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Abstract— We consider the problem of designing controllers
to guarantee safety for a class of nonlinear systems under
uncertainties in the system dynamics and/or the environment.
We define a class of uncertain control barrier functions
(CBFs), and formulate the safe control design problem as a
chance-constrained optimization problem with uncertain CBF
constraints. We leverage the scenario approach for chance-
constrained optimization to develop a risk-tunable control
design that provably guarantees the satisfaction of uncertain
CBF safety constraints up to a user-defined probabilistic risk
bound, and provides a trade-off between the sample complexity
and risk tolerance. We demonstrate the performance of this
approach through simulations on a quadcopter navigation
problem with obstacle avoidance constraints.

I. INTRODUCTION

Safety is a central consideration in the design of au-
tonomous systems that operate in uncertain and unknown
environments, spanning numerous applications such as auto-
mated driving, robotics, and unmanned aerial vehicles. The
problem of designing controllers that provably guarantee
hard constraints on the safety of autonomous systems is
a long-studied topic, and has seen a recent resurgence in
interest due to advances in learning-based approaches as well
as emerging applications such as self-driving cars, where
autonomous systems are expected to closely interact with
humans in safety-critical settings.

Model-based design approaches to guarantee safety often
involve imposing Control Barrier Functions (CBF) con-
straints [1] on the control design problem. CBF constraints
employ a Lyapunov-like argument to guarantee the invari-
ance of a desired ‘safe set’ under the designed control law,
essentially guaranteeing that a system that starts in a safe
set always remains in the safe set. We refer the reader
to [2] for a comprehensive survey on the various classes
of CBF conditions commonly employed in control design.
In situations where the control design problem involves
uncertainty in the system dynamics or environment, robust
control invariance conditions of a similar nature may be
enforced to guarantee safety of the control design [3]–[9].

While CBF-based designs, including their robust versions,
are effective in guaranteeing safety, a key challenge is that
they are often conservative, imposing robustness to worst-
case uncertainties, which may themselves be difficult to char-
acterize in dynamic environments. Further, they may come
at a great efficiency cost (both in terms of time-efficiency
and control cost) that can make autonomous task execution
practically unviable in several applications. Finally, notions
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of safety and risk can vary widely by domain. For example,
in some applications, small safety constraint violations may
be tolerable in order to increase task efficiency. Therefore, it
is desirable to introduce probabilistic notions of safety with
risk-efficiency tradeoffs that can be selected by designers
based on application-specific considerations. In this context,
this paper addresses the problem of introducing the notion
of tunable risk into the safe control design problem.

Specifically, we consider a class of nonlinear control-affine
systems with an additive uncertainty that may arise due to
unknown dynamics and/or environmental variables (includ-
ing obstacles). For this class of systems, we formulate a safe
control design problem with uncertain CBF constraints that
must be satisfied with a user-defined probabilistic risk bound.
We pose this problem in a chance-constrained optimization
setting, and propose a sampling-based control design based
on the scenario approach [10]–[12] that allows the designer
to tune the risk bound for safety constraint satisfaction, and
provides a trade-off between the risk bound and the sample
complexity of the problem. We demonstrate the performance
of this design by simulation on a quadcopter navigation
problem with obstacle avoidance constraints.

A. Related Work and Contributions

A common approach to safe control design for systems
with uncertainties involves modeling the uncertainty by a
known process, with Gaussian Process (GP) models re-
ceiving significant attention in typical MPC based control
designs [13], [14], as well as CBF-based designs for safety-
critical systems [7], [15]–[17]. However, these works do not
typically consider the probabilistic notions of safety required
to incorporate risk tunability that is the subject of this
work. Control designs incorporating probabilistic notions of
safety through chance-constrained CBFs have recently been
proposed [17]–[22]. In general, such chance-constrained op-
timization problems are non-convex, even when the original
CBF constraints are convex, and are often NP-hard [23], [24].
Solutions to such probabalistic safe control design problems
typically involve either approximating the uncertainty by GP
(or similar) models [20]–[22], or deriving convex relaxations
or over-approximations that make the problem tractable [18],
[19]. However, GP models may not hold in several safety-
critical applications, and convex over-approximations may
lead to conservative designs. In this paper, we introduce a
sampling-based safe control design framework based on the
scenario-approach for chance-constrained optimization [11]
that does not make any assumptions regarding the underlying
distribution of the uncertainty. The scenario approach has
recently been utilized for safety verification with CBFs [25];
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however, this work does not address control design, which
is the central problem considered in this paper.

In this landscape, the key contribution of this paper is to
introduce a framework to design controllers that can guar-
antee probabilistic notions of safety with user-defined risk
bounds, with the advantage that the risk-efficiency and sam-
ple complexity trade-offs can be tuned by designers based
on domain-specific requirements. We also note that most
of the above safe control designs employ projection-based
approaches, where a baseline controller (that is designed
based on a separate optimization problem or is assumed to
be given) is minimally modified through CBF constraints
to enforce safety. Such projection-based approaches may
result in sub-optimal controllers. In contrast, our approach
directly solves a chance-constrained problem to optimize per-
formance metrics while simultaneously guaranteeing safety,
without the need for a two-stage solution.

B. Organization

This paper is organized as follows. Section II formulates
the safe control design problem under uncertainties as a
chance-constrained optimization problem with control bar-
rier function constraints. Section III provides a risk-tunable
design based on the scenario approach to solve the safe
control design problem. Section IV demonstrates the design
through simulation on a quadcopter navigation problem with
uncertain obstacles. The proofs of all the results in this paper
are presented in the Appendix.

C. Notation

We denote the sets of real numbers, positive real numbers
including zero, and n-dimensional real vectors by R, R+

and Rn respectively. For a matrix A ∈ Rm×n, AT ∈ Rn×m

represents its transpose. A symmetric positive definite matrix
P ∈ Rn×n is represented as P > 0 (and as P ≥ 0, if
it is positive semi-definite). The standard identity matrix is
denoted by I , with dimensions clear from the context. An
(n ×m) matrix with all elements equal to 1 is denoted by
1n×m. Similarly, an (n×m) matrix with all elements equal

to zero is denoted by 0n×m. For any N1, N2 ∈ R+,

(
N1

N2

)
represents the number of ways to choose N2 items from a
set of N1 items.

II. PROBLEM FORMULATION
We begin by formulating the safe control design problem

addressed in this paper. We consider a nonlinear dynamical
system with control-affine dynamics given by,

xt+1 = f(xt) + g(xt)ut + dt, (1)

where xt ∈ X ⊂ Rn is the state, ut ∈ U ⊂ Rm is the
control input, and dt ∈ U ⊂ Rn is an additive disturbance
at time t ∈ R+, and f : Rn → Rn and g : Rn → Rn × Rm

are locally Lipschitz continuous. Moreover, we suppose that
U = [ul, uh], where ul and uh are actuator constraint lower
and upper bounds respectively.

Assumption 2.1: The dynamical system is assumed to be
forward complete, that is, the solution to (1) is defined for all

initial conditions x0 ∈ X and all admissible control inputs
ut ∈ U for all time t ∈ R+.

We begin by defining control barrier functions (CBFs) and
associated conditions that we will utilize in formulating the
safe control design problem that is the subject of this work.

A. Control Barrier Functions (CBF)

Let S be a safe set, defined by the super-level set of a
continuously differentiable function h̄ : X → R as,

S = {x ∈ X : h̄(x) ≥ 0}. (2)

If the states always remain within this set, then we can
guarantee the safety of the system as follows.

Definition 2.2: The dynamical system (1) is said to be
safe with respect to set S if S is forward-invariant, that is,
∀x0 ∈ S, xt ∈ S,∀t ∈ R+.

A standard approach to establish forward invariance of the
safe set S is to derive sufficient conditions using a Lyapunov-
like argument as follows.

Theorem 2.3 (Adapted from [26]): A continuously dif-
ferentiable function h̄ : X → R is a control barrier function
for dynamical system (1) and renders the set S safe if there
exists a control input ut and a constant η ∈ [0, 1] such that
for all xt ∈ S, we have

h̄(xt+1)− (1− η)h̄(xt) ≥ 0. (3)
In Theorem 2.3, the constant η determines how strongly

the CBF pushes the states into the safe set [15].

B. Uncertain Control Barrier Functions

With the safe set defined in (2) and the CBF condition
defined in Theorem 2.3, we now focus on the scenario where
there is uncertainty in the CBF condition (3), either due to
partially known/uncertain dynamics or due to the operating
environment. We define a robust CBF condition as follows.

Theorem 2.4: The dynamical system (1) can be rendered
safe with safe set S if, for all dt ∈ D, there exists control
input ut ∈ U and a constant η ∈ (0, 1] such that

L(xt, ut, dt) := −h(xt, ut, dt)− ηh̄(xt) ≤ 0, (4)

where h(xt, ut, dt) := h̄(xt+1))− h̄(xt).
Remark 2.5: The CBF condition in Theorem 2.3 can

be appropriately defined to capture commonly encountered
uncertainties in system dynamics and operation as follows:
• Example E1 - Uncertainty in System Dynamics or Environ-

ment: Consider the case where part of the system dynamics
is unknown, that is, dt ∈ D is the unknown part of the
dynamics in (1). A candidate CBF for such a case is an
affine CBF h̄(x) := pTx + q, where p ∈ Rn and q ∈ R.
Then, the CBF condition in (4) for this case can be written
as L(xt, ut, dt) = −[pT (f(xt)+ g(xt)ut+dt)+ q]+ (1−
η)(pTxt+q) ≤ 0. An identical CBF condition holds when
dt represents an additive exogenous disturbance arising
from the interaction of the system with the environment.

• Example E2 - Obstacle Avoidance: Consider a navigation
problem with obstacle avoidance constraints, where the
objective is to maintain a safe distance between an agent
(such as a mobile robot or aerial vehicle) and an obstacle
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with position xobst ∈ Rn at time t. Let the obstacle position
be stationary and uncertain, i.e. xobst = xot+dt and xobst+1 =
xobst , where xot is known and dt is unknown. For this case,
we may define h̄(xt) := ∥xt − xobst ∥22 − rs, where rs is
a user-defined safety margin. Then, the CBF condition in
(4) can be written as L(xt, ut, dt) = −[∥f(xt)+g(xt)ut−
xot − dt∥22 − rs] + (1− η)∥xt − xot − dt∥22 − rs ≤ 0.

C. Control Design Problem

With this uncertain CBF formulation, the goal is to design
control inputs ut that render the system (1) safe ∀d ∈ D. To
obtain such control inputs at each time step t, we formulate
a robust control design problem with constraints given by
condition (4) in Theorem 2.4. Consider the robust control
design problem (RCP t) at time step t expressed as

RCP t :
min
ut

C(ut)

s.t. L(xt, ut, dt) ≤ 0, ∀dt ∈ D,ul ≤ ut ≤ uh,
(5)

where C(ut) is the cost function.
There are several difficulties involved in solving the prob-

lem RCP t. First, RCP t involves a possibly infinite number
of constraints. Even if the problem is assumed to be convex,
this class of problems is, in general, NP-hard [23], [24],
[27]. One common approach is to consider the a ‘worst-
case’ solution to the RCP, where the CBF constraint in (5)
is replaced by L(xt, ut, d

∗
t ) ≤ 0, where d∗t = max{d : d ∈

D}. However, such a design would be overly conservative
in many applications, and result in decreased performance
metrics such as time-efficiency or control effort. Further, in
many applications, a small tolerance towards risk is generally
acceptable during operation under uncertainty.

We quantify the risk-tolerance in the safe control design
problem in terms of violation probability of the CBF condi-
tion as follows.

Definition 2.6: (Violation Probability) The probability of
violation under control input ut is defined as

V (ut) := Prob{dt ∈ D : L(xt, ut, dt) > 0}. (6)
For a given control input ut, the probability that this input
violates the CBF constraint L(xt, ut, dt) ≤ 0 is given by
V (ut). Assuming a uniform probability density, the violation
probability can be interpreted as a measure of the volume
of ‘unsafe’ uncertainty parameters dt such that the CBF
constraint is violated.

Now, select a tunable user-defined risk bound ϵ ∈ (0, 1)
that quantifies the acceptable violation probability. Note that
ϵ can be selected by the designer based on the application.
Then, we define an ϵ-level solution as follows:

Definition 2.7: (ϵ-level solution) We say that ut ∈ U is
an ϵ-level solution, if V (ut) ≤ ϵ, ϵ ∈ (0, 1).

With these definitions, we now reformulate the RCP into
a chance constrained problem (CCP t(ϵ)) as follows:

CCP t(ϵ) :

min
ut

C(ut)

s.t. Prob{dt ∈ D : L(xt, ut, dt) ≤ 0} > 1− ϵ,

ul ≤ ut ≤ uh

Definition 2.8: (ϵ-safety) The dynamical system (1) is
said to be ϵ-safe if for all dt ∈ D, there exists a control
input ut ∈ U solving the problem CCP t

ϵ .
We call the problem of designing a control input ut that

solves this chance-constrained problem as the “risk-tunable
”control design problem, and formally state it as follows.

Risk-Tunable Control Design Problem Pr : Given a
user-defined risk tolerance bound ϵ, find control input ut
solving CCP t(ϵ) such that the dynamical system (1) is
rendered ϵ-safe at every time t.

III. RISK-TUNABLE CONTROL DESIGN

In this section, we develop an approach to solve the risk-
tunable control design problem Pr. We begin by making the
following assumptions regarding the convexity of the chance-
constrained problem CCP t

ϵ .
Assumption 3.1: (i) We suppose that the objective func-

tion C(ut) is a convex function in the control input ut.
(ii) Let ut ⊂ U be a convex and closed set, and let D ⊂ Rn.

We assume that L(xt, ut, dt) : U × D → (−∞,∞] is
continuous and convex in U , for any dt ∈ D.

Remark 3.2: Note that an exact numerical solution of
CCP t(ϵ) is intractable, see [28], [29]. Moreover, CCP t(ϵ)
is in general non-convex, even when Assumption 3.1 holds.

There are several ways to solve such chance-constrained
problems, including approximating the uncertainty by a
known process (e.g., Gaussian process) [13], [14], devel-
oping convex relaxations or approximations [19], [30], and
sampling-based approaches [10], [11]. In this work, we
develop a sampling-based design based on the scenario
approach [11]. The key idea is that if a sufficient number
of samples of the uncertainty dt ∈ D can be extracted, then
we can obtain a controller that renders the system safe for
most uncertainties up to a risk tolerance threshold.

Definition 3.3: (Scenario Design) Assume that N inde-
pendent identically distributed samples d1t , ..., d

N
t are drawn

according to probability Prob. A scenario design problem is
given by the convex optimization problem:

RCP t
N :

min
ut

C(ut)

s.t. L(xt, ut, d
i
t) ≤ 0, i ∈ {1, ..., N}, ul ≤ ut ≤ uh.

(7)

Note that the convexity of the problem assumed in As-
sumption 3.1 serves the purpose of enabling the relaxation
of CCP t

ϵ to a finite number of constraints and allows for
a generalization of the solution to the CCP t

ϵ based on the
solution of the simpler RCP t

N .
Proposition 3.4: For the affine CBF defined in Example

E1 in Remark 2.5, RCP t
N is convex.

Remark 3.5: While we present our results for CBF con-
straints of the form (4) for simplicity of exposition, the
following results are generally applicable to other forms
of CBF constraints such as exponential CBFs [2], provided
that they satisfy Assumption 3.1. Note that Assumption 3.1
does not hold for Example E2 in Remark 2.5 (the CBF
constraint, in that case, can in fact be shown to be concave;
see Appendix). However, it is possible to pose obstacle
avoidance problems in a convex setting in certain cases using
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an exponential CBF formulation (one such case is presented
in our case study in Section IV to illustrate the broader
applicability of the results in this section.)

We now have the following result.
Theorem 3.6: For any risk bound ϵ ∈ (0, 1) and confi-

dence parameter β ∈ (0, 1), if

N ≥ 2

ϵ
ln

1

β
+ 2m+

2m

ϵ
ln

1

β
, (8)

then, we have that the RCP t
N is either infeasible, or if

feasible, then ProbN{V (u∗t ) < ϵ} ≥ (1 − β), that is, its
solution u∗t renders the system (1) ϵ-safe as in Definition 2.8
with probability greater than or equal to 1− β.

Theorem 3.6 provides a bound on the number of samples
of the uncertainty that are required to guarantee that the
control input designed by solving RCP t

N can render the
system ϵ-safe. The confidence parameter β in (8) is the
probability ProbN (= Prob × ... × Prob), (N times), of
extracting samples of the uncertainty {d1t , ..., dNt } for which
the control input u∗t does not render the system (1) safe.

We now address the question of when the scenario design
problem RCP t

N for for risk-tunable control design is guar-
anteed to have a solution. We show that, under an additional
assumption, RCP t

N can be shown to always be feasible.
Assumption 3.7: For all dt ∈ D, there exists ut ∈ U such

that h̄ ∈ [m,M ], m,M ∈ R, ∀x ∈ X , with M > m ≥ 0.
With this assumption, we have the following result regard-

ing the solution of RCP t
N , and therefore, the safe control

design problem CCP t(ϵ).
Theorem 3.8: Let Assumptions 3.1 and 3.7 hold. Then,

for any risk bound ϵ ∈ (0, 1) and confidence parameter
β ∈ (0, 1), if N ≥ 2

ϵ ln
1
β + 2m + 2m

ϵ ln 1
β , the scenario

problem RCP t
N is always solvable for any N samples of

the uncertainty {d1t , . . . , dNt }, the solution u∗t is unique, and
renders the system (1) ϵ-safe in the sense of Definition 2.8.

Theorems 3.6 and 3.8 provide a trade-off between the
sample complexity and the achievable risk bound in the safe
control design problem, representing an additional handle
that can be tuned by designers based on application-specific
considerations. Generally, achieving a tighter risk bound will
require more samples of the uncertainty.

IV. CASE STUDY

We consider a quadcopter navigation problem with an
obstacle whose position is uncertain to illustrate our risk-
tunable design. As described in Remark 3.5, the CBF con-
straints for such obstacle avoidance problems are in general
non-convex. However, in some cases, it is possible to develop
convex safety conditions. We illustrate one such case here,
where the nature of the dynamics arising from the system
physics can be exploited to construct convex CBF conditions
for the obstacle avoidance problem that are affine in the
control input.

We begin with a dynamical model of the quadcopter
derived in [31] and summarized here. Let the 3-dimensional
position coordinates of the quadcopter along the x-,y-, and
z-axis with respect to its body frame Fb of and the world

frame of reference Fw be given by xb := (xb, yb, zb)
and r := (rx, ry, rz) respectively. The rotation matrix for
coordinate transformation from the the body frame Fb to the
world frame Fw is defined by (9), where ϕ, θ, and ψ denote
the Z-X-Y Euler angles corresponding to the roll, pitch, and
yaw of the quadcopter. Therefore, r = Rwbxb. Then, the
quadrotor dynamics is given by

ẋ = Ax+Bu, x =

[
ṙ
r̈

]
, A =

[
03×3 I
03×3 03×3

]
, B =

[
03×3

13×3

]
, (10)

where the control input u comprises of the desired accel-
eration of the quadcopter. The dynamics of the controller
under small angle assumptions on the Euler angles (that is,
sin ê ≈ ê, cos ê ≈ 1, ê ∈ {ϕ, θ, ψ}) evolves as [32]:

u =

r̈des1

r̈des2

r̈des3

 =

g(θdes cosψdes + ϕdes sinψdes),
g(θdes sinψdes − ϕdes cosψdes)∑4

i=1 Fdes
i

m
− g

 , (11)

where m is the mass of the quadcopter, g is the acceleration
due to gravity, and r̈desi , i ∈ {x, y, z} is the desired accelera-
tion component of the quadcopter in the x-,y-, and z-direction
respectively, computed using the desired specifications on the
Euler angles ϕdes, θdes, and ψdes, and F des

i , i ∈ {1, 2, 3, 4}
is the desired thrust on the i-th rotor of the quadcopter. The
quadcopter dynamical parameters are set up based on [33].

The objective of the control design is to enable
the quadcopter to reach a target position rgoal,
while avoiding an obstacle with position robs =[
robsx + d robsy + d robsz + d

]T
, where d ∈ D ⊂ R is

the uncertainty in the obstacle position. For this setting, we
choose a safe set S = {r : h̄(r) ≥ 0}, where

h̄(r) = (rex/a)
4
+ (rey/b)

4
+ (rez/c)

4 − rs, (12)

is the CBF for system (10), where rex = rx−robsx−d, rey =
ry − robsy − d, rez = rz − robsz − d, with a, b, c ∈ R+

can be chosen to represent the shape parameters of a super-
ellipsoidal obstacle, and rs is the safe distance from the
obstacle to be maintained by the controller.

Now, from (10) and (12), notice that ˙̄h will not depend
on the control input u, implying that the CBF constraint will
be independent of the design variable (the control input). A
standard approach to develop a CBF-based safety condition
for such a system involves constructing an Exponential
Control Barrier Function (ECBF) condition [1] of the form

¨̄h+K · [h̄ ˙̄h]T ≥ 0, (13)

where K = [K1 K2],K1,K2 ∈ R, is a design parameter
that can be chosen based on the application. Now, we can
rewrite (13) as a convex constraint in u as follows.

Proposition 4.1: The barrier condition in (13) for the
quadrotor can be setup as the affine inequality L(x, u, d) :=
−Pu − Q ≤ 0 with P=

[
4r3ex
a4

4r3ey
b4

4r3ez
c4

]
, and Q =

K2P ṙ − K1h̄(r) + ṙT


12r2ex
a4 0 0

0
12r2ey
b4 0

0 0
12r2ez
c4

 ṙ, The con-

straint L(x, u, d) ≤ 0 is convex in the control input u.
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Rwb :=

cosψ cos θ − sinϕ sinψ sin θ − cosϕ sinψ cosψ sin θ + cos θ sinϕ sinψ
cos θ sinψ + cosψ sinϕ sin θ cosϕ cosψ sinψ sin θ − cosψ cos θ sinϕ

− cosϕ sin θ sinϕ cosϕ cos θ

 (9)

The formulation in Proposition 4.1 can be implemented in
discrete-time by solving the following at each time step t:

(RCP t
N )q :

min
ut

(r − rgoal)
TF (r − rgoal) + uTGu

s.t. L(xt, ut, d
i
t) ≤ 0, ∀i ∈ {1, ..., N},

ul ≤ ut ≤ uh,

(14)

where F,G ∈ R3 are positive semi-definite weighting matri-
ces. Note that (RCP t

N )q satisfies Assumption 3.7. Therefore,
we extract samples {dti} of the uncertain obstacle position
at time t according to Theorem 3.8. For our case study,
the additional parameters pertaining to (RCP t

N )q are: dt ∈
[−0.1, 0.1], rgoal = (7.9, 8.1), robs = (7.5, 7.5), rs = 0.4,
(K1,K2) = (6, 8), (a, b) = 0.4, β = 0.01. The discretization
time is chosen to be 0.1 sec. Note that we only control the
quadcopter along the x- y axis, i.e. m = 2 in Theorem 3.8.

With these parameters, we study the impact of the tunable
risk tolerance ϵ on the performance of the control design. As
the risk tolerance is increased (Fig. 1), the quadcopter takes a
more direct path towards the goal, with some instances where
it crosses into the safety margin rs around the obstacle. With
a lower risk tolerance (ϵ = 0.001 in Fig. 1), the quadcopter
takes a much longer duration to reach the goal, following
a more circuitous path around the obstacle. Thus, Fig. 1
illustrates how the risk in the design can be traded off for
the time performance of the system. Fig. 1 also illustrates
the probabilistic nature of the safety guarantees and the role
of the uncertainty in the obstacle position in this design,
with the same risk bound ϵ = 0.01 resulting in two different
trajectories with varying levels of safety violations.

We now examine how the sample complexity of our
design based on Theorem 3.6 varies with the risk tolerance
bound. Table I lists the number of samples of the uncertainty
chosen for each of the risk tolerance bounds ϵ illustrated in
Fig. 1. It is observed that the sample complexity increases
exponentially as the the risk tolerance bound is decreased.
For this case study, we find that the risk tolerance bound ϵ =
0.05 provides represents an ideal design choice, bounding the
risk of safety violations to under 5%, while maintaining a
reasonable trajectory to reach the goal.

TABLE I: SAMPLE COMPLEXITY VS RISK TOLERANCE WITH β = 0.01

Risk bound ϵ Number of samples N
0.1 216
0.05 484
0.01 3045
0.001 39618

V. CONCLUSION

We develop a safe control design approach where the
probability of violation of a CBF-based safety constraint is
bounded by a tunable user-defined risk, and demonstrated
the design through simulations on a quadcopter navigation
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Fig. 1. Impact of risk tolerance bound on controller safety and performance.

problem with obstacle avoidance constraints. Future direc-
tions include extensions to non-convex safety constraints and
learning-based control designs.

VI. APPENDIX

1) Proofs of Theorems 2.3 and 2.4: These results arise
directly from the standard definitions of CBFs [2], [26].

2) Proof of Proposition 3.4 and non-convexity of the CBF
condition in Example E2 in Remark 2.5: These proofs
follow directly from the definition of convexity.

3) Proof of Theorem 3.6: The proof is along the lines of [11].
We omit the dependence of all variables on time t for
simplicity. Define Xi:={u ∈ U : L(x, u, di) ≤ 0}. From
Assumption 3.1, {Xi}, ∀i ∈ [1, N + 2m] are the convex
sets defined by the 2m actuator constraints u ∈ U =
[ul, uh] and the N CBF constraints in RCP t

N . Define
convex optimization problems P and Pk, k∈[1, N+2m],
obtained by removing the kth constraint as:

P : min
ut

C(ut), s.t. ut∈
⋂

i={1,...,N+2m}
Xi,

Pk : min
ut

C(ut), s.t. ut ∈
⋂

i={1,...,N+2m}\k
Xi

Suppose RCP t
N is feasible, and u∗t is the optimal solution

to P , and u∗k is the optimal solution to Pk. Then, the kth

constraint is a support constraint if C(u∗k)<C(u
∗). The

number of support constraints for problem P is at most m
[11, Theorem 3]. Given N scenarios {d1, ..., dN}, select
a subset I = {i1, ..., im} of m indices from 1, ..., N+2m
and let û∗I be the optimal solution of RCP t

I defined as

RCP t
I :

min
ut

C(ut)

s.t. L(x, u, di) ≤ 0, ∀i ∈ {1, ...,m},
ul ≤ u ≤ uh.

(15)

Let ∆N :={di}i=1,...,N be the set of all possible
N samples drawn from set D. Define ∆N

I ⊂∆N as
∆N

I ={d1, ..., dN :û∗I=û
∗
N} where û∗N is the optimal

solution with all N constraints corresponding to
{d1, ..., dN}. Let I be a collection of all possible choices
of m indices from 1, ..., N + 2m, then I contains(
N +m
m

)
sets and ∆N=

⋃
I∈I ∆N

I . Now suppose,

B:={d1, ..., dN : V (û∗N )>ϵ} and BI :={d1, ..., dN :
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V (û∗I)>ϵ}. Then, B =
⋃

I∈I(BI

⋂
∆N

I ). A bound
for ProbN (B) is now obtained by bounding
Prob(BI

⋂
∆N

I ) and then summing over I∈I. Following
a similar argument as in the proof in [11, Appendix
B], we have ProbN (B)≤

∑
I∈I Prob

N (BI

⋂
∆N

I )
which can further be bounded as∑

I∈I Prob
N (BI

⋂
∆N

I )<

(
N +m
m

)
(1−ϵ)N+m, since

I has
(
N +m
m

)
sets. Then, following the algebraic

manipulations in [11, Appendix B], from (8), we have(
N +m
m

)
(1 − ϵ)N+m ≤ β, that is, ProbN (B) < β.

Now, if RCP t
N is only feasible on a subset Fs⊂∆N , the

same arguments hold to prove that ProbN (B)<β. holds
in the set Fs, with B:={(d1, ..., dN )∈Fs : V (û∗N ) > ϵ}.

4) Proof of Theorem 3.8: Since h ∈ [m,M ], ∀u ∈ [ul, uh],
we have −L(xt, ut, dt) ≥ m− (1− η)M, ∀d ∈ D,∀t ∈
R+. Then, we can always select η, such that 1 ≥ η ≥
1− m

M to ensure L(xt, ut, dt) ≤ 0.
5) Proof of Proposition 4.1: The proof follows from differ-

entiating (12), substituting in (13), collecting the terms
with the control input u, and invoking Proposition (3.4).
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