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Abstract— We propose a new geometric-optimization frame-
work for maximum likelihood estimation of moving-average
models. Instead of optimizing directly over the moving average
parameters, we formulate the estimation problem over the
reflection coefficients and show how to perform gradient descent
over a reflection-coefficient manifold. This choice leads to sim-
pler expressions in the objective function and in the constraints,
which can yield more convenient expressions for theoretical
analysis. Finally, we numerically implement and compare the
proposed estimation schemes in the reflection coefficients to
those based on moving-average parmeterizations. We show that
our novel formulation works in practice and yields equivalent
solutions to currently employed formulations.

I. INTRODUCTION

Noise signals encountered in practice are often correlated
across time in a manner that is well described by moving-
average (hereafter MA(q)) models,

xt = b0wt + b1wt−1 + . . .+ bqwt−q, (1)

where wt is a scalar zero mean Gaussian white-noise signal,
and q is the order of the moving average model. Unfor-
tunately this simplicity in form is not met with straight-
forward parameter identification, as a direct maximum-
likelihood (ML) formulation yields a nonconvex optimization
problem. There are other choices of objective, such as
spectral fitting [1], but our we focus on likelihood-based
formulations due to their broader compatibility with model-
selection principles. Parameter estimation typically proceeds
by sweeping over possible orders q and then selecting a
model by examining the corresponding likelihoods [2].

Directly attacking this problem by writing a likelihood
over the model coefficients β = [b0, . . . , bq] and observed
data sequence, ξ = [x0, . . . , xT−1] leads to a noncon-
vex optimization problem, with both a nonconvex objective
function and a nonconvex feasible set. We refer to this
problem as the maximum likelihood moving average (ML-
MA) problem. State-of-the-art techniques for tackling the
ML-MA problem [3] typically embed the MA model (1)
into a state-space model to gain access to the Kalman Filter
recursions, but these reparameterizations do not address the
nonconvexity inherent to the original formulation; rather,
they only speed up the gradient descent search step. Over
the past two decades, there has been increasing interest in
reparameterizations of this problem by its autocovariances
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γ ∈ Rq , defined as:

γi :=

q−i∑
j=0

bjbj+i, i = 0, . . . , q. (2)

The set of autocovariances compatible with the above
definition is semidefinite-representable, and hence convex.
Furthermore, under suitable assumptions, the autocovari-
ances {γi} can be mapped back to the moving average
parameters β [4], [5]. Several closely related problems, such
as structured covariance estimation [6], have revealed that a
likelihood objective function over the autocovariances γ is
locally convex [7] in a region containing the global maximum
with high probability, under suitable technical conditions.
However, reconciling these technical conditions together into
formulations amenable for analysis is challenging and unre-
solved; even studying the stationary points of the objective
function is formidable [8].

We consider an adjacent problem to the autocovariance
estimation and reparameterize the ML covariance estimation
problem into one over its reflection coefficients, which are
bijectively related to the autocovariances. This formulation
leads to a novel manifold optimization problem, and, in
many ways, grants simpler expressions to both the objective
function and the constraints.

A. Main Results

1) We find new formulations for the ML-MA problem.
These formulations are geometric, operating directly
on the reflection coefficients, so we also connect MA
and structured covariance estimation to reflection co-
efficient estimation.

2) We show how to formulate ML-MA and ML structured
covariance problems so that they identify equivalent
models, and implement all schemes in a directly com-
parable way. Further, we demonstrate these equiva-
lences numerically to illustrate that practical optimiza-
tion can be carried out using the geometric formulation
we propose.

B. Organization

We begin by expressing ML-MA estimation as an opti-
mization problem, which makes its connection to structured
covariance estimation clear; this is the main subject of
Section II. We show that structured covariance estimation is
a relaxation to MA(q) estimation, and while we can make the
problems completely equivalent with additional constraints,
we leave this for Section IV. Enforcing strict equivalence
too early complicates the analysis of Section III, where the
bulk of the main analytic results are. In Section III, we
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show how to pose the relaxed MA(q) problem as a manifold
optimization problem, as well as derive a retraction, allowing
for numerical optimization. In Section IV, we show how
to use results from spectral factorization theory to constrain
both the structured covariance and geometric formulations to
account for their relaxation of the ML-MA problem. Finally,
we demonstrate some numerical experiments in Section V,
and end with conclusions in Section VI.

II. MOVING AVERAGE ESTIMATION

To motivate reparameterizing the ML-MA problem into a
structured covariance estimation problem, we first analyze
the feasible set of covariance matrices that arise from MA
models, clarifying the connection of autocovariance param-
eterizations to the standard system identification formula-
tion. This formulation is identical to the exact-likelihood
formulation of [9]. Let w := [w0, . . . , wt+q] denote a
(latent) zero mean Gaussian white-noise sequence and ξ :=[
x0 . . . xT−1

]
denote the observed data sequence. Given

a dataset ξ we begin by forming a likelihood optimiza-
tion problem over the model parameters β. Since Gaussian
random variables are fully specified by their mean and
covariance, we first consider the feasible set.

Lemma 1 (MA ⇒ Toeplitz Covariance): The observed
data ξ is distributed as a multivariate Gaussian random
variable with a Toeplitz covariance matrix of bandwidth q.
A suitable symmetric matrix basis for the covariance matrix
of ξ is:

Ck =


0 · · · 1
...

. . .
1 1

. . .
...

1 · · · 0

 , [Ck]ij =

{
1 |j − i| = k

0 otherwise
,

where every Ck ∈ RT×T .
Proof: Since, x0

...
xT−1

 =

bq · · · b0
. . . . . .

bq · · · b0


︸ ︷︷ ︸

B

 w−q
...

wT−1



we have that ξ is a zero-mean multivariate Gaussian and:

[cov(ξ)]i,j = [Bcov(w)BT]i,j =

q−|j−i|∑
k=0

bkbk+|j−i| = γ|j−i|

which describes a Toeplitz matrix. The symmetric matrix
basis we have chosen accommodates individual contributions
of the autocovariances γk, as in (2), to the bands of the
covariance matrix.
We note that expressing the autocovariances γ in terms of
the MA parameters β readily yields the ML-MA problem de-
scribed in the introduction. The ML-MA estimation problem

is given as,

minimize
β

1
2 log det(Σ(β)) +

1
2 tr
(
ξξ∗Σ(β)−1

)
subject to: Σ(β) =

q∑
i=0

q−i∑
j=0

bjbj+iCi

b0z
0 + . . .+ bqz

q ̸= 0 for all |z| > 1

(3)

where the objective function is the likelihood function of
a Gaussian random variable with covariance Σ(β) given
observation ξ (up to an additive constant). The last constraint
is often referred to as an invertibility or stability requirement,
and leads to an identifiable model [9]. It requires that all
roots of the polynomial in z be smaller than 1 in magnitude,
and resolves the identifiability issue that different values
of MA-parameters β can have the same autocovariances
γ, and are therefore equally valid solutions [10]. The ML-
MA estimation problem (3) is a common starting point for
moving average estimation in time-series analysis/system
identification [9], [10].

The objective function of (3) is often rewritten in terms
of an LDL∗ factorization of Σ(β), or in terms of Kalman
Filter recursions [9], with the constraint that β defines a
stable polynomial implicitly enforced [9]. This constraint
complicates analysis because the set of stable polynomials
coefficients is nonconvex, and hence one might instead
consider directly estimating the autocovariances γ.

This direct formulation over autocovariances γ is based
on semidefinite programming, and leads to the following
structured covariance estimation problem, which we show
to be a relaxation of the ML-MA problem (3). While the
problem is still nonconvex, the nonconvexity is now only
present in the objective function, as the feasible set is
semidefinite representable. For two symmetric matrices A,B
of compatible size, we write A ≻ B to denote that A − B
is positive definite.

Lemma 2 (Structured Covariance Estimation): The ML
structured covariance estimation problem,

minimize
γ

1
2 log det(Σ(γ)) +

1
2 tr
(
ξξ∗Σ(γ)−1

)
subject to: Σ(γ) = γ0C0 + . . .+ γqCq ≻ 0

(4)

is a relaxation to the ML-MA problem (3).
Proof: We construct an explicit example of a positive

definite Toeplitz covariance matrix with no associated MA
parameters. Assume for a contradiction that there exists b0, b1
such that:

Σ2 =

[
4 3
3 4

]
=

[
b1 b0

b1 b0

] [
b1 b0

b1 b0

]∗
Σ2’s eigenvalues are {1, 7}, so it is feasible. By construction
of the autocovariances, we must also have that:

Σ3 =

4 3 0
3 4 3
0 3 4

=
b1 b0

b1 b0
b1 b0

b1 b0
b1 b0

b1 b0

∗

The right hand side of this equation implies that
Σ3 is positive definite. However, Σ3’s eigenvalues are
{−0.24, 4, 8.24}, which contradicts its positive-definiteness
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requirement. It follows that no b0 or b1 can exist satis-
fying our original specification. Our example for the two-
observation case can be modified as needed for more obser-
vations.

Succinctly put, the structured covariance estimation prob-
lem (4) is a relaxed MA(q) problem because we do not
enforce the existence of moving average parameters, that is:

∃β : Σ(γ) = Σ(β), b0z
0 + . . .+ bqz

q ̸= 0 for all |z| > 1

The relaxed problem (4) will be our starting point for our
analysis and estimation because it is simpler. We defer further
constraining the covariance matrix to enforce equivalence
with the original MA(q) setting, as described in [5] or [11],
for later.

III. A GEOMETRIC FORMULATION FOR STRUCTURED
COVARIANCE ESTIMATION

This section defines and analyzes a manifold optimization-
based approach to structured covariance estimation. We
provide a short roadmap for this section in which we
introduce and leverage tools from the manifold optimization
literature [12]. To pose the structured covariance estimation
problem (4), we first need to show that the feasible set
of problem (4) is a manifold: we do so by establishing a
diffeomorphism between the feasible set and a Euclidean
space using the Levinson-Trench algorithm. Once we have
a manifold, we need a way to move around on it, say for
implementing gradient descent. A simple tool for accom-
plishing this is a retraction map, which in our case, can be
implemented via projection.

A. Levinson-Trench Algorithm

The celebrated Levinson-Trench algorithm [13], [14] di-
rectly computes the Cholesky factors for the inverse of a
Toeplitz matrix, and we provide a very explicit construction
of this function because we rely on its properties to define a
manifold. Consider a positive definite Toeplitz matrix, ΣT ,
and its associated inverse, P = Σ−1T .

ΣT = γ0C0 + . . .+ γT−1CT−1

Let P = UU∗ be the upper-triangular Cholesky decomposi-
tion of P :

U=


u00 u01 · · · u0,T−1

u11 · · · u1,T−1
. . .

...
uT−1,T−1

 , υ̃i=

u0i

...
uii

 , υ̃0=
[
u00

]
,

where υ̃i is the non-zero part of of column i, and υi is
the corresponding full column of U with the appropriate
number of zeros. The coefficient u0 also obeys the special
relationship u0 = γ

− 1
2

0 , and we will call it a seed-value
because it is used to start the Levinson recursions, which
encodes the relationship between successive columns of U .

The Levinson recursions are:

υ̃i+1 =

1√
1− ρ2i


0 0 0
1

. . .
1

υ̃i − ρi√
1− ρ2i


1

...
1
0 0 0

υ̃i. (5)

The quantities, ρi are known as the reflection coefficients,
belong to the open interval (−1, 1) [13], and are given by
the Trench equation:

ρi = ⟨[γ1, . . . , γi+1], υ̃i⟩u1/2
ii , i ∈ {1, . . . , T}. (6)

Our goal is to define a map from a seed value u0 and the
reflection coefficients ρi to the autocovariances γ. Further,
we define the set of autocovariances ΓT and seed value and
reflection coefficients ϱi as:

ΓT :=
{
γ ∈ RT :

T−1∑
i=0

γiCi ≻ 0
}
, ϱT := R>0×(−1, 1)T−1.

We now define the function fΓT←ϱT
: ϱT → ΓT that

takes as inputs a seed value u0, and reflection coefficients
(ρ1, . . . , ρT−1) and outputs autocovariances γ, as follows:

1) Compute the Levinson parameters υ̃i (and zero-padded
υi) using the Levinson recursions (5).

2) Form U = [υ0, . . . , υT−1].
3) Form Σ−1T := UU∗, take the inverse of the result

to obtain a positive definite Toeplitz matrix ΣT , and
return the first column of the resulting matrix.

Similarly, we define the function fϱT←ΓT
: ΓT → ϱT , which

takes as input autocovariances γ and outputs a seed value u0

and reflection coefficients (ρ1, . . . , ρT−1), as follows:
1) Compute ΣT =

∑T−1
i=0 γiCi.

2) Form the Cholesky decomposition, LL∗ = ΣT , and
compute the inverse, U = L−∗

3) Using the columns of U , compute the reflection coef-
ficients ρi using the Trench equations (6). Also return
υ̃0 as the seed value.

In the sequel, we overload the terminology reflection coef-
ficients to denote the vector containing both the seed value
u0 and the reflection coefficients ρi.

Theorem 1 (Reflection Coefficient Bijections): There is a
bijection between the positive definite Toeplitz matrices
described by γ and the reflection coefficients (γ0, ρ) :=
(γ0, ρ1, . . . , ρT ) if every |ρi| < 1.

Proof: First, we show that fϱT←ΓT
◦ fΓT←ϱT

(ρ) = ρ.
The uniqueness of U in the Cholesky factorization guarantees
that when we first obtain the upper triangular matrix in
fΓT←ϱT

in step 2 of fΓT←ϱT
, which we call U1, and when

we later obtain an upper triangular matrix in fϱT←ΓT
in

step 2 of fϱT←ΓT
(γ), which we call U2, we must obtain

the same matrix U1 = U2. It follows that the original
reflection coefficients will come out of the Trench equations
so that fϱT←ΓT

◦ fΓT←ϱT
(ρ) = ρ. The other direction is the

same, where we rely on the uniqueness of U to show that
fΓT←ϱT

◦ fϱT←ΓT
(γ) = γ.
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Most surprisingly, this parameterization converts the
semidefinite constraints to interval constraints,

γ0C0 + . . .+ γT−1CT ≻ 0 ⇔ −1 < ρi < 1

which are considerably simpler. Further, if we ever obtain
reflection coefficients ρ from fϱT←ΓT

(γ) that lie outside of
the interval (−1, 1), then the associated autocovariances do
not parameterize a positive definite Toeplitz matrix. There
are additional requirements on the reflection coefficients ρ,
as they should describe finite bandwidth Toeplitz matrices.
To enforce this constraint, we employ tools from manifold
optimization theory.

B. Reflection Coefficients Manifold

We work with the following definition of an embedded
submanifold of a Euclidean space.

Definition 1 (Thm. 3.12, [12]): Let E be a linear space
of dimension T . A subset M is an embedded submanifold
of E of dimension d if for all x ∈ M, there exists an
open neighborhood U of x, an open set V ⊆ RT , and a
diffeomorphism F : U → V such that F (M∩ U) = V ∩ L,
where L is the subspace {y ∈ RT : yd = . . . = yT−1 = 0}.

We now show that the reflection coefficients that describe
a finite bandwidth Toeplitz matrix describe an embedded
submanifold. We have slightly adapted the definition for our
situation, as the first element in the vector γ has index 0.
Leveraging the bijections developed in the previous section
fϱT←ΓT

and fΓT←ϱT
to construct the diffeomorphism F , let

Γq :=
{
γ ∈ RT :

T−1∑
i=0

γiCi ≻ 0, γq+1 = . . . = γT−1 = 0
}

denote the feasible set of the structured covariance estimation
problem (4), i.e., the set of Toeplitz covariance matrices
of bandwidth q. There are two equivalent definitions for
the feasible set of reflection coefficients. Observe that we
may use our diffeomorphism as part of a defining function
description,

h(ρ) =

 [fΓT←ϱT
(ρ)]q+1

...
[fΓT←ϱT

(ρ)]T−1

 = 0,

with Mϱ = {ρ ∈ RT : h(ρ) = 0} which is the typical
way to define a manifold. The brackets are used to index
specific outputs of fΓT←ϱT

. We may also define Mϱ as the
image of Γq under fϱT←ΓT

; the second definition is useful
for establishing that Mϱ is a manifold.

Theorem 2: Let Mϱ = fϱT←ΓT
{Γq} be the image of the

set Γq of finite bandwidth positive definite Toeplitz matrices
under fϱT←ΓT

, that is:

Mϱ :=
{
(t, ρ) ∈ RT

∣∣∣∃γ ∈ Γq : (t, ρ) = fϱT←ΓT
(γ)
}
.

Then Mϱ is an embedded submanifold of dimension q.
Proof: Our definition of fΓT←ϱT

(·) constitutes a diffeo-
morphism between the set of reflection coefficients and the
autocovariances because it is bijective and can be constructed

by sums, products, and compositions of smooth functions.
Next, let E = RT , and consider a point x ∈ Mϱ with
corresponding open neighborhood U . Let V = fΓT←ϱT

{U}
be the image of U under fΓ←ϱ. By definition of Mϱ, we
have that fΓT←ϱT

{Mϱ ∩ U} = V ∩ L, where L = {y ∈
RT : yd = . . . = yT−1 = 0} is a subspace of E .
We conclude this section by stating the manifold optimiza-
tion formulation for structured covariance estimation.

Corollary 1 (Geometric Covariance Estimation): The
structured covariance estimation problem (4) is equivalent
to:

minimize
ρ, γ0

T log(γ0)−
T−1∑
k=1

(T − k) log(1− ρ2i )

+

T−1∑
k=0

⟨υk, ξ⟩2

subject to: (t0, ρ) ∈Mϱ

υ̃k+1 = lev(ρk, υ̃k), υ̃0 = γ
−1/2
0 .

(7)

Here, we use lev(ρk, υ̃k) as shorthand for the right-hand side
of the recursion (5).

Manipulating the optimization problem (4) to obtain prob-
lem (7) is mechanical but otherwise straightforward, and
hence we defer the details to the Appendix. The objec-
tive function is now in a canonical form for the curved
exponential family [15], which suggests that tasks such as
certifying global optimality or finding sufficient statistics
can be accomplished geometrically. However, we remark
that this manifold formulation cannot resolve issues with
spurious minima on its own because the stationary points of
the nonconvex problem over Γq map to one another [16]—
we return to this point later when discussing future work.
For now, we return to finding a mechanism enabling us to
move within the manifold to enable gradient descent. This
is accomplished through the use of a suitably constructed
retraction.

C. Retractions onto Reflection Coefficient Manifolds

To enable gradient steps on the reflection coefficient
manifold, we define a retraction that associates curves on
Mρ to lines on its tangent bundle. This simplifies function
evaluation and differentiation, as developed in [12]. We begin
with necessary definitions.

Definition 2 (Tangent Spaces and Bundles): LetM be an
embedded submanifold, and x ∈ M. The tangent space at
x, TxM, is the subspace, ker{Dh(x)}, where Dh(x) is the
Jacobian of the defining function h at x. The collection of
tangent spaces,

{
(x, v) : x ∈M, v ∈ ker{Dh(x)}

}
is called

the tangent bundle, which we denote by TM.
Definition 3: Let R : TM→M be a differentiable map.

R is said to be a local retraction if given (x, v) ∈ TM for
v sufficiently small, we have:

R(x, 0) = x, DR(x, 0) · v = v

In the interest of clarity, we occasionally use X · v in the
sequel, for X and v matrices of compatible dimension, to
denote matrix multiplication. We equip each tangent space
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Fig. 1. The left subfigure illustrates a tangent space at x, and a retraction
which maps the point v ∈ TxMϱ to a point in Mϱ. If we parameterize a
curve in the tangent space by c(t) = tv, then we obtain the red curve on
Mϱ. The right subfigure illustrates the intuition behind Lemma 3, where
the projection to the set Γq is given by a subspace projection in small
neighborhoods of γ ∈ Γq .

of Mρ with the standard Euclidean Metric, giving us a
Riemannian submanifold of the linear space, RT . This leads
to gradients that align with their usual ones and (eventually)
grants us compatibility with automatic differentiation when
paired with a suitable retraction. We refer the reader to [12]
for additional context and details.

Next we define a local retraction, which we illustrate
in Figure 1 (left). We start with a technical lemma before
providing an explicit construction.

Lemma 3 (Local Γq Projection): There exists open sets
U ∈ RT where:

ProjΓq

(
fΓq←ϱ{U}

)
=

[
Iq

0T−q

]
fΓq←ϱ{U}

where ProjΓq
(·) is Euclidean projection onto a set.

This lemma encodes the idea that for sufficiently small
perturbations to points in Γq , projection to the set Γq can
be accomplished by subspace projection. We illustrate this
in Figure 1 (right); the proof of this lemma can be found in
the Appendix.

Theorem 3 (Retraction to Mρ): Let R : TM → M,
where:

R(x, v) = fϱT←ΓT
◦ ProjΓq

◦ fΓT←ϱT
(x+ v)

R is a valid local retraction onto the manifold Mρ for v
sufficiently small, where the projection is given by Lemma
3.

Proof: We need to check that R satisfies the properties
of a retraction map. The bijectivity of the maps, fϱ←Γ and
fΓ←ϱ implies that R(x, 0) = x. Using the chain rule, we
compute:

DR(x, 0) = DfϱT←ΓT
(ProjΓq

◦ fΓT←ϱT
(x))

·DProjΓq
(fΓT←ϱT

(x))

·DfΓT←ϱT
(x) · v

By construction, (x, v) is in the tangent bundle to Mρ, so
v ∈ ker{Dh(x)}. This implies that DfΓT←ϱT

(x)·v satisfies,[
ṽ
0

]
=

[
[DfΓT←ϱT

(x)]0:,q
[DfΓT←ϱT

(x)]q+1:T

]
v, (8)

where ṽ is the non-zero part of the product DfΓT←ϱT
(x) ·v.

If we restrict ourselves to a set where v is sufficiently small,

then the projection is given by a subspace projection as in
Lemma 3, and hence the projection operator reduces to the
identify function, because:

DProjΓq
(x) =

[
Iq

0T−q

]
=⇒

[
ṽ
0

]
=

[
Iq

0T−q

] [
ṽ
0

]
.

Finally, we have that

Dfϱ←Γ(ProjΓq
◦ fΓ←ϱ(x)) = Dfϱ←Γ(fΓ←ϱ(x))

=
(
DfΓ←ϱ(x)

)−1
.

The last line follows from the inverse function theorem [12],
which we have access to because fϱT←ΓT

is a diffeomor-
phism. This all combined leads to,

DfϱT←ΓT
(ProjΓq

◦ fΓT←ϱT
(x))

[
ṽ
0

]
=
(
DfΓT←ϱT

(x)
)−1

DfΓT←ϱT
(x)v = v

which establishes that R is a retraction.
We conclude our theoretical analysis in the next section by

addressing that our study thus far has been on the relaxation
to the ML-MA problem (3).

IV. SPECTRAL FACTORIZABILITY

We return to the considering the relaxation we employed
before performing our geometric analysis, and show how
to further constrain the relaxed problem (4) to obtain a
form equivalent to the original problem (3). Schemes for
removing the unfactorizable autocovariances introduced by
the structured covariance relaxation (4) are categorized in
[17], which prescribes algorithms for accomplishing spectral
factorization which maps autocovariances to back to MA
coefficients. These algorithms follow from the Riesz-Fejér
theorem, which also establishes that factorization existence
is equivalent to positivity of a particular polynomial in γ.
This can be expressed in a form useful for optimization by
clever use of the positive real lemma [4].

Proposition 1: Define

A =


0 0 · · · 0
1 0 · · · 0
...

. . . . . .
...

0 · · · 1 0

 , B =


1
0
...
0

 ,

C =
[
γq γq−1 · · · γ1

]
, D =

1

2
[γ0].

If there exists P ⪰ 0 satisfying[
P −A∗PA C∗ −A∗PB
C −B∗PA D +D∗ +B∗PB

]
⪰ 0, (9)

then there exists moving-average parameters β satisfying

∃β : Σ(γ) = Σ(β), b0z
0 + . . .+ bqz

q ̸= 0 for all |z| > 1.

Further, all possible moving average sequences can be con-
structed by an appropriate choice of γ.

The following corollary is then immediate by applying
Proposition 1 to the ML-MA problem (3).
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Fig. 2. Likelihood values from 100 time points sampled from MA(3)
process with parameters, β = [4, 3, 2, 1], identified using 4 different
schemes.

Corollary 2: The optimization problem,

minimize
γ, P ⪰ 0

1
2 log det(Σ(γ)) +

1
2 tr
(
ξξ∗Σ(γ)−1

)
subject to: Σ(γ) = γ0C0 + γ1C1 + . . .+ γqCq[

P −A∗PA C∗ −A∗PB
C −B∗PA D +D∗ +B∗PB

]
⪰ 0,

(10)
with matrices A, B, C, and D defined as in Proposition 1
is equivalent to the ML-MA estimation problem 3.

Following (10), if we treat P as a certificate for the fea-
sibility of γ, then [5] has noted that the set of feasible
autocovariances in optimization problem 10 forms a convex
cone, which we call ΓF

q ⊆ Γq . From this point, addressing
factorizability in the geometric setting is straight-forward
using the diffeomorphisms fϱT←ΓT

and fΓT←ϱT
, which are

defined on all positive definite Toeplitz matrices, including
the factorizable ones.

Corollary 3: Replace Γq with ΓF
q in our definition ofMϱ

for a defintion of MF
ϱ . The set MF

ϱ is a manifold.

Using this manifold instead of Γq in (7) leads to a formula-
tion that is equivalent to (3); we do not need to worry about
non-factorizability with this adjustment.

V. NUMERICAL VALIDATION

We write four different implementations of the estimation
problem: two strict and two relaxed versions of the MA esti-
mation problem. The strict versions require factorizability,
while the relaxed versions (4) and (7) do not. Imposing
factorizability on the manfiold formulation (7) is far more
complicated than just a symbol substitution because we
need to check for factorizability in addition to positive
definiteness. This involves verifying that the positive real
lemma holds, which is typically accomplished by solving a
semidefinite feasibility problem. It is completely impractical
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Fig. 3. Run-times from the same set of experiment. We mask out a few
values of running time in the Manifold or LMI formulations when these
instances terminate due to a maximum iterations safety term rather than the
usual small gradient termination criteria.

to repeatedly call a semidefinite program in a subroutine that
implements gradient descent, so our numerical experiments
solve the relaxed problem instead. We note that the relax-
ation is often factorizable, so this complication may not be
necessary in practice. The formulations we compare are:

1) The ML-MA formulation (3), which we call direct
parameter search.

2) The Kalman Filter formulation, which performs a the
direct parameter search within a state-space model
embedding, see [18].

3) The relaxed structured covariance optimization formu-
lation (4).

4) The relaxed manifold formulation (7).
All are implemented using back-tracking gradient descent. In
the manifold setting, this scheme simply involves composing
the objective function with the retraction and picking a
suitable starting point on the manifold. Using a Riemmanian
submanifold leads to gradients that line up with their usual
ones, so we implement all optimization problems in JAX
[19] for its automatic differentiation capabilities. Our goal is
to show that our formulations can achieve the same results as
the standard optimization schemes, so we refer the reader to
[12] for extra details about how to implement backtracking
gradient descent on manifolds. A basic description is given
in the Appendix.

In terms of likelihood attained, all methods work equally
as well as the benchmark Kalman Filter based formulation
when identifying low model orders, up to q = 14 as
illustrated in Fig. 2. When the model order increases, even-
tually, the geometric formulation occasionally find points
that achieve lower likelihood than the strict formulations.
Unfortunately, this is merely an artifact of the relaxation
because the parameters identified in these situations lead to
non-factorizable autocovariance parameters.

The long run-times, on the other hand, suggest that the
formulations we have analyzed and implemented are better
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used for theoretical analyses rather than for practical iden-
tification of MA(q) systems. Our contributions are more
theoretical than computational, and hence the purpose of
our experiments is to validate that the various formulations
we have described are equivalent, rather than to demon-
strate speed of computation. And indeed, we see that such
equivalences largely hold in our numerical implementation,
as shown in Fig. 2. Simply put, the well-studied Kalman-
Filter/direct objective implementations are best suited for
numerical optimization as illustrated in Fig. 3, but the
autocovariance/geometric formulations may be more useful
for theoretical analysis of MA(q) estimation due to the
simplicity of the resulting optimization problem.

VI. DISCUSSION AND FUTURE PROSPECTS

We demonstrated that the moving average problem can be
encoded as a manifold optimization problem over the reflec-
tion coefficients, and that the ML-MA, structured covariance,
and manifold formulations all yield identical solutions in the-
ory and in (limited) practice. We can therefore consider any
of these problems for theoretical analysis, depending on how
convenient they are to the problem at hand. The reflection
coefficient parameterization may be particularly convenient
for analysis since it is in the simple and canonical form of
a curved-exponential family member. For example, with the
formulation of (7), some straight-forward manipulations of
the data yield non-trivial sufficient statistics, but we save
investigating this for future work.

We have not resolved the most pressing question of
global optimality. A reasonable conjecture is that all of the
formulations we propose here are actually finding global
optima whenever the parameters estimated are factorizable.
Unfortunately, certifying this is beyond what we present
here; translating local optimality to global optimality is more
complicated when manifold constraints are present in the
formulation. We close by mentioning that the analyses of
geometric statistics [20] can provide these types of optimality
guarantees in the exponential families, which broadly work
by generalizing techniques from convex optimization to
formulations on statistical manifolds. This line too, we save
for future work.
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APPENDIX

A. Omitted Proofs

Lemma 3 (Local Γq Projection): There exists open sets
U ⊆ RT where:

ProjΓq

(
fΓq←ϱ{U}

)
=

[
Iq

0T−q

]
fΓq←ϱ{U}

Proof: Let γ ∈ Γq , which implies the existence of
m > 0 where,

G = γ0C0 + . . .+ γqCq ≻ mI

We construct an open neighborhood of γ in RT where the
projection behaves like a subspace projection V , as well as
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an open set U whose image under fΓq←ϱ(U) is entirely
contained in V . First, let,

V1 =

{
π ∈ RT : −m

2
I ≺

q∑
k=0

πkCk

}
and:

V2 =

π ∈ RT : −m

2
I ≺

T−1∑
k=q+1

πkCk ≺
m

2
I


and define the open neighborhood of γ:

V =
(
V1 ∩ V2

)
+ γ

Notice that V is nonempty because at any γ, we can choose
any π ∈ RT , and simply scale π down until it satisfies
the matrix inequalities in V1 and V2. Define the matrices
P, P1, P2 as:

P1 =

q∑
k=0

πkCk, P2 =
T∑

k=q+1

πkCk, P = P1 + P2

and let T = P +G. Using Weyl’s inequality repeatedly, we
see that the minimum eigenvalue of T is bounded below by:

λmin(T ) ⩾ λmin(G) + λmin(P )

⩾ λmin(G) + λmin(P1) + λmin(P2)

⩾ λmin(G)−m > 0

So elements in V parameterize positive definite Toeplitz
matrices in ΓT . Let U = fϱT←ΓT

{V}; this is an open set
in RT whose image is V . Finally, we verify that subtracting
off the tail terms in elements of V still leads to a positive
definite matrix. Notice for γ̃ ∈ V , this is given by:

λmin

(
q∑

k=0

γ̃kCk

)
⩾ λmin

(
T∑

k=0

γ̃kCk

)
− m

2
> 0

due to the constraint on V2, implying positive definiteness.
Note that the projection operation is the solution to the
optmization problem:

minimize
γ∈Γq

∥γ̃ − γ∥2

and its solution can be expressed in matrix form as:

ProjΓq
(v) =

[
Iq

0T−q

]
v.

This achieves the smallest possible perturbation to γ̃ because
all other feasible choices must also alter components in the
first q entries, thus incurring higher cost.

Corollary 1 (Geometric Covariance Estimation): The
structured covariance estimation problem (4) is equivalent
to:

min.
ρ

T log(γ0) +

T−1∑
k=1

(T − k) log(1− ρ2i ) +

T−1∑
k=0

⟨υk, ξ⟩2

s.t. (t0, ρ) ∈Mϱ

Proof: We omit a factor of 1/2 in the objective
function because this does not affect identified optima. The

inner-product term follows directly from block partitioning
ξ∗UU∗ξ. The log det(·) term follows from first noting that:

− log det(Σ(γ)) = log det(UU∗) =

T∑
i=0

log(uii)

because U is triangular. Next, we observe that the Levinson-
recursions for just the diagonal elements is,

ui+1,i+1 =
ui,i√
1− ρ2i

=⇒ ui,i =
u0,0√

1− ρ20 . . .
√
1− ρ2i

.

The rest follows from expanding the sum of logs, and
appropriately to omitting factors of 2, which leads to the
defined objective function.

B. Backtracking Riemannian Gradient Descent

We provide a simple scheme for accomplishing Rieman-
nian gradient descent (RGD) on manifolds, which is analo-
gous to projected gradient descent. While the retraction we
derive is only a local map about

(
(γ0, ρ), 0

)
on the tangent

bundle, checking if we have exited the region where it’s valid
is simple because the retraction only returns reflection coeffi-
cients belonging to (−1, 1) when γ̃ = ProjΓq

◦fΓq←ϱ(x+v)
also belongs to Γq due to the properties of the Levinson-
Trench recursions. When this fails, then the subspace pro-
jection has returned a point outside of Γq and our analysis
in Lemma 3 no longer holds. The simple adjustment is to
do two backtracking steps; one to first ensure that we are
inside a region where the retraction is valid, then another
to ensure we end up with a decrease in our objective value.
For the sake of simplicity, let L(ρ; ξ) be the likelihood of
the optimization problem in Corollary 1. We define:

RL((γ0, ρ); ξ) =: L(·; ξ) ◦R((γ0, ρ), 0)

that is, the likelihood function composed with the retraction.

Algorithm 1 Backtracking RGD

Input: (γ0, ρ)
(k)

Hyperparameters: α ∈ (0, 0.5), µ ∈ (0, 1)
Output: (γ0, ρ)

(k+1)

Initialisation : (γ, ρ) = (1, 0, . . . , 0), t = 1
1: d← ∇(γ0,ρ)

{
RL((γ0, ρ)(k); ξ)

}
Backtrack until retraction is valid

2: while ∥R((γ0, ρ)
(k) − td)∥∞ > 1 do

3: t← µt
4: end while

Backtrack until sufficient objective decrease
5: while RL((γ0, ρ)(k) − td; ξ) > RL((γ0, ρ)(k); ξ) −

αt∥d∥2 do
6: t← µt
7: end while
8: return (γ0, ρ)

(k+1)
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