;xN ] and the Euclidean norm of x
by ∥x∥. Given a set Y ⊆ R2n, we denote by Proj(Y )
and Proj(Y ) the projection of the set Y on to the first
and the last n coordinates, respectively, i.e., Proj(Y ) :=

{y ∈ Rn|∃ŷ ∈ Rn, s.t. [y; ŷ] ∈ Y }, and Proj(Y ) := {ŷ ∈
Rn|∃y ∈ Rn, s.t. [y; ŷ] ∈ Y }. Given a matrix A, we denote
by A⊤ and {A}i,j the transpose and the entry in i-th row
and j-th column of A, respectively. Additionally, 0 represents
zero matrices of appropriate dimensions. Given sets X and
Y , the complement of X with respect to Y is defined as
Y \X = {x∈Y |x /∈X}. The Cartesian product of two sets
X and Y is defined as X × Y = {(x, y) | x ∈X, y ∈ Y }.
Given functions f : X → Y and g : A → B, we define
f×g :X×A→Y ×B.

Additionally, we need the following definitions throughout
the paper, which are borrowed from [31, Section 3].

Definition 2.1: Consider x := [x1; . . . ;xn] ∈ Rn. A
monomial m : Rn → R in x is a function defined as
m(x) := xα1

1 xα2
2 · · ·xαn

n , with α1, . . . , αn ∈ N, and M(x)
denotes the sets of all monomials over x ∈ Rn. A function
M : Rn → Rr1×r2 is a matrix monomial if {M(x)}i,j ∈
M(x), ∀i ∈ [1, r1],∀j ∈ [1, r2]. We denote by Mm(x) the
set of all matrix monomials over x ∈ Rn.

Definition 2.2: A polynomial h : Rn → R is a sum of a
finite number of monomials, as p(x) :=

∑Ni
i cimi(x), with

ci ∈ R, mi(x) ∈ M(x). We denote by P(x) the set of
polynomials over x ∈ Rn. Moreover, a function P : Rn →
Rr1×r2 is a matrix polynomial if {P(x)}i,j ∈ P(x), ∀i ∈
[1, r1],∀j ∈ [1, r2]. We denote by Pm(x) the set of all matrix
polynomials over x ∈ Rn.

B. System Model

In this paper, we are interested in a class of discrete-time
control systems, which is defined below.

Definition 2.3: A discrete-time control system (dt-CS) Σ
is a tuple Σ := (X,X0, U, f, Y, h), where X ⊆ Rn denotes
the state set; X0 ⊆ X denotes the initial state set; U ⊂ Rm

is the input set defined as

U :={u ∈ Rm
∣∣ρj(u)≤0, j∈ [1, j], j ∈ N}, (II.1)

in which ρj(u) ∈ P(u) are some known polynomial func-
tions, and Y ⊆ Rq denotes the output set. Moreover, the
function f : X×U → X is the state transition function, and
h : X → Y is the output function.

Note that the input set as in (II.1) represents the input
saturation of the physical system. Here, we focus on those dt-
CS Σ which are polynomial affine [32], as described below:

Σ :

 x(k + 1) = f(x(k), ν(k))
:= AX (x(k)) +BU(x(k))ν(k),

y(k) = h(x(k)), k ∈ N,
(II.2)

where x(k) ∈ X , ν(k) ∈ U , and y(k) ∈ Y , in which
A ∈ Rn×Nx and B ∈ Rn×Nu are some constant matrices,
U(x),X (x) ∈ Mm(x), in which X (x(k)) := H(x(k))x(k)
with H(x(k)) ∈ Mm(x). Here, ν = (ν(0), . . . , ν(k), . . .)
is an input run of Σ, and xx0,ν := (x(0), . . . , x(k), . . .)
represents a state run of Σ starting from initial state x0 under
input run ν, i.e., x(0) = x0, x(k + 1) = f(x(k), ν(k)),
∀k ∈ N.
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C. Problem Formulation

In this paper, we aim at constructing a Safe-Sec-visor
architecture as in Fig. 1, which allows the application of
AI-based unverified controllers for controlling dt-CS, while
guaranteeing the desired safety and security properties. Here,
the desired safety properties require that

∀x0 ∈ X0, one has xx0,ν(k) /∈ Xd,∀ν, ∀k ∈ N, (II.3)

where Xd ⊆ X is an unsafe set. In other words, any state-
run of the system starting from X0 should not reach Xd. In
particular, we focus on sets Xd satisfying

X\Xd := {x ∈ X|aix ≤ 1, i ∈ [1, i]}, (II.4)

where a⊤i ∈ Rn are some known constant vectors. In other
words, the complement of unsafe set Xd, a.k.a. the safe
region within X , can be described as a polytope.

The security property considered in this paper is an
important class of information-flow security property called
opacity [33]. Roughly speaking, opacity characterizes the
system’s plausible deniability for its secret behavior in the
sense that its secret and nonsecret behaviors are indistin-
guishable in the eye of an outside observer (a.k.a. intruder).
In this context, we assume that the intruder can observe the
output sequences of the system with a certain measurement
precision. The intruder is also assumed to know the system
model and its dynamics. By observing the output sequences
and without actively affecting the behavior of the system,
the intruder tries to infer certain secret information from the
system based on the knowledge of the system model. In this
paper, we are interested in a state-based notion of opacity
called approximate initial-state opacity [17], which is used to
model security requirements in many applications, including
secure cryptographic protocols and tracking problems in
sensor networks [34]. Here, we denote by Xs ⊂ X the set
of secret states, and the formal definition of approximate
initial-state opacity is recalled from [17] as follows.

Definition 2.4: Consider a dt-CS Σ=(X,X0, U, f, Y, h),
a set of secret states Xs ⊂ X , and a constant δ ∈
R≥0. System Σ is said to be δ-approximate initial-state
opaque if for any x0 ∈ X0 ∩ Xs and any finite state run
xx0,ν = (x0, . . . , xT ), there exists a finite state run xx̂0,ν̂ =
(x̂0, . . . , x̂T ), with x̂0∈X0\Xs, such that

∥h(xi)− h(x̂i)∥ ≤ δ, ∀i ∈ [0, T ]. (II.5)

As a key insight, δ-approximate initial-state opacity re-
quires that an outside intruder is never certain whether the
system was initiated from a secret state, in which δ models
the precision of the intruder’s observation in the sense that
given ŷ := (ŷ0, . . . , ŷT ) the observation of the intruder, one
has

∥yi − ŷi∥ ≤ δ, ∀i ∈ [0, T ]. (II.6)

where y := (y0, . . . , yT ) is the actual output sequence of
the system corresoponding to ŷ. It is also worth noting that
to ensure the desired approximate initial-state opacity over
Σ, the secret of the system should at least not be revealed

Fig. 2. A quadrotor tracks a series of targets. Meanwhile, the positions of
the quadrotor are observed by a malicious intruder remotely.

initially; otherwise, the desired opacity is trivially violated.
Therefore, we assume, without loss of generality,

∀x0∈X0 ∩Xs, {x∈X0|∥h(x)− h(x0)∥≤δ} ⊈ Xs. (II.7)

For a compact description of the system and the desired
safety and security properties, in the remaining discussion,
we incorporate Xd and Xs in the system definition and use

Σ := (X,X0, Xs, Xd, U, f, Y, h), (II.8)

to denote a dt-CS as in Definition 2.3 with the desired safety
and security properties. Now, we are ready to formulate the
main problem to be tackled in this paper.

Problem 2.5: Given a dt-CS Σ := (X,X0, Xs, Xd, U, f,
Y, h) in (II.8), and a constant δ ∈ R≥0, design a Safe-
Sec-visor architecture as in Fig. 1 (if existing) to check
the validity of the control inputs provided by the AI-based
controller such that 1) and 2) hold:

1) (Safety) Σ is safe such that (II.3) holds;
2) (Opacity) Σ is δ-approximate initial-state opaque.

To better illustrate the motivation and the theoretical re-
sults in this paper, we deploy the following running example,
which will also be the case study of the paper.

Example. Here, we consider an example in which a
quadrotor tracks a series of changing targets on a 2-
dimensional plane (x-y plane), as shown in Fig. 2. Mean-
while, the positions of the quadrotor are observed by a
malicious intruder, with an observation precision δ = 2 as
described in (II.6). Here, it is desired to not reveal to the
intruder whether the quadrotor starts from the secret region
Xs. At the same time, due to air traffic regulations, the
quadrotor is required to stay within a safety region Xsafe.

By leveraging the feedback linearization technique in [35],
the quadrotor can be modeled by

Σ :

{
x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k), k ∈ N, (II.9)
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with

A :=


1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1

 , B :=


∆t2/2
∆t

∆t2/2
∆t

 , C :=

[
1 0 0 0
0 0 1 0

]
.

Here, ∆t = 0.1s is the sampling time; x := [xx; vx;xy; vy]
and u := [ux;uy] denote the state and the control input of the
quadrotor, respectively, with xi, vi, and ui being the position,
velocity, and acceleration of the drone on the i axis, i ∈
{x, y}, respectively; y is the output of the system, which can
be observed by a malicious intruder remotely. Here, we con-
sider the state set X := [−120, 120]×[−5, 5]×[−120, 120]×
[−5, 5], initial set X0 :=

(
[−0.5, 0]× {0} × [−0.05, 0.05]×

{0}
)
∪
(
[0, 0.5]× [−0.85, 0.85]× [−0.3, 0.3]× [−0.85, 0.85]

)
,

secret set Xs := [0, 0.5] × [−0.85, 0.85] × [−0.3, 0.3] ×
[−0.85, 0.85], and unsafe set Xd := X \

(
[−100, 100] ×

[−3, 3]× [−100, 100]× [−3, 3]
)

(note that Xd := X \Xsafe).
In brief, the position of the quadrotor (xx, xy) is required to
be within the region [−100, 100] × [−100, 100], while the
velocity of the quadrotor cannot exceed 3 m/s on both axes.
Moreover, we consider ui ∈ [−2, 2] m/s2, with i ∈ {x, y} as
input constraints. ⋄

III. CONSTRUCTION OF SAFE-SEC-VISOR
ARCHITECTURE

In this section, we focus on constructing a Safe-Sec-visor
architecture as in Fig. 1 to solve Problem 2.5. To this end, we
first propose in Section III-A a notion of (augmented) control
barrier functions [20], [21], which is used to construct the
Safe-Sec-visor architecture in Section III-B.

A. (Augmented) Control Barrier Functions

To introduce notion of (augmented) control barrier func-
tions, we need to define an augmented system associated with
Σ, which is formulated as below.

Definition 3.1: Consider a dt-CS Σ=(X,X0, Xs, Xd, U,
f, Y, h) as in (II.8). An augmented system associated with Σ
is the product between Σ and itself and is defined as a tuple

Σ× Σ := (X×X,X0×X0, Xs×Xs,

Xd×Xd, U×U, f×f, Y ×Y, h×h). (III.1)

Here, (x, x̂) ∈ X × X is a state pair of Σ × Σ, and
(xx0,ν ,xx̂0,ν̂) denotes the state trajectory of Σ× Σ starting
from (x0, x̂0) under input run (ν, ν̂).

Moreover, some conditions introduced in the next assump-
tion are required for proposing the notion of (augmented)
control barrier functions.

Assumption 3.2: Consider a dt-CS Σ := (X,X0, Xs, Xd,
U, f, Y, h) as in (II.8), its associated augmented system Σ×
Σ as in Definition 3.1, the polynomial-type state transition
function as in (II.2), and set Xd as in (II.4). Given a set

R̄ := {(x, x̂) ∈ X ×X|bt[x; x̂] ≤ 1, t ∈ [1, t]} ⊆
{(x, x̂) ∈ X ×X| ∥h(x)− h(x̂)∥ ≤ δ}, (III.2)

with b⊤t ∈ R2n being some given constant vectors, we
assume that the following conditions hold:[

Q g(x)⊤

g(x) Q

]
⪰ 0,∀x ∈ Rn, (III.3)

aiQa⊤i ≤ 1, i ∈ [1, i]; (III.4)[
Qo go(x, x̂)

⊤

go(x, x̂) Qo

]
⪰ 0,∀(x, x̂) ∈ R2n, (III.5)

btQob
⊤
t ≤ 1, t ∈ [1, t]; (III.6)

for some Q ∈ Rn×n, Qo ∈ R2n×2n, K̄(x) ∈ Pm(x),
and K̄o(x, x̂) ∈ Pm(x, x̂), in which g(x) := AH(x)Q +
BU(x)K̄(x), go(x, x̂) := Ao(x, x̂)Qo + Bo(x̂)K̄

′
o(x, x̂),

with

Ao :=

[
AH(x) +BU(x)K(x) 0

0 AH(x̂)

]
, Bo :=

[
0 0
0 BU(x̂)

]
,

K̄ ′
o(x, x̂) := [0; K̄o(x, x̂)], and K(x) := K̄(x)Q−1.

Note that one can readily check Assumption 3.2 by checking
the feasibility of conditions (III.3)-(III.6) using semi-definite-
programming (SDP) solver (e.g., Mosek [36]). With Def-
initions 3.1 and Assumption 3.2, we propose a notion of
(augmented) control barrier functions [20] that will be used
to design the Safe-Sec-visor architecture in Section III-B.

Definition 3.3: ((Augmented) Control Barrier Functions)
Consider a dt-CS Σ := (X,X0, Xs, Xd, U, f, Y, h) as
in (II.8) and its associated augmented system Σ × Σ as
in Definition 3.1. Suppose that there exists positive-definite
matrices Q ∈ Rn×n, Qo ∈ R2n×2n, and matrix polynomials
K̄(x) ∈ Pm(x), K̄o(x, x̂) ∈ Pm(x, x̂) such that condi-
tions (III.3)-(III.6) in Assumption 3.2 hold. Then, functions

B := x⊤Q−1x− c1, BO := [x; x̂]⊤Q−1
o [x; x̂]− c2 (III.7)

are called control barrier functions (CBF) for Σ and aug-
mented control barrier functions (ACBF) for the augmented
systems Σ× Σ, respectively, for some c1, c2 ∈ (0, 1], if the
following conditions hold:

• (cd.1) ∀x ∈ S, one has u := K̄(x)Q−1x ∈ U ;
• (cd.2) X0 ⊂ S;
• (cd.3) ∀(x, x̂)∈SO, û :=K̄o(x, x̂)Q

−1
o [x; x̂] ∈U ;

• (cd.4) ∃R0 ⊂ X × X , such that ∅ ̸= R0 ⊂ SO,
Proj(R′) ⊆ Proj(R0), and Proj(R0) ⊆ Proj(R′);

where S := {x ∈ Rn|x⊤Q−1x− c1 ≤ 0}, SO := {(x, x̂) ∈
Rn × Rn|[x; x̂]⊤Q−1

o [x; x̂] − c2 ≤ 0}, and R′ := {(x, x̂) ∈
(X0 ∩Xs) ×X0 \Xs|∥h(x) − h(x̂)∥ ≤ δ − ϵ}, with some
ϵ ∈ [0, δ].

Remark 3.4: As a key insight, the CBF B and the ACBF
BO play a key role in designing the safety and security
monitors in Fig. 1, respectively (cf. Algorithm 1). In practice,
given the state transition function as in (II.2), one can
readily select a set R̄ as in (III.2) and compute Q, Qo,
K̄(x), and K̄o(x, x̂) accordingly since conditions (III.3)-
(III.6) formulate a sum-of-square programming problem [37]
that can be solved by a SDP solver (e.g., Mosek [36]).
Having Q, Qo, K̄(x), and K̄o(x, x̂) candidates, one can then
proceed with checking whether or not (cd.1) -(cd.4) hold for
some c1, c2 ∈ (0, 1]. ⋄
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Fig. 3. Running mechanism of the Safe-Sec-visor architecture, with OP
as in Algorithm 1, and B being the CBF as in (III.7).

It is also worth noting that in case (cd.1)-(cd.4) do not
hold for the obtained Q, Qo, K̄(x), and K̄o(x, x̂), one can
also leverage the conditions in [21, Theorem 3.3] and deploy
an iteration scheme to expand the region specified by the
sets S and SO. In this paper, we presume that one can
find valid control barrier function B and augmented control
barrier function BO as in (III.7). Now, we focus on how to
construct the Safe-Sec-visor architecture for Problem 2.5 by
leveraging these functions, which is the main contribution of
this paper and discussed in the following subsection.

Example (continued). Consider again the quadrotor track-
ing example as in Fig. 2. Given the model of the quadrotor
as in (II.9), in order to compute the (augmented) control
barrier functions as in Definition 3.3, we choose the set
R̄ as in (III.2), with b1 = [0.711; 0; 0; 0;−0.711; 0; 0; 0]⊤,
b2 = [0; 0; 0.711; 0; 0; 0;−0.711; 0]⊤, b3 = −b1, and b4 =
−b1. Then, following the instruction in Remark 3.4, we
deployed Mosek [36] and YALMIP [38] and obtained Q,
Qo, K̄(x), and K̄o(x, x̂) as in (III.8)-(III.9) fulfilling con-
ditions (III.3)-(III.6). Having Q, Qo, K̄(x), and K̄o(x, x̂),
we verified that (cd.1)- (cd.4) in Definition 3.3 are satisfied,
with c1 = c2 = 1, and the set R0 = {x ∈ Xs, x̂ ∈
[−0.01, 0)×{0}× [−0.01, 0.01)×{0} | ||h(x)−h(x̂)||≤δ}.
Therefore, one can construct the CBF and ACBF as in (III.7)
using the obtained Q, Qo, c1, and c2. ⋄

B. Design of Safe-Sec-visor Architecture

Here, the running mechanism of the Safe-Sec-visor archi-
tecture is formally proposed in Algorithm 1 and depicted in
Fig. 3. In particular, lines 8-9, lines 11-14, and lines 19-
20 correspond to the running mechanism of the safety
monitor, the security monitor, and the safety-security advisor,
respectively. Having Algorithm 1 in hand, we are ready to
propose the main results of this paper, which provides a
solution to Problem 2.5 with a formal guarantee using the
Safe-Sec-visor architecture.

Theorem 3.5: Consider a dt-CS Σ := (X,X0, Xs, Xd,
U, f, Y, h) as in (II.8). By applying the Safe-Sec-visor
architecture as in Algorithm 1 for all k ∈ N, one obtains
that Σ is safe and δ-approximate initial-state opaque
as stated in Problem 2.5 while running an AI-based
unverified controller.

The proof of the Theorem 3.5 is provided in the Ap-
pendix. To demonstrate the effectiveness of the Safe-Sec-
visor architecture for ensuring the desired security properties,
we will show in the case study that without using our
architecture, some state runs of the system indeed reveal
the secret information of the system starting from the secret
region (cd. Fig. 6). To this end, we will use the following
results to identify whether or not a state run xx0,ν of the
system infers a violation of the desired δ-approximate initial-
state opacity property.

Theorem 3.6: Consider a dt-CS Σ := (X,X0, Xs, Xd,
U, f, Y, h) as in (II.8) and a state run xx0,ν=(x0, . . . , xT )
generated by Σ. The state run xx0,ν violates the desired
δ-approximate initial-state opaque if ∃k ∈ [0, T ] such that
minx̂∈P (k) ||h(xk) − h(x̂)|| > δ, in which the set P (k)
is defined as

P (k) ⊇ {x̂ ∈ Rn|∃x̂0 ∈ Proj(R′),

∃ν̂ := [ν̂1, . . . , ν̂k], s.t. x̂ = xx̂0,ν̂(k)}, (III.10)

with the set R′ being defined as in Definition 3.3.

The proof of the Theorem 3.6 is provided in the Appendix.
Note that the set P (k) is essentially (an over-approximation
of) the k-step reachable set of the dt-CS Σ from the set
Proj(R′) alongside the state transition function f . One can
use existing tools, such as MPT3 [39] and CORA [40], to
compute such sets.

IV. SIMULATION RESULTS OF THE CASE STUDY

In this section, we construct the Safe-Sec-visor architec-
ture leveraging the CBF and ACBF obtained in Section III-A,
and the results in Section III-B. Then, we apply this architec-
ture to the quadrotor tracking example as in Fig. 2. Here, we
deploy an AI-based controller which is supposed to enforce
the quadrotor tracking a series of changing targets. Here, the
AI-based controller contains a deep-neural-network-based
(DNNs-based) agent, which is trained by leveraging DDPG
algorithm [41] and works as a setpoint provider for low-level
position controller. This agent takes the desired target, the
current positions and velocities of the quadrotor as inputs and
provides the position and velocity setpoints for the quadrotor.
Note that we are not describing the details of how to train the
agent here since designing and improving the performance
of AI-based unverified controllers are out of the scope of
this paper. The AI-based controller deployed here is only
for demonstration purposes. In particular, our architecture
can be deployed to any “off-the-shelf” AI-based controller
regardless of their performance, while a formal guarantee for
ensuring the desired safety and security properties can still
be provided.

To simulate the system, we randomly selected 300 initial
states x(0) from the set X0 ∩Xs and simulated the system
for 600 time steps. The simulation results are summarized
in Table I and depicted in Figs. 4 and 5. When deploying
the Safe-Sec-visor architecture, 30.78% of the control input
provided by the AI-based controllers are accepted, while
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Q =

9802.884 −100.016 0 0
−100.016 8.616 0 0

0 0 9802.884 −100.016
0 0 −100.0157 8.616

 , K̄⊤(x) =

−0.0004 0
−0.0379 0

0 −0.0004
0 −0.0379

 , (III.8)

Qo=105×



4.737 −0.062 0 0 4.737 −0.062 0 0
−0.062 0.002 0 0 −0.062 0.002 0 0

0 0 4.760 −0.062 0 0 4.760 −0.063
0 0 −0.062 0.002 0 0 −0.062 0.002

4.737 −0.062 0 0 4.737 −0.062 0 0
−0.062 0.002 0 0 −0.062 0.002 0 0

0 0 4.760 −0.062 0 0 4.760 −0.062
0 0 −0.062 0.002 0 0 −0.062 0.002


, K̄⊤

o (x, x̂)=



1.510 0
0.817 0
0 1.510
0 0.817

−1.511 0
−0.908 0

0 −1.511
0 −0.908


. (III.9)

Algorithm 1: Running mechanism of the Safe-Sec-
visor architecture

Input: A dt-CS Σ := (X,X0, Xs, Xd, U, f, Y, h) as
in (II.8) and its associated augmented system
as in Definition 3.1; a CBF B, an ACBF BO,
matrix polynomials K̄(x) and K̄o(x, x̂), and
the set R0 satisfying (cd.4) in Definition 3.3;
initial state x0; and inputs uAI(k) provided by
the AI-based controller.

1 k = 0, x(0) = x0

2 while True do
3 if k = 0 then
4 Initialize x̂(0) = x̂0 such that (x0, x̂0) ∈ R0.
5 else
6 Update the state x(k) from Σ.

7 Update uAI(k) from the AI-based controller.
8 if B(f(x(k), uAI(k))) > 0 then
9 Safety monitor rejects uAI(k).

10 else
11 Solve the optimization problem OP:

min
û∈U

||h(f(x(k), uAI(k)))− h(f(x̂(k), û))||

s.t. BO(f(x(k), uAI(k)), f(x̂(k), û)) ≤ 0

if OP is feasible then
12 uAI(k) is accepted.
13 else
14 Security monitor rejects uAI(k).

15 if uAI(k) is accepted then
16 Update u(k) := uAI(k) to control the dt-CS Σ

at time instant k.
17 Update x̂(k + 1) := f(x̂(k), û(k)), with

û(k) := û obtained by solving OP in line 11.
18 else
19 Update u(k) := us(k), with

us(k) = K̄(x(k))Q−1x(k) to control the
dt-CS Σ at time instant k.

20 Update x̂(k + 1) := f(x̂(k), û(k)), with
û(k) := K̄o(x(k), x̂(k))Q

−1
o [x(k); x̂(k)].

21 k = k + 1.

Output: u(k) for controlling Σ at each time step k.

With Safe-Sec-
visor architecture

Without Safe-Sec-
visor architecture

Percentages of satisfying
the safety properties 100% 0%

Percentages of satisfying
the opacity properties 100% 71.66%

TABLE I
SIMULATION RESULTS OF THE CASE STUDY WITH AND WITHOUT USING

THE SAFE-SEC-VISOR ARCHITECTURE.

Fig. 4. Initial positions and trajectories of the quadrotor’s positions with
and without using the Safe-Sec-visor architecture.

the desired safety and initial-state opacity properties are
satisfied. In contrast, when the Safe-Sec-visor architecture
is not deployed to sandbox the AI-based controller, all the
trajectories violate the desired safety properties. Additionally,
28.34% of the trajectories reveal the fact that the quadrotor
starts from the secret region. Here, we demonstrate one such
trajectory in Fig. 6 with the help of Theorem 3.6, in which
the reachable sets are computed using MPT3 [39].

V. CONCLUSION

In this paper, we proposed for the first time a secure-by-
construction architecture, so-called Safe-Sec-visor architec-
ture, to ensure safety and security properties simultaneously
over cyber-physical systems. This architecture is inspired
by the notion of Safe-visor architecture [7] and consists
of 1) a safety monitor that identifies those control inputs
from the AI-based controller endagering the overall safety
of the system; 2) a security monitor that rejects the AI-
based controller whenever it results in a violation of the
desired security property; and 3) a safety-security monitor
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Fig. 5. Trajectories of the quadrotor’s velocities with (blue) and without
using the Safe-Sec-visor architecture (red).

Fig. 6. A trajectory of the system without using the Safe-Sec-visor
architecture. This trajectory reveals that the quadrotor started from the secret
region according to Theorem 3.6. Concretely, the distance between y at time
step k = 18 and the k-step reachable sets of the quadrotor from the set
Proj(R′) is larger than δ = 2 (the radius of the blue circle is 2).

that provides control input enforcing the overall safety and
security of the system whenever the AI-based controller is
rejected. Concretely, given a discrete-time control system to-
gether with the desired safety and security properties, we pro-
vide conditions under which one can construct (augmented)
control barrier functions with respect to these properties.
On top of these functions, we propose the construction of
the Safe-Sec-visor architecture and the formal guarantees
regarding safety and security provided by this architecture.
Additionally, we also discuss how to identify the violation
of the desired security property given a state-run generated
by the systems. Finally, the effectiveness of the proposed
methodologies is demonstrated through a case study on a
quadrotor control problem. For future work, we are interested
to extend this work by deploying more general safety prop-
erties (e.g., linear temporal logic properties [42], instead of
invariance properties in the current work), and by exploring
other notions of security properties [6] for complex CPS.

APPENDIX

Proof of Theorem 3.5: Firstly, according to [43, Lemma
4.1], one can verify that {x ∈ Rn|x⊤Q−1x ≤ 1} ⊆ X \Xd

and {(x, x̂) ∈ Rn × Rn|[x; x̂]⊤Q−1
o [x; x̂] ≤ 1} ⊆ R̄ hold if

and only if (III.4) and (III.6) hold, respectively, with R̄ as

in (III.2). Therefore, one gets

S := {x ∈ Rn|x⊤Q−1x ≤ c1} ⊆ X \Xd, (A.1)

SO:={(x, x̂)∈Rn×Rn|[x; x̂]⊤Q−1
o [x; x̂]≤c2}⊆R̄, (A.2)

for all c1, c2 ∈ (0, 1]. Having (A.1) and (A.2), Theorem 3.5
can be proved by showing

1) (Cond.1) ∀x0 ∈ X0, one has xx0,ν(k) ∈ S , with ν(k)
generated by running Algorithm 1, ∀k ∈ N;

2) (Cond.2) ∀x0 ∈ X0 ∩ XS , ∃x̂0 ∈ X0 \ XS , with
||h(x0) − h(x̂0)|| ≤ δ, one has (xx0,ν(k),xx̂0,ν̂(k)) ∈
SO, ∀k ∈ N, with ν(k) generated by Algorithm 1.

As a key insight, one can readily verify that (Cond.1) implies
that Σ is safe since (A.1) implies S ∩Xd = ∅. Meanwhile,
(A.2) indicates that SO∩{(x, x̂) ∈ X×X| ∥h(x)−h(x̂)∥ >
δ} = ∅ so that (Cond.2) implies that Σ is δ-approximate
initial-state opaque.

Firstly, since uAI(k) will only be accepted if
B(f(x(k), uAI(k))) ≤ 0, we show (Cond.1) holds by
showing (III.3) implies that there exists c1 ∈ (0, 1]
such that ∀x0 ∈ S , one has xx0,ν(k) ∈ S , with
ν(k) := K̄(x(k))Q−1x(k), ∀k ∈ N, and S as in (A.1).
Consider a controller u(x) := K(x)x, with K(x) ∈ P(x).
For all x ∈ S , one has AH(x)x + BU(x)u ∈ S if
P−(AH(x)+BU(x)K(x))⊤P (AH(x)+BU(x)K(x)) ⪰ 0
holds ∀x ∈ Rn, with P = Q−1, or, equivalently,
Q−(AH(x)Q+BU(x)K̄(x))⊤P (AH(x)Q+BU(x)K̄(x))⪰0
holds ∀x ∈ Rn, with K̄(x) = K(x)Q. Then, considering the
Schur complement [44] of Q, one has this matrix inequality
holds if (III.3) holds. Since 0n ∈ S, and u(x) = K(x)x = 0
when x = 0n, there must exists c1 ∈ R>0 such that
u(x) ∈ U , for all x ∈ S. Therefore, one has (Cond.1) holds
since X0 ⊂ S by (cd.2).

Note that uAI(k) will only be accepted if the opti-
mization problem OP in Algorithm 1 is feasible, and
similar to the discussion above, one can readily show
that (III.5) and (cd.4) in Definition 3.3 implies that there
exist c2 ∈ (0, 1] such that ∀(x0, x̂0) ∈ R0, one has
(xx0,ν(k),xx̂0,ν̂(k)) ∈ SO, with ν(k) := K̄(x(k))Q−1x(k),
ν̂(k) := K̄o(x(k), x̂(k))Q

−1
o [x(k); x̂(k)], ∀k ∈ N, and SO

as in (A.2). To complete the proof, we still need to show that
∀x0 ∈ X0∩XS , ∃x̂0 ∈ X0 \XS , with ||h(x0)−h(x̂0)|| ≤ δ,
such that (x0, x̂0) ∈ R0. Consider any arbitrary secret initial
state x0 ∈ X0 ∩ Xs. By the assumption as in (II.7), for
all x0 ∈ X0 ∩ Xs, we get that there exists x̂0 ∈ X0 \ Xs

such that ∥h(x) − h(x0)∥ ≤ δ. This indicates that the set
Rinit

0 is not empty. Therefore, consider R0 satisfying (cd.4)
in Definition 3.3, one has ∀x0 ∈ X0 ∩Xs,∃x̂0 ∈ X0\Xs,
with ∥h(x0)−h(x̂0)∥ ≤ δ, such that (x0, x̂0) ∈ RO, which
completes the proof. ■

Proof of Theorem 3.6. If minx̂∈P (k) ||h(xk)−h(x̂)|| > δ,
then ∀x̂ ∈ P (k), one has ||h(xk)− h(x̂)|| > δ. This implies
that for the given state run xx0,ν , for any x̂0 ∈ X0 \ XS

with ||h(x0) − h(x̂0)|| ≤ δ − ϵ, one has ||h(xx0,ν(k)) −
h(xx̂0,ν̂(k))|| > δ for any arbitrary xx̂0,ν̂ started from x̂0.
Therefore, the dt-CS Σ is not δ-approximate initial-state
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opaque according to Definition 2.4, which completes the
proof. ■
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