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Abstract— We consider a cooperative multi-agent system
consisting of a team of agents with decentralized information.
Our focus is on the design of symmetric (i.e. identical) strategies
for the agents in order to optimize a finite horizon team objective.
We start with a general information structure and then consider
some special cases. The constraint of using symmetric strategies
introduces new features and complications in the team problem.
For example, we show in a simple example that randomized
symmetric strategies may outperform deterministic symmetric
strategies. We also discuss why some of the known approaches
for reducing agents’ private information in teams may not
work under the constraint of symmetric strategies. We then
adopt the common information approach for our problem and
modify it to accommodate the use of symmetric strategies. This
results in a common information based dynamic program where
each step involves minimization over a single function from
the space of an agent’s private information to the space of
probability distributions over actions. We present specialized
models where private information can be reduced using simple
dynamic program based arguments.

I. INTRODUCTION

The problem of sequential decision-making by a team of
collaborative agents operating in an uncertain environment
has received significant attention in the recent control (e.g. [1]–
[5]) and artificial intelligence (e.g. [6]–[10]) literature. The
goal in such problems is to design decision/control strategies
for the multiple agents in order to optimize a performance
metric for the team.

In some cooperative multi-agent (or team) problems, the
agents are essentially identical and interchangeable. For
example, consider a team of autonomous agents operating in
an environment. The agents may have identical sensors that
they use to observe their local surroundings and they may
have identical action spaces. For teams with such identical
agents, it may be convenient for the designer to design
identical decision/control strategies for the agents. This would
be particularly helpful if the number of agents is large –
instead of designing n different strategies for n agents in a
team, the designer needs to design just one strategy for all
agents. Identical strategies may also be necessary for other
practical and regulatory reasons. For example, a self-driving
car company would be expected to have the same control
algorithm on all its cars. Another reason for using identical
strategies arises in situations where agents don’t have any
individualized identities. This can happen in settings where the
population of the agents is not fixed and agents are unaware
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of the total number of agents currently present or their own
index in the population. An example of such a situation for
a multi-access communication problem is described in [11].
When an agent doesn’t know its own index (“Am I agent 1
or agent 2?”), it makes sense to use symmetric (i.e. identical)
strategies for all agents irrespective of their index. In this
paper, we will focus on the design of identical strategies for
a team of cooperative agents. We will refer to such strategies
as symmetric strategies.

Our focus is on designing symmetric strategies to optimize
a finite horizon team objective. We start with a general
information structure and then consider some special cases.
The constraint of using symmetric strategies introduces new
features and complications in the team problem. For example,
when agents in a team are free to use individualized strategies,
it is well-known that agents can be restricted to deterministic
strategies without loss of optimality [12]. However, we show
in a simple example that randomized strategies may be helpful
when the agents are constrained to use symmetric strategies.

We adopt the common information approach [2] for our
problem and modify it to accommodate the use of symmetric
strategies. This results in a common information based
dynamic program where each step involves minimization
over a single function from the space of an agent’s private
information to the space of probability distributions over
actions. The complexity of this dynamic program depends
in large part on the size of the private information space.
We discuss some known approaches for reducing agents’
private information and why they may not work under the
constraint of symmetric strategies. We present two specialized
models where private information can be reduced using simple
dynamic program based arguments.

Notation: Random variables are denoted by upper case
letters (e.g. X), their realization with lower case letters (e.g.
x), and their space of realizations by script letters (e.g. X ).
Subscripts denote time and superscripts denote agent index;
e.g., Xi

t denotes the state of agent i at time t. The short
hand notation Xi

1:t denotes the collection (Xi
1, X

i
2, ..., X

i
t).

△(X ) denotes the probability simplex for the space X . P(A)
denotes the probability of an event A. E[X] denotes the
expectation of a random variable X . 1A denotes the indicator
function of event A. For simplicity of notation, we use
P(x1:t, u1:t−1) to denote P(X1:t = x1:t, U1:t−1 = u1:t−1)
and a similar notation for conditional probability. For a
strategy pair (g1, g2), we use P(g1,g2)(·) (resp. E(g1,g2)[·])
to indicate that the probability (resp. expectation) depends
on the choice of the strategy pair. We use −i to denote
agent/agents other than agent i. U ∼ λ indicates that U is
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randomly distributed according to the distribution λ.

II. PROBLEM FORMULATION

Consider a discrete-time system with two agents. The
system state consists of three components - a shared state
and two local states, one for each agent. Xi

t ∈ X denotes
the local state of agent i, i = 1, 2, at time t and X0

t ∈ X 0

denotes the shared state at time t. Xt denotes the triplet
(X0

t , X
1
t , X

2
t ). Let U i

t ∈ U denote the control action of agent
i at time t. Ut denotes the pair (U1

t , U
2
t ). The dynamics of

the shared and local states are as follows:

X0
t+1 = f0

t (X
0
t , Ut,W

0
t ), (1)

Xi
t+1 = ft(X

i
t , X

0
t , Ut,W

i
t ), i = 1, 2, (2)

where W 0
t ∈ W0 and W i

t ∈ W are random disturbances with
W 0

t having the probability distribution p0W and W i
t , i = 1, 2,

having the probability distribution pW . We use Wt to denote
the triplet (W 0

t ,W
1
t ,W

2
t ). Note that the next local state of

agent i depends on its own current local state, the shared
state and the control actions of both the agents. Also note that
the function ft in (2) is the same for both agents. The initial
states X0

1 , X
1
1 , X

2
1 are independent random variables with X0

1

having the probability distribution α0 and Xi
1, i = 1, 2, having

the probability distribution α. The initial states X0
1 , X

1
1 , X

2
1

and the disturbances W 0
t ,W

i
t , t ≥ 1, i = 1, 2, are independent

discrete random variables. These will be referred to as the
primitive random variables of the system. In this paper, we
assume that all system variables take value in discrete sets.

A. Information structure and strategies

The information available to agent i , i = 1, 2, at time t
consists of two parts:

1) Common information Ct - This information is available
to both agents1. Ct takes values in the set Ct.

2) Private information P i
t - Any information available to

agent i at time t that is not included in Ct is included
in P i

t . P i
t takes values in Pt. (Note that the space of

private information is the same for both agents.) We
use Pt to denote the pair (P 1

t , P
2
t ).

Ct should be viewed as an ordered list (or row vector) of
some of the system variables that are known to both agents.
Similarly, P i

t should be viewed as an ordered list (or row
vector).

We assume that Ct is non-decreasing with time, i.e., any
variable included in Ct is also included in Ct+1. Let Zt+1

be the increment in common information from time t to
t+1. We assume the following dynamics for Zt+1 and P i

t+1

(i = 1, 2):

Zt+1 = ζt(Xt, Pt, Ut,Wt);P
i
t+1 = ξit(Xt, Pt, Ut,Wt),

Agent i uses its information at time t to select a probability
distribution δU i

t on the action space U . We will refer to δU i
t

as agent i’s behavioral action at time t. The action U i
t is

1Ct does not have to be the entirety of information that is available to
both agents; it simply cannot include anything that is not available to both
agents.

then randomly generated according to the chosen distribution,
i.e., U i

t ∼ δU i
t . Thus, we can write

δU i
t = git(P

i
t , Ct), (3)

where git is a mapping from Pt × Ct to ∆(U). The function
git is referred to as the control strategy of agent i at time
t. The collection of functions gi := (gi1, . . . , g

i
T ) is referred

to as the control strategy of agent i. Let G denote the set
of all possible strategies for agent i. (Note that the set of
all possible strategies is the same for the two agents since
the private information space, the common information space
and the action space are the same for the two agents.)

We use (g1, g2) to denote the pair of strategies being used
by agent 1 and agent 2 respectively. We are interested in
the finite horizon total expected cost incurred by the system
which is defined as:

J(g1, g2) := E(g1,g2)

[
T∑

t=1

kt(Xt, Ut)

]
, (4)

where kt is the cost function at time t. Our focus will be
on the case of symmetric strategies, i.e., the case where
both agents use the same control strategy. When referring to
symmetric strategies, we will drop the superscript i in gi and
denote a symmetric strategy pair by (g, g).

Symmetric strategy optimization problem (Problem P1):
Our objective is to find a symmetric strategy pair that achieves
the minimum total expected cost among all symmetric strategy
pairs. That is, we are looking for a strategy g ∈ G such that

J(g, g) ≤ J(h, h), ∀h ∈ G. (5)

Remark 1 a) We assume that the randomization at each
agent is done independently over time and independently of
the other agent [13]. b) We have formulated the problem with
two agents for simplicity. The number of agents can in fact
be any positive integer n or even a deterministic time-varying
sequence nt. Our results extend to these cases with only
notational modifications.

Remark 2 If the private information space, the common
information space and the action space are finite, then it can
be shown that the strategy space G is a compact space and
that J(g, g) is a continuous function of g ∈ G. Thus, an
optimal g satisfying (5) exists.

Remark 3 Note that we are not claiming that use of sym-
metric strategies is always optimal – it is not. We are simply
focusing on the design of symmetric strategies for reasons
mentioned in the introduction.

B. Some specific information structures

We will be particularly interested in the special cases of
Problem P1 described below. Each case corresponds to a
different information structure. In each case, the shared state
history until time t, X0

1:t, and the action history until t− 1,
U1:t−1 are part of common information Ct.

1. One-step delayed sharing information structure: In this
case, each agent knows its own local state history until time t
and the local state history of the other agent until time t− 1.
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Thus, the common and private information available to agent
i at time t is given by

Ct = (X0
1:t, U1:t−1, X

1,2
1:t−1); P i

t = Xi
t . (6)

We refer to the instance of Problem P1 with this information
structure as Problem P1a.

2. Full local history information structure: In this case,
each agent knows its own local state history until time t but
does not observe the local states of the other agent. Thus,
the common and private information available to agent i at
time t is given by

Ct = (X0
1:t, U1:t−1); P i

t = Xi
1:t. (7)

This information structure corresponds to the control sharing
information structure of [3]. We refer to the instance of
Problem P1 with this information structure as Problem P1b.

3. Reduced local history information structure: In this case,
each agent knows its own current local state but does not
recall its past local states and does not observe the local states
of the other agent. Thus, the common and private information
available to agent i at time t is given by

Ct = (X0
1:t, U1:t−1); P i

t = Xi
t . (8)

We refer to the instance of Problem P1 with this information
structure as Problem P1c.

Another special case of Problem P1 that might be of
interest is the following: Consider a situation where the
state dynamics are governed not by the vector of agents’
actions but only by an aggregate effect of agents’ actions.
Let At = a(U1

t , U
2
t ) denote the aggregate action. We refer to

a(·, ·) as the aggregation function. Some examples of a could
be the sum or the maximum function. The state dynamics are
as described in equations (1) and (2) except with Ut replaced
by At. The common and private information are given as:
Ct = (X0

1:t, A1:t−1); P i
t = Xi

t . While we don’t address this
case in this paper, it may be of interest for future work.

C. Why are randomized strategies needed?

In team problems, it is well-known that one can restrict
agents to deterministic strategies without loss of optimality
[12]. However, since the agents are restricted to use symmetric
strategies in our setup, randomization can help. This can be
illustrated by the following simple example.

Example 1: Let T = 1 and let (X0
1 , X

1
1 , X

2
1 ) = (0, 0, 0)

with probability 1. The action space is U = {0, 1}. The
information structure is that of Problem P1c described in
II-B. The cost at t = 1 is given by, k1(X1, U1) = 1{U1

1=U2
1 }.

Note that the cost function penalizes the agents for taking
the same action. In this case, each agent has only two
deterministic strategies – taking action 0 or taking action
1 at time 1. If both agents use the same deterministic strategy,
then, clearly, U1

1 = U2
1 and hence the expected cost incurred

is 1.
Consider now the following randomized strategy for each

agent: U i
1 = 1 with probability p and U i

1 = 0 with probability
(1− p). When the two agents use this randomized strategy,
the expected cost is p2 + (1− p)2. With p = 0.5, this cost

is 0.5 which is less than the expected cost achieved by any
deterministic symmetric strategy pair. Thus, when agents are
restricted to use the same strategy, they can benefit from
randomization.

III. COMMON INFORMATION APPROACH

We adopt the common information approach [2] for
Problem P1. This approach formulates a new decision-making
problem from the perspective of a coordinator that knows the
common information. At each time, the coordinator selects
prescriptions that map each agent’s private information to its
action. The behavioral action of each agent in this problem is
simply the prescription evaluated at the current realization of
its private information. Since Problem P1 requires symmetric
strategies for the two agents, we will require the coordinator
to select identical prescriptions for the two agents. To make
things precise, let Bt denote the space of all functions from
Pt to ∆(U). Let Γt ∈ Bt denote the prescription selected
by the coordinator at time t. Then, the behavioral action of
agent i, i = 1, 2, is given by: δU i

t = Γt(P
i
t ).

As in Problem P1, agent i’s action U i
t is generated accord-

ing to the distribution δU i
t using independent randomization.

The coordinator selects its prescription at time t based on
the common information at time t and the history of past
prescriptions. Thus, we can write: Γt = dt(Ct,Γ1:t−1),
where dt is a mapping from Ct × B1 . . .× Bt−1 to Bt. The
collection of mappings d := (d1, . . . , dT ) is referred to as the
coordination strategy. The coordinator’s objective is to choose
a coordination strategy that minimizes the finite horizon total
expected cost:

J (d) := Ed

[
T∑

t=1

kt(Xt, Ut)

]
. (9)

The following lemma establishes the equivalence of the
coordinator problem formulated above and the problem
Problem P1. The use of identical prescriptions by the
coordinator is needed to connect the coordinator’s strategy
to symmetric strategies for the agents in Problem P1.

Lemma 1 Problem P1 and the coordinator’s problem are
equivalent in the following sense:
(i) For any symmetric strategy pair (g, g), consider the
following coordination strategy: dt(Ct) = gt(·, Ct). Then,
J(g, g) = J (d). (ii) Conversely, for any coordination strategy
d, consider the symmetric strategy pair defined as follows:
gt(·, Ct) = dt(Ct,Γ1:t−1), where Γk = dk(Ck,Γ1:k−1) for
k = 1, . . . , t− 1.

PROOF The proof is based on Proposition 3 of [2] and the
fact that the use of identical prescriptions for the two agents by
the coordinator corresponds to the use of symmetric strategies
in Problem P1. ■

We now proceed with finding a solution for the coordina-
tor’s problem. As shown in [2], the coordinator’s belief on
(Xt, Pt) can serve as its information state (sufficient statistic)
for selecting prescriptions. At time t, the coordinator’s belief
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is given as:

Πt(x, p) = P(Xt = x, Pt = p|Ct,Γ1:(t−1)), (10)

for all x ∈ X 0 × X × X , p ∈ Pt × Pt. The belief can
be sequentially updated by the coordinator as described in
Lemma 2 below. The lemma follows from arguments similar
to those in Lemma 2 of [13] (or Theorem 1 of [2]).

Lemma 2 For any coordination strategy d, the coordinator’s
belief Πt evolves almost surely as

Πt+1 = ηt(Πt,Γt, Zt+1), (11)

where ηt is a fixed transformation that does not depend on
the coordination strategy.

Using the results in [2], we can write a dynamic program
for the coordinator’s problem. Recall that Bt is the space of
all functions from Pt to ∆(U). For a γ ∈ Bt and p ∈ Pt,
γ(p) is a probability distribution on U . Let γ(p;u) denote
the probability assigned to u ∈ U under the probability
distribution γ(p).

Theorem 1 The value functions for the coordinator’s dy-
namic program are as follows: Define VT+1(πT+1) = 0 for
every πT+1. For t ≤ T and for any realization πt of Πt,
define

Vt(πt) = min
γt∈Bt

E[kt(Xt, Ut)+

Vt+1(ηt(πt, γt, Zt+1))|Πt = πt,Γt = γt]
(12)

The coordinator’s optimal strategy is to pick the minimizing
prescription for each time and each πt.

PROOF The coordinator’s problem can be seen as a POMDP
[2]. The theorem is the corresponding dynamic program. ■

Remark 4 The expectation in (12) should be interpreted
as follows: Zt+1 is given by (II-A), U i

t , i = 1, 2, is inde-
pendently randomly generated according to the distribution
γt(P

i
t ) and the joint distribution on (Xt, Pt) is πt.

Remark 5 It can be established by backward induction that
the term being minimized in (12) is a continuous function of
γt. This can be shown using an argument very similar to the
one used in the proof of Lemma 3 in [14]. This continuity
property along with the fact that Bt is a compact set ensures
that the minimum in (12) is achieved.

For the instances of Problem P1 described in Problems
P1a - P1c (see Section II), the private information of an
agent includes its current local state. Consequently, for these
instances, the coordinator’s belief is just on the private
information of the agents and the current shared state. This
belief can be factorized as shown in the following lemma.

Lemma 3 In Problems 1a - 1c, for any realization x0 of the
shared state and any realizations p1, p2 of the agents’ private
information,

Πt(x
0, p1, p2) = δX0

t
(x0)Π1

t (p
1)Π2

t (p
2), (13)

where Πt is the coordinator’s belief (see (10)), Π1
t ,Π

2
t are

the marginals of Πt for each agent’s private information and
δX0

t
(·) is a delta distribution located at X0

t . (Recall that X0
t

is part of the common information in Problems P1a-P1c.)
Further, for any coordination strategy d, Πi

t, i = 1, 2,
evolves almost surely as

Πi
t+1 = ηit(X

0
t ,Π

i
t,Γt, Zt+1), (14)

where ηit is a fixed transformation that does not depend on
the coordination strategy.

PROOF See Appendix I in [15]. ■

Because of the above lemma, we can replace Πt (and its
realizations πt) by (Π1

t ,Π
2
t , X

0
t ) (and the corresponding

realizations (π1
t , π

2
t , x

0
t )) in the dynamic program of Theorem

1 for Problems P1a -P1c.

IV. COMPARISON OF PROBLEMS 1B AND 1C

The information structures in Problems P1b and P1c differ
only in the private information available to the agents – in
P1b, each agent know its entire local state history whereas
in P1c each agent knows only its current local state. If the
agents were not restricted to use the same strategies, it is
known that the two information structures are equivalent.
That is, if a (possibly asymmetric) strategy pair (g1, g2) is
optimal for the information structure in Problem P1c, then it
is also optimal for the information structure in Problem P1b
[3]. This effectively means that agents can ignore their past
local states without any loss in performance. However, such
an equivalence of the two information structures may not
hold when agents are restricted to use symmetric strategies.
In other words, an optimal symmetric strategy in Problem
P1c may not be optimal for Problem P1b; and the optimal
performance in Problem P1c may be strictly worse than the
optimal performance in Problem P1b. We explore this point
in more detail below.

One approach for establishing that agents can ignore parts
of their private information that has been commonly used in
prior literature on multi-agent/decentralized systems is the
agent-by-agent (or person-by-person approach) [2], [16]. This
approach works as follows: We start by fixing strategies of
all agents other than agent i to arbitrary choices and then
show that agent i can make decisions based on a subset or
a function of its private information without compromising
performance. If this reduction in agent i’s information holds
for any arbitrary strategy of other agents, we can conclude
that this reduction would hold for globally optimal strategies
as well. By repeating this argument for all agents, one can
reduce the private information of all agents without losing
performance. The problem with this approach is that it
cannot accommodate the restriction to symmetric strategies.
The reduced-information based strategies obtained using this
approach may or may not be symmetric. Thus, we cannot
adopt this approach for reducing agents’ private information
in Problem P1b.

Another approach for reducing private information that
has been used in some game-theoretic settings [14] involves
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the use of conditional probabilities of actions given reduced
information. To see how this approach can be used, let’s
consider an arbitrary (possible asymmetric) strategy pair
(g1, g2) for the information structure of Problem P1b and
define the following conditional probabilities for i = 1, 2:

P(g1,g2)[U i
t = u|Xi

t = x,Ct = ct]. (15)

Note that (15) specifies a probability distribution on U for
each x and ct. Thus, it can be viewed as a valid strategy for
agent i under the information structure of Problem P1c. This
observation lets us define the following reduced-information
strategies for the agents: for i = 1, 2,

ḡit(x, ct) := P
(g1,g2)[U i

t = ·|Xi
t = x,Ct = ct]. (16)

Further, it can be shown that the above construction ensures
that the joint distributions of (Xt, Ut, Ct) under strategies
(g1, g2) and (ḡ1, ḡ2) are the same for all t. This, in turn,
implies that J(ḡ1, ḡ2) = J(g1, g2). This argument establishes
that there is a reduced-information strategy pair with the
same performance as an arbitrary full-information strategy
pair. Thus, the optimal performance with reduced-information
strategies must be the same as the optimal performance with
full-information strategies for the information structure of
Problem P1b.

We can try to use the above argument for symmetric
strategy pairs. We start with an arbitrary symmetric strategy
pair (g, g) in Problem P1b and use (16) to define a reduced-
information strategy pair that achieves the same performance
as (g, g). The problem with this argument is that even though
we started with a symmetric strategy pair (g, g), the reduced-
information strategy pair constructed by (16) need not be
symmetric. Hence, this reduced-information strategy pair may
not be a valid solution for Problem P1c. We illustrate this
point in the following example.

Example 2: Consider a setting where there is no shared
state, the action space is U = {a, b} and the local states
are i.i.d. (across time and across agents). Each local state is
a Bernoulli (1/2) random variable. Consider the symmetric
strategy pair (g, g) for Problem P1b where g1 (the strategy
at t = 1) is: g1(u

i
1 = a|xi

1) = α(1 − xi
1) + βxi

1, where
0 ≤ α, β ≤ 1. And g2 (the strategy at t = 2) is:

g2(u
i
2 = a|xi

1, x
i
2, u

1
1, u

2
1) =

{
α, if xi

1 = xi
2

β, if xi
1 ̸= xi

2.
(17)

We now use (16) to define a reduced-information strategy.
Even though we started with a symmetric strategy pair for
the two agents, the conditional probability on the right hand
side of (16) may be different for the two agents. To see this,
consider t = 2 and C2 = (U1

1 , U
2
1 ) = (a, b) and Xi

2 = 0.
Then, for agent 1:

P(g,g)(U1
2 = a|X1

2 = 0, U1
1 = a, U2

1 = b)

=
∑
x=0,1

P(g,g)(U1
2 = a,X1

1 = x|X1
2 = 0, U1

1 = a, U2
1 = b)

= α

(
α

α+ β

)
+ β

(
β

α+ β

)
(18)

On the other hand, a similar calculation for agent 2 shows
that: P(g,g)(U2

2 = a|X2
2 = 0, U1

1 = a, U2
1 = b)

= α

(
1− α

2− α− β

)
+ β

(
1− β

2− α− β

)
. (19)

The expressions in (18) and (19) are clearly different (e.g.
with α = 1/4 and β = 1/2). Thus, the reduced-information
strategies constructed by (16) are not symmetric and, there-
fore, invalid for Problem P1c.

A. Special cases

In this section, we present two special cases under which
Problems P1b and P1c can be shown to be equivalent, i.e.,
we can show that an optimal strategy for Problem P1c is also
optimal for Problem P1b.

1) Specialized cost: We assume that the cost function at
each time t is non-negative, i.e., kt(X0

t , X
1
t , X

2
t , U

1
t , U

2
t ) ≥

0. Further, we assume that for each possible local state
xi of agent i there exists an action m(xi) such that
kt(x

0, x1, x2,m(x1),m(x2)) = 0 for all x0 ∈ X 0. An
example of such a cost function is kt(X0

t , X
1
t , X

2
t , U

1
t , U

2
t ) =

(X1
t −U1

t )
2[(X2

t −U2
t )

2+1]+(X2
t −U2

t )
2, where the states

and actions are integer-valued.
Recall that in Problem P1b the prescription space at time

t is the space of functions from X t to ∆(U) and in Problem
P1c the prescription space is the space of functions from
X to ∆(U). Using the dynamic programs for Problems P1b
and P1c with the specialized cost above, we can show that
optimal prescriptions in both problems effectively coincide
with the mapping m from X to U .

Lemma 4 The value functions for the coordinator’s dynamic
programs in Problems P1b and P1c can be written as follows:
For t ≤ T and for any realization π1

t , π
2
t , x

0
t of Π1

t ,Π
2
t , X

0
t ,

Vt(π
1
t , π

2
t , x

0
t ) := min

γt∈Bt

Qt(π
1
t , π

2
t , x

0
t , γt), (20)

where the function Q satisfies

Qt(π
1
t , π

2
t , x

0
t , γt) ≥ Qt(π

1
t , π

2
t , x

0
t ,m) = 0, (21)

Consequently, the coordinator’s optimal prescription is m at
each time.

PROOF See Appendix III in [15]. ■

Since the coordinator’s optimal strategy is identical in
Problems P1b and P1c, it follows that the optimal symmetric
strategy for the agents in the two problems is also the same,
namely U i

t = m(Xi
t).

2) Specialized dynamics: We consider a specialized dy-
namics where the local states Xi

1:T , i = 1, 2, are i.i.d.
uncontrolled random variables with probability distribution
α and there is no shared state. The following lemma shows
the equivalence between Problems P1b and P1c.

Lemma 5 The optimal performance in Problem P1c is the
same as the optimal performance in Problem P1b. Further,
the optimal symmetric strategy for Problem P1c is optimal
for Problem P1b as well.
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PROOF See Appendix IV in [15]. ■

In summary, for the specialized cases described above,
agents’ private information can be reduced without losing
performance, even with the restriction to symmetric strategies.

V. COMPARISON OF PROBLEMS 1A AND 1C

The information structures in Problems P1a and P1c differ
only in the common information available to the agents –
in P1a, each agent has an additional part in the common
information consisting of the local state history of both agents.
Since agents in Problem P1c have less information that their
counterparts in Problem P1a, an optimal symmetric strategy
in Problem P1c may not be optimal for Problem P1a; and the
optimal performance in Problem P1c may be strictly worse
then the optimal performance in Problem P1a.

Example 3: Consider a setting where there is no shared
state, the action space is U = {0, 1} and state space is
X = {0, 1}. Let T = 2 and the local states of each agent
are stationary across time. The initial states X1

1 , X
2
1 are

independent random variables with probability distribution
Bernoulli (1/2). The cost at time t = 1 is given by
k1(X1, U1) = 101{U1

1 ̸=0,U2
1 ̸=0} and cost at time t = 2 is

given by:

k2(X2, U2) =

{
0, if U1

2 = X2
2 and U2

2 = X1
2

1, otherwise,
(22)

Consider the symmetric strategy pair (g, g) for Problem
P1a where g1 (the strategy at t = 1) is: U1

1 = 0, U2
1 = 0. At

time t = 2, each agent uses the following strategy: U1
2 =

X1
1 , U

2
2 = X2

1 if X1
1 = X2

1 and U1
2 = 1−X1

1 , U
2
2 = 1−X2

1

if X1
1 ̸= X2

1 . This results in optimal expected cost of 0
in Problem P1a. In Problem P1c, it can be shown that the
optimal strategy at time t = 1 is U1

1 = 0, U2
1 = 0 and at time

t = 2, U i
2 follows probability distribution Bernoulli (1/2). The

optimal expected cost is 0.75 for the Problem P1c, which is
strictly worse than optimal performance in Problem P1a.

Special Case: We present a special dynamics under which
Problems P1a and P1c can be shown to be equivalent. The
dynamics of the shared and local states in the specialized
dynamics problem are as follows:

X0
t+1 = f0

t (X
0
t , Ut,W

0
t ), (23)

Xi
t+1 = ft(X

0
t , Ut,W

i
t ), i = 1, 2. (24)

In this case, we have the following result:

Lemma 6 For the specialized dynamics described in (23)
- (24), an optimal symmetric strategy in Problem P1c is
also optimal for Problem P1a and, consequently, the optimal
performance in the two problems are the same.

PROOF See Appendix V in [15]. ■

VI. CONCLUSION

In this paper, we focused on designing symmetric strategies
to optimize a finite horizon team objective. We started with
a general information structure and then considered some

special cases. We showed in a simple example that randomized
symmetric strategies may outperform deterministic symmetric
strategies. We also discussed why some of the known
approaches for reducing agents’ private information in teams
may not work under the constraint of symmetric strategies.
We modified the common information approach to obtain
optimal symmetric strategies for the agents. This resulted
in a common information based dynamic program whose
complexity depends in large part on the size of the private
information space. We presented two specialized models
where private information can be reduced using simple
dynamic program based arguments.
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