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Abstract— We propose a novel adaptive critic learning al-
gorithm for a continuous-time nonlinear system subject to
excitation and weight constraints. The algorithm is able to
learn the optimal control in real-time under only finite exci-
tation without requiring the a priori knowledge of the system
model, i.e. the Hamilton-Jacobi-Bellman (HJB) equation is
approximately solved online by the adaptive critic learning of
a nonlinear Q-function. The main contribution of this paper
is twofold: First, we present an optimisation-based approach
to the derivation of a weight-error-driven adaptive law that
guarantees exponential convergence of the critic weight. Such
formulation enables a new P-projection operator to enhance the
convergence property, i.e. the weight estimate always stays in a
bounded convex set that contains the true weight. Second, we
adopt a new measure to build the information matrix that stores
its richness over incoming data such that the standard persistent
excitation (PE) condition is relaxed to a finite excitation (FE)
condition. In this way, the convergence of the critic weight is
guaranteed without persistently injecting exploration noise. We
show that the method is model-free and can achieve semi-global
stability. A numerical example demonstrates the effectiveness
of the theoretical result.

Index Terms— adaptive optimal control, adaptive critic, pro-
jection operator, finite excitation, Q-learning

I. INTRODUCTION
Optimal control [1], [2] is commonly used to tackle a

minimisation/maximisation problem by offline solving the
Hamilton-Jacobi-Bellman (HJB) equation or, in a linear
quadratic case, the Riccati equation. The nonlinear HJB
equation is often difficult or impossible to solve due to
the requirement of complete knowledge of the system. On
the other hand, adaptive control [3] online learns to control
unknown systems using data measured in real time along
the system trajectories. Recent ideas of incorporating re-
inforcement learning principles into feedback control have
prompted extensive research on adaptive optimal control.
This is also referred to as approximate/adaptive dynamic
programming (ADP) [4], [5], [6]. Vrabie et al. [7] proposed
an integral reinforcement learning (IRL) approach in con-
tinuous time which generates a large family of algorithms
but most of them require at least partial knowledge of the
system dynamics. Vamvoudakis [8] developed a model-free
IRL algorithm by leveraging the idea of Q-learning. The
algorithm employed two neural networks in a critic/actor
configuration and was restricted to the LQR case. Chen
and Herrmann [9] derived a model-free adaptive optimal
controller for general unknown nonlinear systems. Instead of
the gradient algorithm with normalisation in [8], the adaptive
law in [9] used a sliding mode technique which guarantees
the convergence towards the optimal solution in finite time.

In this paper, we improve a model-free adaptive optimal
control algorithm via Q-learning for a nonlinear system [9]
to consider various practically motivated constraints. Hence,
the controller can learn the optimal control solution in
real time under only finite excitation without requiring the
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system model; moreover, adaptation weights strictly remain
within some convex set, converging to the optimal weights
in that convex set. The main contribution of this paper is
twofold: First, we present an optimisation-based approach
to the derivation of a recently presented weight-error-driven
adaptive law that guarantees exponential convergence of the
critic weight. The work [9], [10], [11] used that adaptive
algorithm but here we show an alternative derivation of
such method based on an integral discounted cost function
inspired by a least-squares approach. This formulation then
enables the use of a new P-projection operator to enhance
the convergence property, i.e., the weight estimate always
stays in a bounded convex set in which the true weight
lies in. Second, we provide semi-global [12] closed-loop
stability analysis under a finite excitation (FE) condition via a
Lyapunov theorem. This relaxes the widely-used assumption
on the persistent excitation (PE) condition in adaptive control
[3] and also in ADP [6], [7], [8]. Unlike [7] which requires a
priori knowledge of input gain g(x), the proposed algorithm
is model-free for the benefits of Q-learning.

II. PROBLEM FORMULATION
A. Nonlinear System and Cost Function

Given the continuous-time nonlinear affine time-invariant
system

ẋ(t) = f(x(t)) + g(x(t))u(t), x(0) = x0 (1)

where x(t) ∈ Rn is the measurable state vector, u(t) ∈ Rm

is the control policy or input vector, and f(x(t)) ∈ Rn,
g(x(t)) ∈ Rn×m are the system drift and the input gain
functions, respectively.
Assumption 1. f(x)+g(x)u is Lipschitz continuous in x on
a compact set Ω ∈ Rn given a continuous control u ∈ U .
The pair (f, g) is stabilisable.

We define an infinite-horizon integral cost function
V u(x) ∈ C1(Ω) given by

V u(x(t)) :=

∫ ∞

t0

r(x(t), u(t))dt, t ≥ t0 (2)

with r(x, u) being the utility function, which is equivalent
to the reward function in reinforcement learning. We select
r = S(x(t)) + uT(t)Ru(t) with 0 ⪯ S(x(t)) ∈ R and 0 ≺
R = RT ∈ Rm×m, where R is set to be a constant diagonal
matrix in this paper for the sake of simplicity.

B. Optimal Control and its HJB Solution
The optimal control problem is to minimise the cost

function (2) by finding an optimal stabilising control u∗(t).
Thus, the optimal cost V ∗(x) is defined by

V ∗(x(t)) := min
u

∫ ∞

t0

r(x(t), u(t))dt, t ≥ t0 (3)

A general solution to the optimal control problem can be
derived using Pontryagin’s minimum principle or dynamic
programming as a partial differential equation in terms of
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the state gradient of the optimal cost [1][2]. To show this,
we first define the Hamiltonian

H(x, u,∇V u
x ) := r(x, u) + (∇V u

x )T(f(x) + g(x)u) (4)

with the (vertical) gradient vector ∇V u
x = ∂V u/∂x ∈

Rn. The optimal value function V ∗(x) in (3) satisfies the
Hamilton-Jacobi-Bellman (HJB) equation

0 = ∇V ∗
t +min

u
H(x, u,∇V ∗

x ) (5)

where ∇V ∗
t = ∂V ∗/∂t = 0 as the optimal cost is not an

explicit function of time. The optimal control u∗ can be
found by setting ∂H(x, u,∇V ∗

x )/∂u = 0 so that

u∗ = −1

2
R−1g(x)T∇V ∗

x (6)

Inserting the optimal control (6) into (5) gives the HJB
equation in terms of ∇V ∗

x as

0 = S(x) + (∇V ∗
x )

Tf(x)− 1

4
(∇V ∗

x )
Tg(x)R−1g(x)T∇V ∗

x

(7)
In general, solving the HJB equation analytically is difficult
due to the nonlinearity and the lack of system knowledge.

III. CONTINUOUS-TIME Q-LEARNING WITHOUT
PERSISTENT EXCITATION

This section provides a model-free “critic-actor” reinforce-
ment learning method which enables the agent to learn the
optimal control online without the requirement of the PE
condition.

A. Nonlinear Q-Function and Q-Learning Bellman Equation
The idea of the continuous-time Q-learning method for

nonlinear systems was initiated in [9], we summarise the
basics and the key lemma as follows in preparation for the
later design of adaptive critic and control. We define a Q-
function by adding the right-hand side of the HJB equation
(5) onto the optimal value (3) as

Q(x, u) : = V ∗(x) +∇V ∗
t +H(x, u,∇V ∗

x )

= V ∗(x) + S(x) + (∇V ∗
x )

Tf(x)︸ ︷︷ ︸
Fxx(x)

+

(∇V ∗
x )

Tg(x)u︸ ︷︷ ︸
Fxu(x, u)

+ uTRu︸ ︷︷ ︸
Fuu(u)

(8)

where Fxx(x), Fxu(x, u), and Fuu(u) are the lumped terms.
Such parameterisation in terms of x and u allows the proper
approximation via neural networks.
Lemma 1. [9] The Q-function defined in (8) is posi-
tive definite with the optimisation scheme Q∗(x, u∗) =
minuQ(x, u). The optimal Q-function Q∗(x, u∗) has the
same optimal cost V ∗(x) (3) as for the cost function V u(x)
(2), i.e. Q∗(x, u∗) = V ∗(x) when applying the optimal
control u∗.
Proof. Refer to [9] (Lemma 3) for the proof. □

In critic-actor structure, the assumption on smoothness of
the cost function V u(x) is desired for its approximation in
Sobolev norm, i.e., approximation of the value function and
its gradient. Hence, we now make the following assumption
in terms of Q(x, u).
Assumption 2. Given state x ∈ Ω, an admissible [13]
control u(x) ∈ Ψ(Ω) and V u(x) ∈ H1,2(Ω) with H1,2(Ω)
denoting a Sobolev space on Ω, the Q-function defined as
(8) is smooth, i.e., Q(x, u) ∈ C1(ΩQ) with ΩQ ⊂ Ω×Ψ(Ω)
being a compact set.

This assumption allows the use of a neural network ap-
proximation via the Weierstrass higher-order approximation
theorem [13]. To this end, we approximate the Q-function (8)
via an adaptive critic with a neural-network-type structure
given by

Q(x, u) =WTΦ(x, u) + ε(x, u) (9)

where Φ(x, u) ∈ C1(ΩQ) is the activation function vector
with the number N of neurons in the hidden layer; W ∈ RN

is the ideal constant weight vector; ε(x, u) denotes the
neural network approximation error; and WTΦ(x, u) can
be explicitly expressed according to the three components
Fxx(x), Fxu(x, u), and Fuu(u) in (8) as

WTΦ(x, u) =
[
WT

xx | WT
xu | WT

uu

] [ Φxx(x)
vec(Φxu(x)⊗ u)

Φuu(u)

]
(10)

where ⊗ denotes the Kronecker product and vec(·) is the
vectorisation function which stacks the columns of a matrix
together; Φ(x, u) are selected for Φxx ∈ RNxx , Φxu ∈ RNxu

and Φuu ∈ Rm to provide a complete linearly independent
basis such that, under Assumption 2, Q(x, u) is uniformly
bounded with N = Nxx + m(Nxu + 1) on the compact
set ΩQ. Recall the Weierstrass higher-order approximation
theorem [13], the approximation error ε(x, u) is bounded
for a fixed N and as the number of neurons N → ∞, we
have ε(x, u) → 0.

Now we derive the Bellman equation in terms of the
Q-function to update the critic. By Bellman’s principle of
optimality, we have the following optimality equation [7]

V ∗(x(t− T )) =

∫ t

t−T

r(x(τ), u(τ))dτ + V ∗(x(t)) (11)

The result from Lemma 1 showed that Q∗(x, u∗) = V ∗(x).
Considering the instrumental Lemma [2, p.441], we can
rewrite (11) in terms of Q∗(x, u∗) as a Q-learning Bellman
equation:

−ρ(x, u)︷ ︸︸ ︷
−
∫ t

t−T

r(x, u)dτ = Q∗(x(t), u∗(t))

−Q∗(x(t− T ), u∗(t− T )) + ψ

=WTΦ(x(t), u∗(t))−WTΦ(x(t− T ), u∗(t− T ))︸ ︷︷ ︸
WT∆Φ(x, u∗)

+ ε(x(t), u∗(t))− ε(x(t− T ), u∗(t− T )) + ψ︸ ︷︷ ︸
εB

(12)

with ψ being a residual error as

ψ = −
∫ t

t−T

(u(τ)− u∗(τ))TR(u(τ)− u∗(τ))dτ

+ (u(t− T )− u∗(t− T ))TR(u(t− T )− u∗(t− T ))

− (u(t)− u∗(t))TR(u(t)− u∗(t))
(13)

the integral reinforcement ρ(x, u) ∈ R, the difference
∆Φ(t) = Φ(x(t), u∗(t))−Φ(x(t− T ), u∗(t− T )), ∆Φ(t) ∈
RN and the Bellman error εB = ∆ε + ψ, εB ∈ R with
∆ε = ε(x(t), u∗(t))−ε(x(t−T ), u∗(t−T )) being bounded
for a bounded ε. The Bellman equation (12) forms the basis
for adaptive critic design.
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We write the critic neural network as
Q̂(x, u) = ŴTΦ(x, u) (14)

where Q̂(x, u) and Ŵ denote the Q-function Q(x, u) and
the estimate of the weight W , respectively.
B. Adaptive Critic Design

This section shows a novel design of the adaptive critic
which is updated from the weight estimation error. We
present an alternative way to derive the adaptation scheme
that was used similarly in [9], [10] and also later in [11].
Instead of using an auxiliary filter operation, we apply
the gradient descent method on a discounted integral cost
function. This formulation helps us to further enhance and
understand the convergence properties of our algorithm by
using projection combined with the gradient.

The gradient descent method that has been widely used
in adaptive control often considers an instantaneous cost
in terms of the output error, e.g., e(t) = ŴT(t)∆Φ(t) −
WT∆Φ(t) as in [8]. The weight Ŵ (t) is to be chosen at

each time t to minimise Je =
1

2
e2, which is an instantaneous

cost function and is convex over the space of e. However, the
convexity of Je guarantees the existence of a single global
minimum e = 0 but does not address the convergence of
the weight Ŵ . In order to ensure the convergence of Ŵ to
W , instead of instantaneous Je, we consider an integral cost
function J ∈ R for

ē(t, τ) = ŴT(t)∆Φ(τ)−WT∆Φ(τ) (15)
on all past data that are exponentially discounted as

J =
1

2

∫ t

t0

exp(−ℓ(t− τ))ē2(t, τ)dτ (16)

where the design constant ℓ > 0 acts as a forgetting factor,
i.e., the effect of history data at time τ < t is discarded
exponentially as time t increases. The cost J (16) penalises
all the past errors ē from time t0 to t. This is equivalent to the
cost for recursive least-squares algorithms with a forgetting
factor. The method, however, for developing estimate Ŵ for
W is different. It is clear that the cost J (16) is convex over
the space of Ŵ for each time t. We can apply the gradient
descent method for minimising J with respect to Ŵ as

˙̂
W = −Γ∇JŴ (17)

where Γ ∈ RN×N is the adaptive gain or learning rate with
Γ ≻ 0 and ∇JŴ = ∂J/∂Ŵ ∈ RN is the gradient vector
of J . By inspection of the Bellman equation (12), we have
−WT∆Φ = ρ+ εB . Then, expanding the gradient ∇JŴ at
time t yields

∇JŴ =

∫ t

t0

exp(−ℓ(t− τ))(ŴT∆Φ−WT∆Φ)∆ΦTdτ

=

∫ t

t0

exp(−ℓ(t− τ))(∆Φ∆ΦTŴ +∆Φ(ρ+ εB))dτ

=

∫ t

t0

exp(−ℓ(t− τ))∆Φ∆ΦTdτ︸ ︷︷ ︸
P(t)

Ŵ (t)+

∫ t

t0

exp(−ℓ(t− τ))∆Φρdτ︸ ︷︷ ︸
Q(t)

+

∫ t

t0

exp(−ℓ(t− τ))∆ΦεBdτ︸ ︷︷ ︸
Λ(t)

(18)

Hence, an adaptation law can be implemented as

˙̂
W = −Γ(PŴ +Q) (19)

with the information matrix P ∈ RN×N and the reinforce-
ment matrix Q ∈ RN written as

Ṗ = −ℓP +∆Φ∆ΦT, P(t0) = 0 (20a)

Q̇ = −ℓQ+∆Φρ, Q(t0) = 0 (20b)

Note that the Bellman error εB as well as Λ are to be
ignored for implementation. We shall analyse their effect on
the adaptation law robustness as follows.

Let M = PŴ + Q, M ∈ RN , then the adaptation law
becomes ˙̂

W = −ΓM . The vector M contains the explicit
information of the weight estimation error W̃ = Ŵ − W
for Λ = 0. Such adaptation law differs from the common
adaptive control where an output error e is often used. The
use of the weight estimation error instead of output error
will guarantee the convergence of the weights given properly
excited regressor signals. From (18) and −ρ =WT∆Φ+εB ,
we express M as

M = PŴ +Q = PŴ − (PW + Λ) = PW̃ − Λ (21)

where W̃ = Ŵ − W is the weight estimation error and
Λ ∈ RN as defined in (18) is a bounded variable for bounded
state x and control u. Note that M = PW̃ if εB = 0.
Remark 1. This adaptation scheme (19) with (20) holds bet-
ter convergence properties than the commonly-used gradient
descent method in adaptive optimal control, e.g., [8][14].
Note that the vector M represents the gradient of the integral
cost function J (16) when εB = 0. It is clear from (21) that
M explicitly contains the information weight estimation error
W̃ . Hence, the adaptation law (19), i.e., ˙̂

W = −ΓM , can
update the weight estimate Ŵ based on weight estimation
error W̃ instead of using output error e. We will show
that this adaptation scheme can guarantee the critic weight
convergence under a more relaxed condition on the regressor
signal.
Remark 2. The forgetting factor ℓ in the discounted integral
cost (16) is vital to such adaptation scheme. If ℓ = 0, (20)
implies that Ṗ(t) ≥ 0 at any time t, and therefore, the
information matrix P(t) may grow without bound. We call
this information wind-up problem.

C. A P-Projection Approach for Weight Adaptation
Although the algorithm we propose is model-free (see [9]),

we may still have some a priori knowledge as to where
the optimal weight W is located in RN . For instance, the
knowledge may come in terms of upper or lower bounds
for the elements of W or a well-defined subset in RN . One
would like to leverage such a priori knowledge to constrain
the search of weight estimate Ŵ or to keep Ŵ within some
possibly “safe” bounds. Adding such constraints may also
improve the convergence properties or reduce transients that
may occur when Ŵ (t0) is initialised to be far away from
W . We investigate the use of projection to address this
problem. The following facts are provided in relation to the
construction of projection.
Definition 1. (Convexity) [15] A set S ⊂ Rn is a convex set
if λx+ (1− λ)y ∈ S for all x ∈ S, y ∈ S, and 0 ≤ λ ≤ 1.
Likewise, a function F(x) : RN → R is a convex function
if F(λx+ (1− λ)y) ≤ λF(x) + (1− λ)F(y) for all x ∈ S,
y ∈ S, and 0 ≤ λ ≤ 1.
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Definition 2. (Coercive Function) [15] A function F(x) :
RN → R is coercive if ∀{xk}, k ∈ N with ||xk|| → ∞ such
that limk→∞ F(xk) = ∞.

We first consider Sa, the convex subsets S0 and S1 within
RN for the weight estimate Ŵ given by

S0 := {Ŵ ∈ RN | F(Ŵ ) ≤ 0} (22)

S1 := {Ŵ ∈ RN | F(Ŵ ) ≤ 1} (23)

Sa = S1\S0 = {Ŵ ∈ RN | 0 < F(Ŵ ) ≤ 1} (24)

where F(Ŵ ) : RN → R is a smooth function of weight
estimate Ŵ properly chosen to be convex and coercive such
that S0 is nonempty. It is clear from (22) and (23) that S0 ⊂
S1.
Assumption 3. The true critic weight W lies in the convex
set S0 defined as per (22), i.e., W ∈ S0 ⊂ S1.
Lemma 2. For a coercive convex function F(Ŵ ) : RN → R
and a positive constant δ > 0, any nonempty subset Sδ =
{Ŵ ∈ RN | F(Ŵ ) ≤ δ} is convex and bounded.
Proof. See proof in [15]. □

The projection operator was first introduced in early [16]
and a detailed analysis can be found in [17][18]. Taking that
work as inspiration, we incorporate the adaptive gain Γ and
define a P-projection operator for the adaptation law so that
we can also interpret the new adaptation law in terms of a
gradient descent approach.
Definition 3. (P-projection Operator) The P-projection op-
erator for two vectors Ŵ ,M ∈ RN and a smooth function
F(Ŵ ) is defined as

ProjP(Ŵ ,M,F) = Γ



−M + ϱ
∇F∇FTP−1

∇FTΓ∇F
MF ,

if F > 0 ∧ −MTP−1∇F > 0

−M − ϱ
∇F∇FTP−1

∇FTΓ∇F
MF ,

if F > 0 ∧ −MTP−1∇F ≤ 0
−M, otherwise

(25)
for F(W ) < 0 and 0 ≺ Γ = ΓT ∈ RN×N and ∇F =
∂F/∂Ŵ ∈ RN . Here, ϱ > 0 is a scalar that is chosen large
enough so that the following inequality holds:

MTΓ∇FT∇FΓM ≤ ϱMTP−1∇FT∇FP−1M

It is easily shown that a sufficient choice is ϱ ≥
λmax(Γ)λmax(P) for the largest eigenvalues of Γ and P .
Lemma 3. Given Assumption 3, i.e., W ∈ S0, and the
projection operator as per (25),

W̃TΓ−1(ProjP(Ŵ ,M,F) + ΓM) ≤ 0 (26)

Proof. Case 1: If F > 0 for a smooth convex function F
and W̃ = Ŵ −W , according to [17] (Lemma 4), we can
obtain W̃T∇F ≥ 0. Then we have

W̃TΓ−1(ProjP(Ŵ ,M,F) + ΓM)

= W̃TΓ−1(Γ
∇F∇FT

∇FTΓ∇F
P−1MF)

=

W̃T∇F︸ ︷︷ ︸
≥0

∇FTP−1M︸ ︷︷ ︸
<0

∇FTΓ∇F︸ ︷︷ ︸
>0

F︸︷︷︸
>0

≤ 0

(27)

Case 2: If F > 0 and −MTP−1∇F ≤ 0, we also have

W̃TΓ−1(ProjP(Ŵ ,M,F) + ΓM) ≤ 0 (28)

Case 3: Otherwise, i.e., if F ≤ 0 or −MTΓ∇F ≤ 0, we
have ProjP(Ŵ ,M,F) = −ΓM so that

W̃TΓ−1(ProjP(Ŵ ,M,F) + ΓM) = 0 (29)

Hence, W̃TΓ−1(ProjΓ(Ŵ ,M,F) + ΓM) ≤ 0 holds. □
Then, we can write the adaptation law for updating Ŵ

using the projection operator (25) as

˙̂
W = ProjΓ(Ŵ ,M,F) (30)

Note that the proof of Lemma 3 and the discussion of
(21) show that for εB = 0, the first case F > 0 ∧ −
MTP−1∇F > 0 does not exist since then −MTP−1∇F =
−W̃T∇F ≤ 0 for F > 0.

To be specific, the projection operator (25) does not change
−ΓM if Ŵ ∈ S0. If Ŵ ∈ Sa, it substracts a perpendicular
vector that is normal to the boundary {Ŵ ∈ RN | F(Ŵ ) =
δ} with 0 ≤ δ ≤ 1 so that we get a smooth transformation
from the original vector −ΓM for δ = 0 to a vector for
δ = 1 [17], which is either, at worst, a tangent to S1 or
pointing inside S1.

A popular choice of coercive convex F(Ŵ ) used for
projection operator in adaptive control is given by [17]

F(Ŵ ) =
||Ŵ ||2 − w2

max

2ϵwmax + ϵ2
(31)

where ϵ and wmax are positive constants with the true weight
||W || ≤ wmax. It is obvious that F(Ŵ ) = 0 when ||Ŵ || =
wmax and F(Ŵ ) = 1 when ||Ŵ || = wmax + ϵ. Hence, we
have that S0, S1, and also Sa are convex and bounded due
to Lemma 2. For the choice of F as (31), the size of margin
Sa is designed by a constant ϵ.

We now define the following matrix

N = (P−1 + ϱH(F)F P−1∇F∇FTP−1

∇FTΓ∇F
)

for the Heaviside step function H(∗). The following function
follows

JP (t) =
1

2
W̃TPNPW̃ (32)

It is easy to see that for εB = 0, (the fist case in (25) does
not exist), so

∇JP = Γ−1ProjP(Ŵ ,M,F).

Moreover, for F < 0, it follows

JP (t) = J(t). (33)

Remark 3. The P-projection operator (25) used in this paper
is different from the Γ-projection in [3] (see equation B.27 in
[3]) or [17], [18]. The distinctions are i) in (25), an additional
F is multiplied onto the perpendicular vector. This leads to
a more relaxed constraint on the weight estimate Ŵ , i.e. Ŵ
can move into a margin subset Sa, whereas in [3] Ŵ will be
restricted to S0. ii) the first case F > 0∧−MTP−1∇F > 0
is identified considering Λ or the Bellman error εB ̸= 0,
whereas for the Γ-projection in [17], [18], this case becomes
void since W̃T∇F ≥ 0 for F > 0. Moreover, we provide
an interpretation of the new adaptive law with projection in
terms of the function JP (t).
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D. Relaxing Persistent Excitation: Finite Excitation
Another important component of this paper is with regards

to the excitation condition for regressor ∆Φ(t) which are
provided as follows.
Definition 4. (PE condition) The signal ∆Φ(t) is said to be
persistently excited (PE) if there exist T > 0 and σ1 > 0
such that∫ t+T

t

∆Φ(τ)∆Φ(τ)Tdτ ≥ σ1I, ∀t ≥ t0 (34)

Definition 5. (FE condition) The signal ∆Φ(t) is said to be
finitely excited (FE) over a finite time interval [ts, te] if there
exist te > ts ≥ t0 and σ2 > 0 such that∫ te

ts

∆Φ(τ)∆Φ(τ)Tdτ ≥ σ2I (35)

The levels of excitation of both conditions are indicated by
some constants σ1 and σ2, respectively. One can differentiate
the two conditions by the time interval of excitation. Note
that the PE condition in Definition 4 regards a property over
a moving window for all t+T > t, whereas the FE condition
in Definition 5 pertains to a single interval [ts, te]. As shown
in [10] (Lemma 2.2) and [11], if the regressor ∆Φ(t) is
persistently excited, the information matrix P(t) should be
full rank, i.e., rank(P(t)) = N . Otherwise, P(t) is only
positive semi-definite, i.e., P(t) ⪰ 0. The rank deficiency
of the information matrix is the fundamental cause of being
in breach of the PE condition for weight convergence. By
inspection of (18) in terms of the solution P(t), it is clear
that, if the regressor signal ∆Φ(t) is excited sufficiently (not
persistently), the information matrix P(t) will be full rank
over time. In other words, P(t) will have full rank after a
certain time interval [t0, ta] for ta > t0 unless the regressor
∆Φ(t) remains on an affine hyperplane for the entire time
[t0, t]. Thus, we can relax the PE condition for the weight
convergence by the following assumption.
Assumption 4. ∃te > ts ≥ t0 such that the regressor ∆Φ(t)
is finitely excited (FE) over a time interval [ts, te].

Since an FE condition rather than PE condition is imposed
in Assumption 4, we use only the information in a specific
time interval [t0, tr], tr > t0 instead of the entire time
[t0, t] for the weight update in order to avoid the degen-
eration of the information matrix due the forgetting design
exp(−ℓ(t − τ)). In principle, the choice of tr should retain
the richness of the information matrix P(t) for consistent
learning performance. One way to determine tr is

tr(t) = max{arg sup
τ∈[t0,t]

λmin(P(τ))} (36)

where λmin(P) denotes the minimum eigenvalue of the
matrix P . The inner sup(·) finds a sequence of moments in
[t0, t] that have the largest minimum eigenvalue. The outer
max(·) selects the largest time tr in that sequence to leverage
the finite excitation of the regressor ∆Φ(t).

We design a new information matrix Pr(t) and reinforce-
ment matrix Qr(t) such that

Pr(t) = P(tr(t)) (37a)
Qr(t) = Q(tr(t)) (37b)

Lemma 4. Under the FE condition in Assumption 4, the
selection of tr as (36) guarantees for Pr(t) (37) that

λmin(Pr(t)) ≥ 0, ∀t ≥ t0 (38)

λmin(Pr(t)) ≥ λmin(P(te)) ≥ σ2 > 0, ∀t ≥ te (39)

Proof. For entire time t ≥ t0, it is obvious that Pr(t) is
always positive semi-definite. Hence, λmin(Pr(t)) ≥ 0 for
∀t ≥ te. This proves (38). The regressor ∆Φ(t) is finitely
excited over a time interval [ts, te] as stated in Assumption
4. For t ≥ te, it is obvious that P(te) ⪰ σ2I ≻ 0 as
Definition 5 and then Pr(t) ⪰ σ2I ≻ 0, i.e., Pr(t) is positive
definite after time t = te. When t ∈ [ts, te], Pr(t) will
be updated at least once so that it has a strictly positive
minimum eigenvalue. Then Pr(t) will be updated only when
there is an increase in λmin(Pr(t)). Hence, λmin(Pr(t)) ≥
λmin(P(te)) ≥ σ2 > 0 for ∀t ≥ te. This proves (39). □

Therefore, we propose a new adaptation law based on (30)
using the vector Mr(t) = Pr(t)Ŵ (t)+Qr(t) for the weight
Ŵ (t) update

˙̂
W = ProjPr

(Ŵ ,Mr,F) (40)

where Γ is the constant learning rate with 0 ≺ Γ ∈ RN×N .
Remark 4. Having a full rank Pr relaxes the assumption on
the regressor ∆Φ from PE to FE. Lemma 4 implies that the
information matrix remains positive definite after finite exci-
tation. Such benefit obviates the need to inject perturbation
noise continuously to maintain persistent excitation.

As before in (32), it is again possible to interpret the
projection algorithm in terms of an optimization function
for εB = 0, where now:

JPr
(t) =

1

2
W̃TPrNrPrW̃ (41)

and

Nr = (P−1
r + ϱH(F)F P−1

r ∇F∇FTP−1
r

∇FTΓ∇F
).

Moreover, JPr
(t) = J(t) for tr(t) = t and F < 1.

E. On the Optimal Control and Critic Weight Convergence
In this section, we first leverage the parameterisation of

the Q-function and its adaptive critic design to determine
the optimal control. Then we synthesise the solutions to the
nonlinear optimal control problem presented followed by the
convergence analysis.

We reconstruct the optimal control u∗ from (6) based on
the parameterisation of Q(x, u) (8) such that

u∗ = −1

2
diag(Wuu)

−1WT
xuΦxu(x) + εu (42)

where εu is a bounded approximation error due to
ε, WT

xuΦxu(x) accounts for the term g(x)T∇V ∗
x , and

diag(Wuu) is essentially the pre-defined R. However, we
write the actor in the form of

u = −1

2
diag(Ŵuu)

−1ŴT
xuΦxu(x) (43)

for the sake of theoretical consistency. In practice, the initial
value of Ŵuu can be simply chosen to be the same as the
diagonal elements in R.

The main result of the paper is therefore:
Theorem 1. The adaptive critic (14), the actor (43), and
the adaptation law (40) along with Assumptions 1-4 and
(20)(25)(36)(37) form an adaptive optimal control so that
a) For Ŵ (t0) = w0 ∈ S1, Ŵ (t) ∈ S1 for all time t ≥ t0;
b) the state x(t) and the weight estimation error W̃ (t) are
uniformly ultimately bounded in a semi-global sense [12] for
all time t ≥ te;
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c) the control u will enter and stay in a small compact region
around its optimal solution u∗ for ∀t ≥ te if there exists a
neural network approximation error, i.e., if ε ̸= 0;
d) if there is no neural network approximation error, i.e.,
if ε = 0, the weight estimation error W̃ (t) will exponen-
tially converge to zero and the control u will exponentially
converge towards its optimal solution u∗ for ∀t ≥ te .
Proof. The proof is omitted due to space limitations. □

IV. NUMERICAL EXAMPLE
Consider a continuous-time nonlinear system [9][14] with

x = [x1 x2]
T ∈ R2, u ∈ R, and

f(x) =

[
−x1 + x2

−0.5x1 − 0.5x2(1− (cos(2x1) + 2)2)

]
(44)

g(x) =

[
0

cos(2x1) + 2

]
(45)

The infinite-horizon cost function is selected as (2) with
S(x) = x21 + x22 and R = 1. We know the optimal
control u∗ = −(cos(2x1) + 2)x2 and the optimal cost
V ∗ = 1

2x
2
1 + x22. This is verified through a converse HJB

approach [19].
We run the numerical simulation of the proposed adaptive

optimal control via Bogacki-Shampine (ode23) solver. We
also compare the results with the benchmark adaptation
˙̂
W = −ΓMr (19), i.e. without projection. The convergence
of the adaptive critic weight without injecting a persistently
excited exploration noise demonstrates the effectiveness of
the proposed controller. Fig. 1 shows the comparison of
the weight convergence (only 5 weights are displayed for
visibility). For the projection approach, it can be found that
the weights were always staying in a bounded set. This is
also verified in Fig. 2 where the coercive convex function
F(Ŵ ) was always capped at 1 when using the projection
operator (wmax = 1.15 and ϵ = 0.1).

Fig. 1. Weight convergence comparison: without projection (dashed) vs
with projection (solid).

V. CONCLUSIONS
The proposed adaptive critic learning approach for nonlin-

ear optimal control is a model-free algorithm that requires
only a finite period for excitation assuming the information
matrix has become full rank and therefore has finite non-zero
eigenvalues. If a priori knowledge of weight constraints is
given, e.g., W ∈ S0, convergence properties can be improved
by using projection while keeping the weights within a
pre-given region of the optimal weights. Simulations have
shown that the temporal characteristics can improve through
projection, e.g. settling time.

0 2 4 6 8 10 12 14 16 18 20
-6

-4

-2

0

2

4

6

Without Projection

With Projection

Fig. 2. The coercive convex function of weight F(Ŵ ) chosen as eqn (31).
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