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Abstract— Optimal control is notoriously difficult for stochas-
tic nonlinear systems. [1] introduced Spectral Dynamics Em-
bedding for developing reinforcement learning methods for
controlling an unknown system. It uses an infinite-dimensional
feature to linearly represent the state-value function and ex-
ploits finite-dimensional truncation approximation for practical
implementation. However, the finite-dimensional approximation
properties in control have not been investigated even when the
model is known. In this paper, we provide a tractable stochastic
nonlinear control algorithm that exploits the nonlinear dynam-
ics upon the finite-dimensional feature approximation, Spectral
Dynamics Embedding Control (SDEC), with an in-depth theo-
retical analysis to characterize the approximation error induced
by the finite-dimension truncation and statistical error induced
by finite-sample approximation in both policy evaluation and
policy optimization. We also empirically test the algorithm and
compare the performance with Koopman-based methods and
iLQR methods on the pendulum swingup problem.

I. INTRODUCTION

Stochastic optimal nonlinear control—i.e. finding an opti-
mal feedback policy to maximize cumulative rewards for a
stochastic nonlinear system—has been a long-standing chal-
lenging problem in control literature [2], [3]. Various control
techniques have been developed for nonlinear control, includ-
ing gain scheduling [4], [5], feedback linearization [6], itera-
tive linear-quadratic regulator [7], sliding model control [8],
geometric control [9], back stepping [10], control Lyapunov
functions [11], model-predictive control [12], and tools that
leverage inequality approximation and optimization-based
methods like sum-of-squares (SOS) programming [13]. Non-
linear control often focuses on the stability of closed-loop
systems, while control optimality analysis is often heuristic
or limited to special classes of systems. Moreover, almost
all the methods have their own limitations, where they either
lead to highly suboptimal solutions, can only be applied to a
subclass of nonlinear systems satisfying special conditions,
or require a large amount of computation and thus could only
handle very small-scale systems.

To take advantage of the rich theory and tools developed
for linear systems, kernel-based linearization has recently
regained attraction. The representative approaches includes
Koopman operator theory [14], [15], kernelized nonlin-
ear regulator (KNR) [16], reproducing kernel Hilbert space
(RKHS) dynamics embedding control [17], and optimal
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control with occupation kernel [18], among others. The
Koopman operator lifts states into an infinite-dimensional
space of known measurement functions, where the dynamics
become linear in the new space and separated additive linear
action effects. Alternatively, KNR [16] assumes the nonlinear
dynamics lie in an infinite-dimensional RKHS, and hence
are linear in the corresponding feature maps for states and
actions. [17] represents the conditional transition probability
of a Markov decision process (MDP) in a pre-defined RKHS
so that calculations involved in solving the MDP could be
done via inner products in the infinite-dimensional RKHS.
[18] introduce the Liouville’s equation in occupation kernel
space to represent the trajectories, with which the optimal
value can be reformulated as linear programming in the
infinite-dimensional space under some strict assumptions.

Although kernelized linearization has brought a promising
new perspective to nonlinear control, these representative
approaches fall short in both computational and theoretical
respects. Computationally, control in an infinite-dimensional
space is intractable. Hence, a finite-dimensional approxi-
mation is necessary. Data-driven computational procedures
for kernel selection and RKHS reparametrization have been
proposed for the Koopman [15], conditional RKHS embed-
dings [17], and occupation kernel [18] (whereas KNR [16]
focuses on the sample complexity of learning the dynamics
while ignoring the computational challenges in the control
aspect). However, these methods are inefficient in the sense
that i), the dynamics or trajectories are presumed to be lying
in some RKHS with a pre-defined finitely-approximated
kernel, which is a very strict assumption; in fact, finding good
kernel representations for the dynamics is a challenging task;
and ii), the dynamics information for kernelization is only
exploited through samples, and other structure information in
the dynamics are ignored even when the dynamics formula is
known explicitly. Meanwhile, theoretically, the optimality of
control with finite-dimensional approximations—i.e., the pol-
icy value gap between the finite-dimensional approximation
and optimal policy in an infinite-dimensional RKHS—has
largely been ignored and not been rigorously analyzed.

Recently, [1] provided a novel kernel linearization method,
spectral dynamic embedding, by establishing the connec-
tion between stochastic nonlinear control models and linear
Markov Decision Processes (MDPs), which exploits the
random noise property to factorize the transition probabil-
ity operator, and induce an infinite-dimensional space for
linearly representing the state-action value function for any
arbitrary policy. Spectral dynamic embedding bypasses the
drawbacks of the existing kernel linearization methods in
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the sense that i) the kernel is automatically induced by the
system dynamics, which avoids the difficulty in deciding
the kernel features and eliminates the modeling approxi-
mation induced by a predefined kernel; and ii) the kernel
linearization and its finite random feature approximation is in
closed-form with well-studied performance guarantees [19].
The superiority of spectral dynamic embedding has been
justified empirically in the reinforcement learning setting [1]
where system dynamics are unknown. However, there still
lacks any end-to-end control algorithm with theoretical guar-
antees that utilizes the finite-dimensional approximation of
spectral dynamics embedding. Indeed, in general, the finite-
dimensional approximation error in policy evaluation and
control optimality has not been investigated theoretically,
motivating the present work.
Our contributions. In this paper, we close the gap by
justifying the finite random feature approximation of spectral
dynamic embedding in nonlinear control rigorously, enabling
the practical usage of the kernelized linearization in control.
Our contributions lie in the following folds.

We first formalize a computational tractable stochastic
nonlinear control algorithm with finite-dimension truncation
of spectral dynamic embedding representation, Spectral Dy-
namics Embedding Control (SDEC). Specifically, we first
extract the finite-dimensional spectral dynamics embedding
in closed-form through Monte-Carlo approximation as ex-
plained in Section III-A, and then, we conduct the dynamic
programming for value function upon these representations
through least square policy evaluation. The policy is im-
proved by natural policy gradient for optimal control based
on the obtained value functions. The concrete algorithm is
derived in Section III-B. We note that the particular way of
policy evaluation and policy update is actually compatible
with cutting-edge deep reinforcement learning methods, such
as Soft Actor-Critic [20], by using our proposed representa-
tion to approximate the critic function. In other words, one of
the novelties of SDEC is that it exploits the known nonlinear
dynamics to obtain a nature, inherent representation space
which could be adopted by various dynamical programming
or policy gradient based methods.

We then characterize the policy evaluation error with
finite-dimensional truncation and finite-sample approxima-
tion in SDEC in Section IV-A. We further provide a rigor-
ous optimality analysis for the policy obtained by SDEC
in Section IV-B, which to the best of our knowledge is
the first time this has been done, due to the challenging
complications in stochastic nonlinear control. Specifically,
we show the gap between optimal policy and the SDEC
induced policy is inversely proportional to a polynomial
dependency w.r.t. number of features and the number of
samples used in dynamic programming. Lastly, we conduct
a numerical study on a robotic pendulum control problem to
justify our theoretical analysis in Section V.

II. PROBLEM SETUP AND PRELIMINARIES

In this section, we introduce the stochastic nonlinear con-
trol problem that will be studied in this paper and reformulate

it as a MDP. We will also briefly introduce the background
knowledge about reproducing kernel Hilbert space (RKHS)
and random features.

A. Stochastic Nonlinear Control Problem in MDPs

We consider the standard discrete-time nonlinear control
model with γ-discounted infinite horizon, defined by

st+1 = f(st, at) + ϵt, where ϵt ∼ N (0, σ2Id), (1)
such that γ ∈ (0, 1), s ∈ S ⊂ Rd is the state, a ∈ A is the
control action, and {ϵt}∞t=1 are independent Gaussian noises.
The function f (·, ·) : S × A → S describes the general
nonlinear dynamics, and r : S ×A → [0, 1] gives the reward
function on the state and action pair. Here we assume the
reward function r(s, a) is bounded for any (s, a) ∈ S ×A.1

Without loss of generality, we assume there is a fixed initial
state s0. Given a stationary policy π : S → ∆(A) with ∆(A)
as the space of probability measures over A, the accumulated
reward over infinite horizon is given by

Jπ = Eπ

[ ∞∑
t=0

γtr(st, at)

]
, (2)

where the expectation is w.r.t. the stochastic dynamics and
the random policy. In this paper, we study the optimal
control/planning problem which is to seek a policy π∗ that
maximizes (2), given the dynamics f and the reward function
r. Note that the nonlinearity of f and r makes this optimal
control problem difficult as reviewed in the introduction.

The above stochastic nonlinear optimal control problem
can also be described via Markov Decision Process. Con-
sider an episodic homogeneous-MDP, denoted by M =
⟨S,A, P, r, γ⟩, where P (·|s, a) : S × A → ∆(S) describes
the state transition distribution, where ∆(S) denotes the
space of probability measures on the set S. Then, the
stochastic nonlinear control model (1) can be recast as an
MDP with transition dynamics

P (s′|s, a) ∝ exp

(
−∥f(s, a)− s′∥22

2σ2

)
. (3)

Meanwhile, given a policy π : S → ∆(A), the corresponding
Qπ-function is given by

Qπ(s, a) = EP,π

[∑∞
t=0 γ

tr(st, at)

∣∣∣∣s0 = s, a0 = a

]
. (4)

It is straightforward to show the Bellman recursion for Qπ ,
Qπ(s, a) =r(s, a) + γEP [V π(s′)] (5)

with V π(s) := Eπ [Q
π(s, a)]. Equivalently, the accumulated

reward Jπ is V π(s0). The goal can be reformulated as
seeking the optimal policy π∗ = argmaxπ V

π (s0).
For an MDP with finite states and actions, optimal control

can be obtained by solving dynamic program for the Q-
function via via the Bellman relation (5). However, for con-
tinuous states and actions, representing the Q-function and

1The bounded assumption is for the purpose of theoretical analysis. With-
out the assumption, our methods could be applied but without theoretical
guarantees. Indeed, our current results can not handle systems with potential
unbounded rewards. For systems with bounded state and action space (e.g.,
inverted pendulum), such assumptions often hold. It is left as our future work
to relax this assumption. Also note that we only need to assume r(s, a) is
bounded but not necessarily in [0, 1].
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conducting dynamic programming (DP) in function space
becomes the major issue for obtaining the optimal policy. In
this paper, we will introduce spectral dynamic embedding,
a novel kernelized linearization, to linearly represent the
Q-function, and develop practical and provable method to
learn/approximate the optimal control policy.

B. Reproducing Kernel Hilbert Space

In this section, we will introduce the necessary background
of Reproducing Kernel Hilbert Spaces for understanding our
proposed kernel embeddings.

Definition 1 ((Positive-Definite) Kernel [21]). A function k :
X × X → R is said to be a kernel on the non-empty set X
if there exists a Hilbert space H and a feature map ψ(·) :
X → H such that ∀x, x′ ∈ X , k(x, x′) = ⟨ψ(x), ψ(x′)⟩H.
Moreover, the kernel is said to be positive definite if ∀n ⩾ 1,
∀{ai}i∈[n] ⊂ R and mutually distinct sets {xi}i∈[n] ⊂ X ,∑

i∈[n]

∑
j∈[n] aiajk(xi, xj) > 0.

One can then define the RKHS associated with the kernel.
Definition 2 (Reproducing Kernel Hilbert Space [22]). The
Hilbert space H of an R-valued function defined on a non-
emptry set X is said to be a reproducing kernel Hilbert space
(RKHS) if there is a kernel k(·, ·) : X × X → R, such that

1) ∀x ∈ X , k(x, ·) ∈ H.
2) ∀x ∈ X , f ∈ H, we have that ⟨f, k(x, ·)⟩H = f(x)

(a.k.a the reproducing property), which also implies that
⟨k(x, ·), k(y, ·)⟩H = k(x, y).

Here k(·, ·) is called a (unique) reproducing kernel of H.

The kernel associated with RKHS admits an important
decomposition, as described in the following theorem.

Theorem 1 (Bochner [23]). If k(x, x′) is a positive definite
kernel, then there exists a set Ω, a measure ρ(ω) on Ω, and
Fourier random feature ψω (x) : X → C such that

k(x, x′) = Eρ(ω) [ψω (x)ψω (x′)] . (6)

It should be emphasized that the ψω (·) in Bochner de-
composition may not be unique. The Bochner decomposition
provides the random feature [24], which is applying Monte-
Carlo approximation for (6), leading to a finite-dimension
approximation for kernel methods. For example, for the

Gaussian kernel, k(x, x′) = exp

(
−∥x−x′∥2

2σ2

)
, the corre-

sponding ρ(ω) is a Gaussian proportional to exp
(
−σ2∥ω∥2

2

)
with ψω (x) = exp

(
−iω⊤x

)
; for the Laplace kernel, the

ρ (ω) is a Cauchy distribution with the same ψω(·). Please
refer to Table 1 in [25] for more examples.

III. CONTROL WITH SPECTRAL DYNAMIC EMBEDDING

We first introduce spectral dynamic embedding [1], a novel
kernelized linearization, by which the Q-function for arbi-
trary policy can be represented linearly, therefore, the policy
evaluation and control can be conducted within the linear
space. This is significantly different from existing kernel
linearization methods, which are designed for linearizing the

dynamic model. We then propose the corresponding finite-
dimensional approximated linear space for tractable optimal
control. Specifically, we execute dynamic programming for
policy evaluation in the linear function space obtained by
the spectral dynamics embedding, upon which we improve
the policy with natural policy gradient, leading to Spectral
Dynamics Embedding Control (SDEC) in Algorithm 1.

A. Spectral Dynamics Embedding

As we discussed in Section II, we have recast the stochas-
tic nonlinear control model as an MDP. By recognizing the
transition operator (3) as a Gaussian kernel and using Theo-
rem 1, we can further decompose the transition dynamics and
reward in a linear representation as follows. Due to the space
limitation, we defer all the proofs to our online report [26].

Proposition 2. Denote θr = [0, 0, 1]⊤,

ϕω (f(s, a)) =
[
gα(f(s,a))

αd cos
(

ω⊤f(s,a)√
1−α2

)
,

gα(f(s,a))
αd sin

(
ω⊤f(s,a)√

1−α2

)
, r(s, a)

]
,

(7)

µω (s′) = p(s′)[cos(
√
1− α2ω⊤s′), sin(

√
1− α2ω⊤s′), 0]⊤,

where gα (f(s, a)) := exp
(

α2∥f(s,a)∥2

2(1−α2)σ2

)
, ω ∼ N (0, σ−2Id),

∀α ∈ [0, 1) and p(s′) = αd

(2πσ2)d/2
exp

(
−∥αs′∥2

2σ2

)
is a

Gaussian distribution for s′ with standard deviation σ
α , then

P (s′|s, a) =Eω∼N (0,σ−2Id)

[
ϕω(f(s, a))

⊤µω(s
′)
]

:= ⟨ϕω(f(s, a)), µω(s
′)⟩N (0,σ−2Id)

, (8a)

r(s, a) =Eω∼N (0,σ−2Id)

[
ϕω(f(s, a))

⊤θr
]

:= ⟨ϕω(f(s, a)), θr⟩N (0,σ−2Id)
, (8b)

The ϕω(·) is named as Spectral Dynamic Embedding. For
convenience and without confusion, we abuse the notation
⟨·, ·⟩N (0,σ2Id)

as ⟨·, ·⟩, and ϕω (·) as ϕ (·) in the paper. We
emphasize the decomposition in [1] is a special case of in (8)
with α = 1. The tunable α provides benefits for the analysis
and may also be used to improve empirical performance.

The most significant benefit of the decomposition is the
property that it induces a function space composed by
{ϕω(s, a)} with ω ∼ N

(
0, σ2Id

)
, where the Q-function for

arbitrary policy can be linearly represented. This is shown
in this next result, with proof in our online report [26].

Proposition 3 (Proposition 2.3 [27]). For any policy, there
exist weights θπ such that the corresponding state-action
value function Qπ(s, a) = ⟨ϕω(f(s, a)), θπω⟩.

In fact, the MDP with the factorization in (8) is an
instantiation of the linear MDP [27], [28]. However, in-
stead of assuming the factorization of the dynamics with
finite dimension ϕ in linear MDPs, the spectral dynamics
embedding decomposes general stochastic nonlinear model
explicitly through infinite-dimensional kernel view.

Immediately, for the stochastic nonlinear control model (1)
with an arbitrary dynamics f(s, a), the spectral dynamic
embedding ϕω(·) provides a linear space, in which we
can conceptually conduct dynamic programming for policy
evaluation and optimal control with global optimal guarantee.
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Algorithm 1: Spectral Dynamics Embedding Con-
trol (SDEC)
Spectral Dynamic Embedding Generation

1 Sample i.i.d. {ωi}i∈[m] where ωi ∼ N (0, σ−2Id) and
construct the feature

ϕ(s, a) = [g(f(s, a)) sin(ω⊤
i f(s, a)),

g(f(s, a)) cos(ω⊤
i f(s, a))]i∈[m].

Initialize θ0 = 0 and π0(a|s) ∝ exp(ϕ(s, a)⊤θ0).
Least Square Policy Evaluation

2 for k = 0, 1, · · · ,K do
3 Sample i.i.d. {(si, ai, s′i), a′i}i∈[n] where

(si, ai) ∼ νπk
, s′i = f(si, ai) + ε, νπk

is the
stationary distribution of πk, ε ∼ N (0, σ2Id),
a′i ∼ πk(s

′
i).

4 Initialize ŵk,0 = 0.
5 for t = 0, 1, · · · , T − 1 do
6 Solve

ŵk,t+1 = argmin
w

(9){∑
i∈[n]

(
ϕ(si, ai)

⊤w − r(si, ai)− γϕ(s′i, a
′
i)

⊤ŵk,t

)2}
7

8 end
Natural Policy Gradient for Control

9 Update θk+1 = θk + ηŵk,T and
πk+1(a|s) ∝ exp(ϕ(s, a)⊤θk+1). (10)

10 end

B. Control with Finite-dimensional Approximation

Although the spectral dynamic embedding in Proposi-
tion 2 provides a linear space to represent the family of
Q-function, there is still a major challenge to be overcome
for practical implementation. Specifically, the dimension of
ϕω(·) is infinite with ω ∼ N

(
0, σ−2Id

)
, which is com-

putational intractable. [1] suggested the finite-dimensional
random feature, which is the Monte-Carlo approximation for
the Bochner decomposition [24], and demonstrated strong
empirical performances for reinforcement learning. However,
there is no formal control algorithm established with the
finite-dimensional approximation, and their regret analysis
ignores the approximation error from finite-dimensional trun-
cation, leaving gaps between the theoretical justification and
the empirical success.

In this section, we first formalize the Spectral Dynamics
Embedding Control (SDEC) algorithm, implementing the
dynamic programming efficiently in a principled way as
shown in Algorithm 1, whose theoretical property will be
analyzed in the next section.

In SDEC, there are three main components,
1) Generating spectral dynamic embedding (Line 1). Fol-

lowing Proposition 2, we construct finite-dimensional
[ϕωi

(s, a)]mi=1 ∈ Rm×1 by Monte-Carlo approximation
with ωi ∼ N

(
0, σ2I

)
, which will be used for represent-

ing the state-value functions.
2) Policy evaluation (Line 4 to 8). We conduct the least

square policy evaluation for estimating the state-value

function of current policy upon the generated finite-
dimensional truncation features. We sample from the sta-
tionary distribution νπ(s, a) from dynamics under current
policy π and solve a series of least square regression (9)
to learn a Qπ(s, a) = ϕ (s, a)

⊤
wπ , with wπ ∈ Rm×1 by

minimizing a Bellman recursion type loss.
3) Policy update (Line 9). Once we have the state-value

function for current policy estimated well in step 2), we
will update the policy by natural policy gradient or mirror
descent in (10), i.e.,

πt+1 (a|s) = argmax
π(·|s)∈∆(A)

〈
π, ϕ(s, a)⊤wπt

〉
+
1

η
KL (π||πt) .

Once the finite-dimensional spectral dynamic embedding has
been generated in step 1), the algorithm alternates between
step 2) and step 3) to improve the policy.

We emphasize that although we tailored the natural pol-
icy gradient with least square policy evaluation upon the
proposed spectral dynamic embedding in Algorithm 1, the
spectral dynamic embedding is also compatible to other
planning methods, and we leave the algorithm design and
theoretical analysis as our future work.

Remark 1 (Beyond Gaussian noise). Although we derive
SDEC mainly for the stochastic nonlinear dynamics with
Gaussian noise, the method can be easily extended for more
flexible noise model by considering

ζ(s′) = f(s, a) + ϵ, with ϵ ∼ N
(
0, σ2Id

)
, (11)

where ζ (·) is a nonlinear model. When ζ is invertible, the
model can be understood as s′ = ζ−1 (f(s, a) + ϵ), therefore
the noise is no longer Gaussian w.r.t. s′. We emphasize SDEC
is still applicable to (11) for arbitrary ζ(·), which generalizes
the method beyond Gaussian noise.

IV. THEORETICAL ANALYSIS

The major difficulty in analyzing the optimality of the pol-
icy induced by SDEC is the fact that after finite-dimensional
truncation, the transition operator constructed by the random
feature P̂ (s′|s, a) := 1

m

∑m
i=1 ϕωi (f(s, a))µωi (s

′) with
{ωi}mi=1 ∼ N

(
0, σ−2Id

)
is no longer a valid distribution,

i.e., it lacks non-negativity and normalization, which induces
a pseudo-MDP [29] as the approximation. As a consequence,
the value function for the pseudo-MDP is not bounded. Then,
the vanilla proof strategy used in majority of the literature
since [30], i.e., analyzing the optimality gap between policies
through simulation lemma, is no longer applicable. We
bypass the difficulty from pseudo-MDP, and provide rigorous
investigation of the impact of the approximation error for
policy evaluation and optimization in SDEC, filling the long-
standing gap. We defer all proofs to our online report [26].

We first specify the assumptions, under which we derive
our theoretical results below. These assumptions are com-
monly used in the literature [27], [31]–[33].
Assumption 1 (Regularity Condition for Dynamics and
Reward). ∥f(s, a)∥ ⩽ cf , and r(s, a) ⩽ cr for all s ∈ S, a ∈
A. For the ease of presentation, we omit the polynomial
dependency on cf and cr and focus on the dependency of
other terms of interest.
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Assumption 2 (Regularity Condition for Feature). The fea-
tures are linearly independent.
Assumption 3 (Regularity Condition for Stationary Distri-
bution [33]). The stationary distribution νπ for all policy π
has full support, and satisfies the following conditions:
λmin

(
Eνπ

[
ϕ(s, a)ϕ(s, a)⊤

])
⩾ λ1,

λmin

(
Eνπ

[
ϕ(s, a) (ϕ(s, a)− γEνπ

ϕ(s′, a′))
⊤
])

⩾ λ2,

where λ1, λ2 > 0.

A. Error Analysis for Policy Evaluation

For notation simplicity, we omit π and use ν to denote the
stationary distribution throughout this section. Our analysis
starts from the error for policy evaluation (Line 4 to 8
in Algorithm 1). We decompose the error into two parts,
one is the irreducible error due to the limitation of our basis
(i.e., finite m in Line 1), and one is the statistical error due to
the finite number of samples we use (i.e., finite n in Line 4).
Deferring proof details to the online report, our main result
here is the following.
Theorem 4. Let T = Θ(log n). With probability at least
1− δ, we have that∥∥∥Qπ−Q̂π

T

∥∥∥
ν
=Õ

(
1

(1−γ)2√m+
m3

(1−γ)λ21λ2
√
n

)
. (12)

Theorem 4 provides the estimation error of Q with least
square policy evaluation under the ∥ · ∥ν norm. It can
be used to provide an estimation error of Jπ shown in
the following corollary. Meanwhile, it also performs as a
cornerstone of control optimality analysis, as we will show
in the next section. The bound also reveals a fundamental
tradeoff between the approximation error and statistical error:
presumably, a larger number of m will make the finite kernel
truncation capable of approximating the original infinite-
dimensional function space better but it also requires a larger
number of samples n in order to train the weights well.
Corollary 5. With high probability, we have that∣∣∣Jπ − Ĵπ

T

∣∣∣ = (13)

Õ
(√

maxs,a
µ(s)π(a|s)

ν(s,a)

(
1

(1−γ)2
√
m

+ m3

(1−γ)λ2
1λ2

√
n

))
B. Error Analysis of Natural Policy Gradient for Control

We state here the performance guarantee for the control
optimality with natural policy gradient.
Theorem 6. Let η = Θ

(
λ2m

−1
√

log |A|
)

. With high
probability, we have that

E
[
mink<K

{
V π∗ − V πk

}]
= Õ

(
m
λ2

√
log |A|

K (14)

+ 1
1−γ

√
maxs,a,π,k

dπ∗ (s)π(a|s)
νπk

(s,a)

(
1

(1−γ)2
√
m

+ m3

(1−γ)λ2
1λ2

√
n

))
We emphasize that Theorem 6 characterizes the gap be-

tween optimal policy and the solution provided by SDEC,
taking in account of finite-step in policy optimization (K),
finite-dimension (m) and finite-sample (n) approximation in
policy evaluation, respectively, which, to the best of our
knowledge, is established for the first time. As we can see,
with m increases, we can reduce the approximation error, but

the optimization and sample complexity will also increase
accordingly. We can further balance the terms for the optimal
dimension of features.

V. SIMULATIONS

In this section, we compare SDEC with iterative LQR
(iLQR) [7] and Koopman-based control [15], two well-
known alternatives for nonlinear control.
A. Pendulum environment

The pendulum swingup problem is a classical nonlinear
control task. The system comprises a pendulum attached at
one end to a fixed point, and the other end being free. The
goal of the control task is to apply torque on the free end to
swing it into an upright position, with its center of gravity
right above the fixed point. In our simulations, we use the
Pendulum-v1 dynamics from the OpenAI gym.

B. Details of SDEC implementation
In our empirical implementation of SDEC, we combine

spectral dynamical embedding with Soft Actor-Critic (SAC)
[20]. Specifically, we use random features to parameterize
the critic, and use this as the critic in SAC. In SAC, it
is necessary to maintain a parameterized function Q(s, a)
which estimates the soft Q-value (which includes not just
the reward but also an entropy term encouraging explo-
ration). For a given policy π, the soft Q-value satisfies the
relationship Qπ(st, at) = r(st, at) + γEst+1∼p[V (st+1)],
where V (st) = Eat∼π[Q(st, at) − α log π(at | st)]. Based
on the spectral dynamic embedding proposed in our paper,
we parameterize the Qπ-function as Qπ(s, a) = r(s, a) +
ϕ̃ω(s, a)

⊤θ̃π where

ϕ̃ω(s, a) =
[
cos(ω⊤

1 s
′ + b1), · · · , cos(ω⊤

ms
′ + bm)

]⊤
,

where s′ = f(s, a), with {ωi}mi=1 ∼ N (0, Id) and {bi}
drawn iid from Unif([0, 2π]). The θ̃π ∈ Rm is updated using
(mini-batch) gradient descent for (9). We then use this Q-
function for the actor update in SAC.

C. Performance versus other nonlinear control algorithms
We compare our algorithm against iterative LQR (iLQR)

and Koopman-based control. For iLQR, we used the imple-
mentation in [34], where we added a log barrier function to
account for the input constraint in the OpenAI Pendulum-
v1 environment. Meanwhile for the Koopman-based control,
we adapted an implementation called Deep KoopmanU with
Control (DKUC) proposed in the paper [35], where we com-
bine the dynamics learned from DKUC with MPC to enforce
the input constraint. Apart from the noiseless setting, we also
considered the setting where a noise term ϵ ∼ N (0, σ2)
is added to the angular acceleration at each step, where
σ ∈ {1, 2, 3}. To evaluate the performance, we computed the
average total episodic reward for each algorithm across 100
randomly chosen episodes, where each episode comprises
200 time-steps. For SDEC and DKUC, we trained using 4
different random seeds, and both algorithms have access to
400 episodes worth of environment interaction.

The performance of the various algorithms in both the
noiseless and noisy setting (with σ = 1) can be found in
Table I. For algorithms with inherent stochasticity (SDEC
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TABLE I
PERFORMANCE COMPARISON.
Pendulum Pendulum (noisy, σ = 1)

SDEC −279.0 (±31.8) −252.0(±2.2)
iLQR -1084.7 -1330.7 (±35.3)

DKUC -1090.9 (±35.9) -1050.2 (±25.3)

and DKUC), the mean and standard deviation (in brackets)
over 4 random seeds is shown. Throughout the simulations
presented in this section, the number of random features
used in SDEC is 512. We observe that the SDEC strongly
outperforms iLQR and DKUC in both the noiseless and noisy
setting (higher reward is better; in this case the negative sign
is due to the rewards representing negative cost).

We further plot the evaluation performance of SDEC dur-
ing the course of its learning in Figure 1. In both the noiseless
and noisy settings, the performance of SDEC continuously
improves until it saturated after around 300 episodes.
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Fig. 1. SDEC performances with varying noise levels σ ∈ {0, 1, 2, 3}.
The evaluation is performed every 25 learning episodes on a fresh evaluation
set of 100 episodes, and the y-axis represents the average episodic reward
on the evaluation set. The shaded regions represent a 1 standard deviation
confidence interval (across 4 random seeds).

VI. CONCLUSION

There is a long-standing gap between the theoretical
understanding and empirical success of the kernelized lin-
earization control with spectral dynamic embedding, i.e., the
error induced by finite-dimensional approximation has not
be clearly analyzed. We close this gap by exploiting a novel
analysis method, which could be of independent interest, and
characterizing the finite-dimensional approximation effect
in both policy evaluation and optimization, theoretically
validating the usage of SDEC in practice.
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