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Abstract— The energy transition will require innovative sus-
tainable thermal power generation systems to supplement in-
termittent renewable power sources. Accurate dynamic models
of these plants can be built using process simulation tools, but
they are often way too complex to be directly used for model-
based control design. This paper presents a novel method that
starts from results obtained from the accurate dynamic model
and helps selecting the minimal number of state variables
for writing first-principle control-oriented simplified models,
assessing the trade-off between complexity and accuracy. Two
test cases are presented: a super-critical CO2 boiler-turbine
system, and the innovative SOS-CO2 system, which combines
a closed recuperated CO2 Brayton cycle with a fuel cell.

I. INTRODUCTION

The forthcoming energy transition, spurred by the urgent
need to curb anthropogenic CO2 emissions, will have a
dramatic impact on the electrical power generation sector,
which is responsible for a third of those emissions [1]. Most
of the new installed power generation in the next 30 years
will be intermittent solar photovoltaic and wind power [2],
leaving to thermal generation processes an increased burden
in the balancing and stabilization of power grids.

After several decades in which the dominant technologies
in controllable power generation (coal-fired, combined-cycle,
hydro, and nuclear fission) remained basically the same,
this will likely generate a very strong interest in the design
and installation of innovative and sustainable thermal power
generation systems, involving, e.g., green hydrogen, carbon
capture and storage, fuel cells, innovative thermodynamic
cycles, etc. These plants will need to operate in a highly
dynamic regime, to counteract the variability of intermittent
renewable sources, likely requiring advanced, model-based
control systems for their operation.

As of today, powerful and highly flexible object-oriented,
equation-based modelling and simulation methodologies and
tools are available for this purpose, such as, for example,
those based on the Modelica language [3], as well as
libraries of reusable component models for thermal power
generation processes, such as [4], [5], [6]. These tools allow
to build detailed first-principles dynamic process models by
an equation-based modular approach, typically resulting in
models with tens of thousands of equations and hundreds of
state variables, which are too complex to be used directly for
model-based control design and are typically used to perform
simulation studies.
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As discussed in [7], such detailed knowledge models
can be complemented by control-oriented, low-order, highly
simplified first-principles interpretation models, which can
explain the fundamental control-relevant dynamics (though
not as accurately as knowledge models) and can be useful to
develop control strategies and model-based controllers. For
traditional steam thermal power plants, such models emerged
between the 70s and the 90s of the last century through
a trial-and-error process, in which interpretation models
were proposed by making educated guesses about suitable
simplifications and by validating them against the results
of knowledge models, see again [7] for some examples.
Unfortunately, innovative systems being proposed today are
often much more complex and tightly integrated, making this
process difficult and in dire need of help from systematic
methods.

There are many techniques available to obtain ”black-box”
reduced models, e.g. balanced reduction for linearized mod-
els, or the identification of nonlinear models from training
data generated by detailed simulation models. Unfortunately,
all these models suffer from a fundamental limitation, i.e.,
their internal variables and equations have no physical in-
terpretation, which makes them unsuitable as interpretation
models and can also be dangerous if they are used outside
their training range.

The ideal situation is when one can derive a simplified
first-principle models by introducing drastic simplifying as-
sumptions, but still employing equations that have a physical
justification (balance equations, fluid equations of state,
turbomachinery maps, heat transfer correlations, etc.).

The goal of this paper is to present a novel method to help
deriving such interpretation models, applicable to innovative
power generation process where there is little or no prior
experience to guide the reduced-order modelling process.
Given a reference frequency value, the method indicates
which state variables and which time-varying variables must
be included in the simplified model in order to achieve a
sufficiently accurate estimation of the frequency response at
that frequency. Based on this information, it is much easier
for an expert modeller to derive the simplified model, even
though this process still requires human skill and expertise.

The paper is structured as follows: the state and variable
selection algorithm is illustrated in Section II and demon-
strated on two example cases: a supercritical CO2 boiler-
turbine model in Section III and the novel SOS-CO2 plant,
which combines a closed recuperated CO2 cycle with a fuel
cell, in Section IV. Section V concludes the paper with final
remarks and future work discussion.
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II. THE STATE AND VARIABLE SELECTION
METHOD

The starting point of the process is a detailed, equation-
based dynamic model of the process, which could be built us-
ing a Modelica tool, using suitable component libraries. The
model is originally formulated as a system of differential-
algebraic equations; it is then automatically transformed by
the Modelica tool into state-space form (see [8] for further
details):

ẋ(t) = f (x(t),u(t)) (1)
y(t) = g(x(t),u(t)) (2)

where x is the vector of state variables, u is the vector of input
variables, and y is the vector of output variables. Executable
code is generated to compute functions f (x,u) and g(x,u),
internally using numerical solvers to handle algebraic loops
that cannot be resolved symbolically.

The Modelica tool can also solve the steady-state initial-
ization problem:

0 = f (x̄, ū) (3)
ȳ = g(x̄, ū) (4)

by either specifying the steady state inputs ū or outputs ȳ
and using an iterative Newton-Raphson solver. The tool can
then differentiate equations (1)-(2), either numerically by
finite differences or by means of automatic differentiation
techniques, thus producing the A,B,C,D matrices of the LTI
linearized model valid around that equilibrium:

∆ẋ(t) = A∆x(t)+B∆u(t) (5)
∆y(t) =C∆x(t)+D∆u(t), (6)

where ∆x(t) = x(t)− x̄, ∆u(t) = u(t)− ū, ∆y(t) = y(t)− ȳ.
When tackling a novel thermal generation process for the

first time, one can start exploring the dynamic behaviour of
the plant model around a certain steady-state, e.g. the design
conditions or some off-design operating points, by initializ-
ing the system on that steady state and then simulating the
response of (1)-(2) to small step changes to the inputs.

In many cases, one observes responses that could be
approximated, over a certain time horizon, by a low-order
system. By reasoning in the frequency domain, one could
approximate that dynamic response with a reduced-order
system, whose linearization has approximately the same
frequency response G( jω∗) at the frequency ω∗ of interest
for control, e.g., the cross-over frequency ωc if one want to
design PID controllers using loop-shaping techniques.

In order to derive a reduced-order model, one needs to
figure out what are the relevant physical phenomena (e.g.
mass or energy balances) and what are the corresponding
variables (e.g., pressures or temperatures) that are relevant to
approximate G( jω∗). In general, three situations can arise:

1) a state variable ∆x j and its corresponding dynamic
state equation, typically corresponding to some bal-
ance equation, are relevant to determine G( jω∗) with
sufficient accuracy;

2) a state variable ∆x j is relevant to determine G( jω∗)
with sufficient accuracy, but the dynamic behaviour
introduced by its state equation is negligible, so its
state equation can be approximated by a static one,
following a singular perturbation approach [9];

3) a state variable ∆x j does not contribute significantly
to G( jω∗), which means that the corresponding state
variable x j of the original model can be considered as
a constant when deriving the reduced model.

Given a nonlinear process model (1)-(2), a reference
equilibrium point (x̄, ū, ȳ), a pair of scalar input and output
variables ur, ys, and a reference frequency ω∗, the proposed
method aims at finding a minimal set of variables of type 1.
and 2. that will need to be part of a first-principles simplified
model that reproduces the dynamic behaviour at frequency
ω∗ with sufficient accuracy. In most cases, this physical
model will also be able to reproduce the dynamic behaviour
around other equilibrium points, though this cannot be guar-
anteed a priori and needs to be checked a posteriori. The
method goes through four main steps.

A. Step 1: Ranking relevant states

During the first step, a simple heuristic algorithm pro-
gressively removes state variables from the linearized model
(5)-(6), eventually producing a sequence of reduced-order
linearized models Mk with increasingly larger state-space
size, each characterized by a percentage error

ek,% = 100 · |Gk( jω∗)−G( jω∗)|
|G( jω∗)|

. (7)

The result of this step can be summarized as in Table I,
which can be interpreted as follows: a model that only
includes x3 as a state variable will have an 81.3% relative
error in G1( jω∗); a model that includes x3 and x1 will have
a 42.5% error in G2( jω∗); a model that includes x3, x1, and
x4 will have an 8.9% error in G3( jω∗), etc. The error on the
last row is always zero, as it corresponds to the degenerate
case of a reduced model identical to the original one.

The algorithm is described by the pseudo-code in Alg. 1.
First, the frequency response at frequency ω∗ is computed for
the original linearized system (5)-(6), considering the single
input-output pair ur,ys. An empty list RM is instantiated
to collect the indices of the states in matrix A that will
be removed during the iterations, and an empty list of
percentage errors is initialized containing a zero element.

While the number of removed states is lower than the
total number of states, the main iteration cycle is repeated.
First, the rows and columns of the system matrix collected

TABLE I: Example result of Step 1 of the method

State Error [%]
x3 81.3
x1 42.5
x4 8.9
x5 2.5
x6 0.4
x2 0.0
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Algorithm 1

n = size(A,1)
B = B[:,r]
C =C[s, :]
H = freqResp(A,B,C,D,ω∗)
RM = [ ] # List of removed states
ERR = [0] # List of the corresponding errors
while len(RM)< n do

# i are the indices of the states in matrix A
A(RM.i,RM.i) = [ ]
B(RM.i, :) = [ ]
C(:,RM.i) = [ ]
E = +Inf
for j in the remaining states do

A∗ = A([1 : j−1, j+1 : end], [1 : j−1, j+1 : end])
B∗ = B([1 : j−1, j+1 : end], :)
C∗ =C(:, [1 : j−1, j+1 : end])
H∗ = freqResp(A∗,B∗,C∗,D,ω∗)
e = abs((H −H∗)/H)
if e < E then

E = e
k = j

end if
end for
RM = [RM,k]
ERR = [ERR,E]

end while
RM = RM[end : −1 : 1]
ERR = ERR[end : −1 : 1]

in the list RM are eliminated. Then, a for loop is executed
on the remaining states, removing them one at a time; the
removed state that leads to the smallest relative error in the
computation of G( jω∗) is selected and stored in the list RM,
alongside with the corresponding error e.

At the end of the algorithm, the two lists RM and ERR
are reversed and displayed as in Table I. Note that the
obtained ranking is not necessarily the optimal one: it may as
well happen that some combination of reduced-order states
different from the ones that are obtained by taking the first
k rows of Table I leads to a smaller error for the same
number of state variables. On the other hand, looking for
these optimal configurations would lead to a combinatorial
explosion of combinations to be tested, which is not feasible.
The proposed greedy algorithm is a simple heuristics for
tackling this combinatorial problem, which however proved
to work well in several tested examples.

Also note that there is no guarantee that the values of
the error in the second column of Table I are monotonically
decreasing. For example, in some cases it may well happen
that a certain physical phenomenon is described by the
combined effect of two states x j and xk; removing both could
increase the error by, say, 10%, while removing only one may
create an imbalanced model with a much larger error.

A final important remark is due at this point: when
modelling thermal power generation systems, 1D distributed-
parameter models are often employed, e.g., for the mod-
elling of heat exchangers. In this case, the state variable
of the original partial differential equation (PDE), e.g., a
temperature distribution T (x, t), is discretized into an array
of n scalar variables, e.g., Tj(t), j = 1, ...,n, using methods
such as finite volumes, finite elements, or finite differences.
Accurate simulation models usually require moderately high
values of n, e.g., 10 or 20. It is apparent how the influence
on G( jω∗) of a single element Tj of such an array will be
quite small in case of large n; in this case, the proposed
heuristics would progressively remove all those individual
variables one by one, because their small contribution leads
to a small error when removed from the system, until none
is left, even though the original variable of the PDE has a
significant impact in determining G( jω∗).

Therefore, each array of state variables, which typically
comes from the discretization of a 1D model, will be handled
atomically, i.e., it will be removed as a whole from the
system matrix instead of one element at a time. This also
substantially reduces the number of iterations required for
large systems, which may have in excess of 1000 individual
state variables, but not more than a few dozens if the 1D-
discretized variables are considered as atomic entities.

Regarding the chemical part of the models, it often in-
volves arrays of compositions that may become state vari-
ables of the models because of mass balance equations; in
the scope of this work, these arrays were also considered
as atomic entities for the simplification process, i.e., the
chemical part of the model is either fully retained or fully
neglected.

B. Step 2: Deciding the reduced-order model size

Once Step 1 is complete, a result of the analysis such as
Table I will be available. At this point the expert modeller
will have to take a decision on where to draw the line
between the relevant and irrelevant states. This involves
a trade off between the complexity of the model and its
accuracy. Controllers with a moderate level of robustness
can usually tolerate errors up to 20−30% without too much
trouble, but this ultimately depends on how the reduced
model will be used for the model-based control design.

The outcome of this second step will be a list of relevant
state variables corresponding to the first k elements of
Table I and the corresponding relative error of the frequency
response Gk( jω∗).

C. Step 3: Further order reduction by singular perturbation

Once a decision has been made in Step 2 about the trade-
off between the size of the reduced model and its accuracy
around frequency ω∗, it is still possible to further reduce
the order of the system without sacrificing the accuracy too
much, by means of singular perturbations [9]. The idea is
that one can partition the state vector x in two sub-vectors xr
and z, then neglect the dynamic term in the state equations
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TABLE II:
Example result of Step 3 of the method

State Error [%]
x3 42.8
x1 15.3
x4 8.9

for z, i.e., write:

∆ẋr(t) = A11∆xr(t)+A12∆z(t)+B1∆u(t) (8)
0 = A21∆xr(t)+A22∆z(t)+B2∆u(t) (9)

∆y(t) =C1∆x(t)+C2∆z(t)+D∆u(t), (10)

which can then be solved as

∆ẋr(t) = A∗
∆xr(t)+B∗

∆u(t) (11)
∆y(t) =C∗

∆x(t)+D∗
∆u(t), (12)

where

A∗ = A11 −A12A−1
22 A21 (13)

B∗ = B1 −A12A−1
22 B2 (14)

C∗ =C1 −C2A−1
22 A21 (15)

D∗ = D−C2A−1
22 B2 (16)

Algorithm 2, whose inputs are the reduced-order A,B,C,D
matrices obtained from the previous step and the frequency
ω∗, is similar to Algorithm 1 and can be described by the
following pseudo-code:

Algorithm 2

H = freqResp(A,B,C,D,ω∗)
RM = [ ] # List of removed states
ERR = [Estep1] # List of the corresponding errors
while len(RM)< n do

E = +Inf
for j in the remaining states do

Re-order the state x so the j-th state comes last
Compute A∗,B∗,C∗,D∗ by singular perturbations
H∗ = freqResp(A∗,B∗,C∗,D,ω∗)
e = abs((H −H∗)/H)
if e < E then

E = e
k = j
Ar = A∗, Br = B∗, Cr =C∗, Dr = D∗

end if
end for
A = Ar,B = Br,C =Cr,D = Dr
RM = [RM,k]
ERR = [ERR,E]

end while
RM = RM[end : −1 : 1]
ERR = ERR[end : −1 : 1]

Assuming the decision in Step 2 was to retain states
x3,x1,x4, the end result of the algorithm could be as shown in

Table II, which can interpreted as follows: a model that keeps
x3 only as state and eliminates x1,x4 via singular perturbation
leads to a 42.8% error on G1( jω∗); a model that keeps x3,x1
as states and eliminates x4 via singular perturbation leads to
a 15.3% error on G2( jω∗); a model which keeps x3,x1,x4
as states leads to an 8.9% relative error on G3( jω∗).

D. Step 4: Deciding further reduction of the model via
singular perturbation

Based on the results shown in Table II, the expert modeller
will then once again weigh the trade-off between complexity
and accuracy and decide which of the states selected in Step
2 should be retained as such in the reduced-order models,
and which one should instead be considered as quasi-static.

E. Step 4: Writing the first-principles reduced model

Based on the results obtained in Steps 2 and 4, the
modeller will then write a reduced-order model that can
assume all the states eliminated in Step 2 as constants, all
the states eliminated in Step 4 as time-varying variables,
governed by algebraic equations, and all the surviving state
variables as states, governed by differential state equations.

F. Implementation details

The Python language and the Scipy package [10] were
used in this work; the open-source code is available on a
GitHub repository [11].

As the proposed method is potentially applicable to large
system models, possibly counting over a thousand state
variables, extra care must be exercised to ensure an efficient
and numerically robust implementation.

First of all, if the original physical process model is
written in Modelica, its variables are always written using
SI variables, which can make the corresponding model very
badly scaled; the power output of a large power generation
system could have order of magnitude 109 W, while control
valve flow coefficients could be around 10−4 m2, thus
spanning 13 orders of magnitude. In order to avoid bad
matrix conditioning due to scaling issues, it is recommended
to scale all input, output, and state variables, so that they all
have order of magnitude around unity.

Scypy’s freqResp() function, if supplied the A,B,C,D
matrices of the linearized system, converts the matrix repre-
sentation into its zero-pole-gain form before evaluating the
frequency response. When the size of the system grows,
this method scales badly, performing inefficient calculations
which may also fail. The following function should be used
instead, which scales well also for system of order greater
than one thousand.
def freqResp(A,B,C,D,w):

jw = 1j*w
I = numpy.identity(len(A))
F = jw*I-A
G = scipy.linalg.solve(F, B)
fr = numpy.matmul(C,G) + D
return fr
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Fig. 1: The Modelica diagram of the sCO2 boiler + turbine.

TABLE III:
whot VS Pel @ 0.003 rad/s

State Error [%]
wall.T[6] 100.00
coldside.p 45.01

coldside.T[6] 37.24
hotside.T[6] 9.38

hotside.p 0.00
coldside.X[6,5] 0.00
hotside.X[6,5] 0.00

TABLE IV:
whot VS Pel : type 2 states

State Error [%]
wall.T[6] 11.36

coldside.T[6] 9.05
hotside.T[6] 6.72
coldside.p 9.38

III. EXAMPLE 1: SCO2 BOILER AND TURBINE

In this section, a simplified model inspired by the super-
critical CO2 plant presented in [12] is analyzed. It comprises
a heat exchanger representing the plant boiler and a turbine as
shown in Fig. 1. The hot side fluid is an exhaust gas entering
the boiler at 1400 K; the cold side fluid is pure CO2 getting
heated from 720 K to 890 K. The state variables of the
detailed process model are the temperatures T , the pressures
p and the mass fractions array X of each discretization
volume of the heat exchanger and the temperatures T of the
discretized metal walls separating the channels. The inputs of
the system are the mass flow rates entering the two channels
of the boiler with a fixed temperature and composition,
while the output is the electrical power generated by the
turbine. The Modelica model employed to represent the
system features six finite volumes for each channel and for
the wall, for a total number of differential-algebraic equations
around 2100 and 80 scalar state variables.

The application of a mass flow rate step change on the hot
side inlet changes the power output mainly through thermal
phenomena, since more thermal power is available to power
the turbine, but it first needs to be trasmitted to the cold
side through the wall thermal inertia. The perturbed system
reaches a new steady state condition with a time constant
τ1 ≈ 300s, as shown by the red curve in Fig. 2.

The application of a mass flow rate step to the cold
side causes instead a faster response of the turbine power
with a time constant τ2 ≈ 30s, likely linked to the coupling
between the channel pneumatic capacitance and the turbine
admittance, followed by a slower settling transient (green
curve of Fig. 3).

Once the time scale of interests of the two responses
have been identified, the system can be analyzed with the
proposed algorithm, focusing on the frequencies related to
the aforementioned time constants.

A. Hot flow rate perturbation

Table III shows the output of Step 1 of the method for
the input-output pair hot mass flow rate–power output. The
analysis is made at a frequency ω∗ = 1/τ1 ≈ 0.003rad/s.
Starting from the bottom of the table, a first pretty obvious
result is that the states related to the compositions do not play
any role, since the inlet composition is not changed and there
are no chemical reactions along the heat exchanger channels.
The hot side pressure can also be taken as a constant in the
reduced model, without leading to a large error.

As a result of Step 2, a reasonable compromise is to keep
as states the three temperatures and the cold side pressure,
since this leads to an error of about 10%.

The result of Step 3 is shown in Table IV. Starting from
the bottom, if all four states are kept as such, the error is the
same as in Step 2, about 10%. If the singular perturbation
transformation is applied to the cold side pressure state
and the first three variables are kept as states, the error
is actually slightly reduced. This is perfectly sensible, as
the effect of the dynamic mass accumulation term in the
cold side mass balance, which mainly depends on the cold
side pressure derivative, is actually negligible if compared
to the huge thermal inertia that dominates this transient.
The same thing holds for the derivatives of the hot and
cold side temperatures, which correspond to the dynamic
energy storage terms of the two fluids, which are negligible
compared to the energy storage in the wall, and thus can
be removed from the model as states. Only keeping the wall
temperature as a state variable, and the other two temperature
and the the cold side pressure as variables not associated to
any storage, leads to an error of 11%, which is acceptable.

We now consider four simplified models, all considering
constant compostions. The first one, not reported here for
space constraints, includes differential equations with the
states corresponding to the first four rows of Table III: Tw, j,
pc, Tc, j, and Th, j, j = 1, ...,N, with N = 6. These equations are
the dynamic mass and energy balances for the six volumes of
the cold side, coupled to the turbine equations, the dynamic
energy balance for the six volumes of the heat exchanger
walls, and the dynamic energy balance for the six volumes
of the hot side, assuming constant hot side pressure. The
overall model has 33 differential-algebraic equations and 19
states. The step response of this first model is shown by
the orange dashed curve of Fig. 2, which is quite a good
approximation.

Considering the six hot side temperatures as constant
would lead the response shown by the yellow curve, which
is a quite bad approximation, in accordance to the estimated
37% error reported in the third line of Table III for that case.
This confirms the soundness of the decision taken in Step 2.

The results of Step 3 summarized in Table IV suggest that
if we only consider Tw, j as states and Tc, j, Th, j, and pc as time
varying variables, we could still achieve a good accuracy,
with an error of about 11%. Since the only surviving states
are the wall temperatures, the only dynamic equations we
are allowed to write are the energy balance equations on the
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Fig. 2: Power output responses of the simplified system after
a hot mass flow rate step through subsequent iterations.

wall volumes, while the mass and energy balance equations
on the hot and cold fluid volumes, which depend on the
corresponding time-varying pressures and temperatures, will
be static ones, without any accumulation term.

To this aim, we can define the additional following time-
varying variables: the hot mass flow rate input wh, the
thermal power flows Qc, j and Qh, j, the turbine flow rate
wt , and the turbine power Pt . We then define the following
constants: the cold flow rate input wc, the mass and specific
heat capacity Mw and cw of the walls, the specific heat
capacity of the cold and hot fluids cv,c, cp,c and cp,h, the cold
and hot side inlet temperatures Tc,0 and Th,0, the nominal heat
transfer coefficients γc and γh on the cold and hot sides, the
Stodola coefficient Kt , the cold fluid gas constant Rc, and the
turbine outlet pressure po. The reduced model then becomes:

0 = wc −wt (17)
0 = wccp,c(Tc, j −Tc, j+1)−Qc, j (18)
0 = whcp,h(Th, j −Th, j+1)−Qh, j (19)
Mwcw

N
dTw, j

dt
= Qc, j +Qh,N− j+1 (20)

Qc, j = γc

(
wc

wc,n

)β (Tc, j +Tc, j−1

2
−Tw, j

)
(21)

Qh, j = γh

(
wh

wh,n

)β (Th, j +Th, j−1

2
−Tw,N− j+1

)
(22)

wt = Kt
pc√

RcTc,N

√
1−
(

po

pc

)2

(23)

Pt = wtcpηcpTc,N

(
1−
(

po

pc

)cp/cv
)
, (24)

with j = 1, ...,N = 6. This model only has 33 differential-
algebraic equations and 6 state variables, compared to the
2100 differential algebraic equations and 80 scalar state
variables of the original model; yet, its step response, shown
by the dotted blue line in Fig. 2, is a very good approximation

TABLE V:
wcold VS Pel @ 0.03 rad/s

State Error [%]
coldside.p 16.01

coldside.T[6] 3.21
wall.T[6] 0.07

hotside.T[6] 0.00
hotside.p 0.00

coldside.X[6,5] 0.00
hotside.X[6,5] 0.00

of the response of the original model, as suggested by the
outcome of Step 4 of the proposed method.

Of course if we also got rid of the Tw, j states via singular
perturbation, we would have obtained a completely static
model, whose response, shown in light blue in Fig. 2 is
a quite bad approximation of the original one over this
time/frequency scale.

B. Cold flow rate perturbation

The analysis is performed at frequency ω∗ = 1/τ2 ≈
0.03rad/s. In this case, the outcome of Step 2, shown in
Table V, is pretty clear: a model that only considers the cold
side pressure pc as state variable and all other variables as
constants can lead to an acceptable error of 16%. In this case
there is no need to proceed with Step 3, since this would lead
to a completely static model.

The reduced-order first-principle model can only have one
differential equation in the variable pc, and consider all other
states as constants; this will of course be the cold side
fluid mass balance equation, written under the assumption
of constant temperatures and compositions, which is then
coupled with the turbine equations:

N

∑
1

Vc

NRcTc, j

d pc

dt
= wc −wt (25)

wt = Kt
pc√

RcTc,N

√
1−
(

po

pc

)2

(26)

Pt = wtcpηcpTc,N

(
1−
(

po

pc

)cp/cv
)
, (27)

where Vc is the volume of the boiler cold channels.
In this case, the reduced-order model only has 3

differential-algebraic equations and 1 state, but yet, as shown
in Fig. 3, it reproduces the system step response quite well
for the first 30-50 seconds, which roughly correspond to
the selected value of ω∗; over this time horizon, the wall
temperature can be assumed as a constant. On a longer time
scale, thermal phenomena kick in: since the cold mass flow
was increased, but the hot mass flow was not, the cold side
outlet temperature decreases over the same time scale of
the previous case, causing a slight reduction in the power
output. However, this slower dynamics is not too relevant if
one wants to close a feedback loop with crossover frequency
around 0.03 rad/s.

If we eliminated the pc state in Step 3 by singular pertur-
bation, i.e, by replacing the left-hand-side of Equation (25)
with zero, we would obtain a static model, whose response is
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Fig. 3: Responses of the simplified system after a cold mass
flow rate step through subsequent iterations.

shown by the dotted line in Fig. 3, which is not acceptable if
we are interested in a time horizon of a few tens of seconds.

IV. EXAMPLE 2: SOS-CO2 CYCLE

In this section the algorithm is applied to the SOS-CO2
cycle [13]. This power plant is an innovative technology
featuring an oxy-combustion closed recuperated Brayton
cycle and a solid-oxide fuel cell. Through a train of compres-
sors (CPR), intercoolers (IC) and water condensers (WC),
the recycle mass flow rate, mainly composed by CO2 is
compressed and split into the moderator and the oxidant
flows. Both streams are pre-heated in regenerators (R and
O) and the oxidant flow, mixed with pure oxygen, oxidizes
the injected fuel first in a solid-oxide fuel cell and then in
the oxy-combustor (COM). The flue gases are expanded in a
turbine and serve as hot flows in the regenerators. The excess
CO2 flow produced is extracted from the recycle flow and
is sent to a compression and purification unit for permanent
underground storage.

The model of this thermal power generation process was
coded in the Modelica language (see Fig. 4) and features
more than 110000 equations and about 1400 scalar state
variables. The prohibitive size and the complexity of the
model makes the formulation of control-oriented models
very difficult. Useful indications may then be obtained by
processing the plant model with the proposed algorithm.

Table VI presents the result of the analysis considering
as input-output pair the flow rate of compressor CPR-4 and
the net plant power output, i.e., the turbine and fuel cell
power output minus compressor consumption. The inspected
frequency is 0.07 rad/s, since it is a reasonable crossover
frequency for a power output controller.

It is immediately possible to recognize three groups of
states. The pressures of the components in the low pressure
side of the cycle (first 6 rows of the table) are essential
to capture correctly the dynamic phenomena, in particular,
the intercooler pressures, since they determine the overall

TABLE VI:
wCPR4 VS Pel @ 0.07 rad/s

State Error [%]
IC-1.p 100.00

O.hotside.p[10] 100.00
R.hotside.p[10] 86.90

IC-2.p 77.89
IC-3.p 71.61
IC-4.p 42.44

O.hotside.T[10,4] 23.00
IC-5.p 23.00

R.coldside.p[10] 22.89
COM.p 22.89

FC.anode.p[10] 22.89
FC.anode.X[10,10] 22.89
FC.cathode.p[10] 25.67
R.hotside.T[10,4] 10.20
O.coldside.p[10] 15.16
COM.fluegas.T 11.55

O.coldside.T[10,4] 8.76
COM.fluegas.X[5] 5.85

IC-2.X[5] 5.06
O.hotside.X[10,4,10] 5.02

IC-1.X[5] 3.77
FC.anode.T[10] 1.50

FC.cathode.T[10] 1.66
R.hotside.X[10,4,10] 2.19
FC.cathode.X[10,10] 0.45
R.coldside.T[10,4] 1.97

R.wall.T[10,4] 0.82
O.wall.T[10,4] 0.73

IC-3.X[5] 1.43
FC.wall.T[10] 0.66

IC-4.X[5] 0.24
IC-5.X[5] 0.21

R.coldside.X[10,4,10] 0.19
O.coldside.X[10,4,10] 0.19
FC.anodePlate.T[10] 0.07

FC.cathodePlate.T[10] 0.00

TABLE VII:
wCPR4 VS Pel : Type 2 states

State Error [%]
R.hotside.p[10] 74.85
R.coldside.p[10] 53.20
FC.anode.p[10] 41.61
O.hotside.p[10] 33.03
O.coldside.p[10] 27.85

IC-3.p 24.20
IC-5.p 19.89
IC-2.p 16.31
IC-4.p 14.12

FC.cathode.p[10] 11.65
IC-1.p 9.97

COM.fluegas.p 9.10
R.hotside.T[10,4] 8.78
O.hotside.T[10,4] 8.70

FC.anode.X[10,10] 8.70
COM.fluegas.T 8.71

O.coldside.T[10,4] 8.76

condensed water flow leaving the cycle from the condensers;
this flow rate influences the mass flow rate through the
downstream compressors, hence their consumption, but also
the turbine expansion ratio, hence the turbine power output.

The next 8-10 states comprise some of the most relevant
states of the high pressure side and the temperatures of the
regenerators hot sides. Their influence is less important since
temperatures act on a longer time scale and many of the
pressures are not directly influenced by the mass flow rate
variation due to the presence of compressor CPR-5, which
follows a mass flow rate setpoint.

All the remaining state variables, in particular the fluid
compositions, have a marginal impact on the accuracy of the
reduced-order model.

As in the previous examples, Steps 3 and 4 can further
reduce the order of the simplified model. Assuming that the
decision of Step 2 is to retain the first 17 states (note that
many of those states are arrays, so the number of scalar state
variables is much larger), Step 3 leads to Table VII. This
clearly shows that the temperature states may be converted
into algebraic variables by singular perturbation without in-
creasing the approximation error, leading to reduced models
that only consider 12 pressure state variables and still provide
an error less than 10% in the frequency response G( jω∗)

Simplified models based on these results are currently
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Fig. 4: The SOS-CO2 cycle Modelica process diagram.

under development and will be presented in future works.

V. CONCLUSION

In this work the authors propose a novel method to sup-
port the formulation of control-oriented reduced models of
thermal power generation processes, based on two heuristic
algorithms and two expert decision steps.

The procedure starts from a detailed, accurate simulation
model of the process, an indication of a steady-state op-
erating point, and a frequency of interest. It then provides
a categorization of its states into three classes: essential
state variables, states that may be converted into algebraic
variables and states that might be considered as constants.
The expert modeller can then use these suggestions as a guide
to formulate first-principle reduced-order models for control
purposes, which capture the control-relevant dynamics in a
white-box fashion.

The proposed method was tested on two different systems:
a conceptual model of a sCO2 boiler-turbine system and
the (very large) model of the innovative SOS-CO2 power
generation system. The results of the tests are consistent with
the expected result in the first case and seem very promising
in the second case despite the large size of the accurate
dynamic model of the system, though they certainly need to
be tested on more use cases to confirm the general validity
of the proposed approach. The Python code of the proposed
method and the Modelica code of the simplified models is
available on the linked GitHub repository [11].

A simple extension of the proposed method is to consider
the frequency response approximation error over a finite
frequency range, instead of a single value, and/or around
multiple operating points instead of one, to ensure that the
choice of states will lead to accurate enough models over a
wider operating range than the currently assessed one.
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