
An SDP Optimization Formulation for the Inverse Kinematics Problem

Liangting Wu and Roberto Tron

Abstract— Inverse kinematics (IK) is an important problem
in robot control and motion planning; however, the nonlinearity
of the map from joint angles to robot configurations makes
the problem nonconvex. In this paper, we propose an inverse
kinematics solver that works in the space of rotation matrices
of the link reference frames rather than joint angles. To
overcome the nonlinearity of the manifold of rotation matrices
SO(3), we propose a semidefinite programming (SDP) relaxation
of the kinematic constraints followed by a fixed-trace rank
minimization via maximization of a convex function. Along the
way, we show that the feasible set of an IK problem is exactly
the intersection of a convex set and fixed-trace rank-1 matrices.
Thanks to the use of matrices with fixed trace, our algorithm to
obtain rank-1 solutions has guaranteed local convergence. Unlike
some traditional solvers, our method does not require an initial
guess, and can be applied to robots with closed kinematic chains
without ad-hoc modifications such as splitting the kinematic
chain. Compared to other work that performs SDP relaxation
for IK problems, our formulation is simpler, and uses variables
with smaller sizes. We validate our approach via simulations
on a closed kinematic chain constituted by two robotic arms
holding a box, comparing against a standard IK method.

I. INTRODUCTION

Robot manipulators play a pervasive role in fields such
as manufacturing, education, medicine, and aerospace. A
fundamental problem for robots in these settings is inverse
kinematics (IK) [19], where one needs to determine the
values of the joint configurations that result in a given desired
position and orientation of the end-effector.

Despite its importance, solving such problem is difficult for
multiple reasons: 1) the kinematic map from joint angles to
end-effector poses is generally nonlinear; 2) different numbers
of solutions (zero, multiple distinct, or infinite) may exist
depending on the structure of the robot and the query pose;
3) typically there are nonlinear equality and nonlinear con-
straints deriving from joint limits, self-intersection constraints,
and closed kinematic chains. Previous work has shown that
a finite number of analytical solutions for manipulators with
up to 6-DOF exist [10], and can be derived in algebraic
form [7], [17]. The popular solver IKFast [5] generalizes this
method and automatically computes IK solutions in closed
form. However, analytical methods are generally unavailable
for robots with higher DOFs. On the other hand, numerical
methods have been successful in solving the IK problem,
producing numerous efficient inverse-kinematics solvers such
as CCD [8], triangulation [15] and FABRIK [1]. These
solvers often perturb joint angles iteratively to decrease a
distance between the end-effector and the target. Despite

The authors are with Department of Mechanical Engineering, Boston
University, 110 Cummington Mall, Boston, MA 02215, USA. Emails:
tomwu@bu.edu, tron@bu.edu. The authors gratefully acknowl-
edge the support by NSF award FRR-2212051.

their efficiency, kinematic constraints such as self-collision,
multiple end-effectors, and closed chains are either ignored
or require ad-hoc modifications.

Other approaches to IK are based on formulations as
nonlinear optimization problems which are then solved
numerically, such as in [3], [9]. The main weakness of
these methods is that, in general, there is no guarantee
that the global optimum can be reached from arbitrary
initial conditions. Moreover, it becomes difficult to enforce
constraints deriving from closed kinematic chains.

Instead of solving nonlinear problems directly, some other
work relaxes the nonlinear constraints and solves an approxi-
mated IK problem. To name a few, Dai et al. [4] introduce an
IK solver based on mixed-integer convex optimization and can
certify global infeasibility. Maric et al. [13] use a Riemannian
manifold parameterization to enable solutions with mature
Riemannian optimization methods. Similar to our appoach,
[24] and [6] both relax the IK problem into semidefinite
problems (SDPs) each with an additional low-rank constraint.
Different parameterizations are used in these two work. The
former uses global rigid body transformations while the latter
uses a “distance-geometric” formulation. In these two papers,
the rank constraints are treated differently, where [24] simply
drops the constraint while [6] provides a rank minimization
algorithm. Compared to [24], our approach uses a simpler
formulation and has smaller dimension. Compared to [6],
our method parameterizes the robot differently and has a
more principled rank minimization algorithm based on the
maximization of the eigenvalues of positive semidefinite
matrices with constant traces. In addition, we show that our
method converges locally to feasible solutions.

Some other work also investigates semidefinite relaxation
of problems not limited to IK, but general problems with
rotations. For instance, [11], [21]–[23] propose SDP relax-
ations to different estimation problems involving rotations.
In [2], [16], [18], the semidefinite relaxation techniques for
such problems are evaluated for their tightness.

Our proposed approach provides the following novel
contributions:

• We parametrize the problem exclusively as a function of
the rotation of reference frames of each link, allowing
us to easily incorporate a variety of constraints and
arrangements of links, such as those arising in parallel
robots.

• We develop a relaxation of the manifold of robot config-
urations as a combination of linear and semidefinite
constraints. We show that our relaxation has some
interesting properties: it is convex, it contains every
kinematically feasible solution, and every kinematically

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 4731

feasible solution is on the boundary of the relaxed set.
• We can use the relaxation as a sound method to check

for kinematic feasibility.
• We show local convergence to solutions that satisfy the

manifold constraints with a novel rank minimization
algorithm that is based on the maximization of a convex
function on the relaxed set.

II. PRELIMINARIES

In this section we define some notation and derivations to
be used in the rest of the paper.

A. General notation

We use Id to denote the identity matrix of dimension d,
and we use ei to define a standard basis column vector with
1 in the i-th entry and zero elsewhere. We denote the set of
n×n symmetric matrices as Sn and the set of n×n positive
semidefinite matrices as Sn+. The angle between two vectors
v1 and v2 is denoted as ∠(v1,v2).

We make use of the vectorization property of the Kronecker
product ⊗: (BT ⊗A)vec(X) = vec(AXB), for any A,B
and X of appropriate dimensions.

B. Differentiating eigenvalues

Section VI-C introduced a rank minimization that uses
the gradient of an eigenvalue with respect to the entries
of the corresponding matrix. Specifically, consider a matrix
A ∈ Sn, and let the eigenvalues of A be λ1 ≥ · · · ≥ λn. We
are interested in finding ∂λk

∂A , for the k-th largest eigenvalue
λk. Lemma 1 summarizes a result from [12, Theorem 1].

Lemma 1 (Gradient of eigenvalues [12]): Given X0 ∈
Sn, let vk and λk be a pair of normalized eigenvector and
eigenvalue of X0. For functions λ and v defined for all X
in some neighborhood N(X0) ⊂ Rn×n of X0 such that
λ(X0) = λk and v(X0) = vk, the gradient of λ(X) is given
by

∂λ

∂X
= vk ⊗ vk. (1)

III. PARAMETERIZATION

This section discusses how to model general kinematic
chains using rotations and translations.

A. Kinematic chains

To create a model for the IK problem, we define a world
inertial frame W , and we associate a reference frame Bi,
i ∈ {1, . . . , n} in correspondence of each joint. For revolute
joints, the z-axis of each reference frame is aligned with the
revolute axis.

We construct a graph G = (V, E), where V is a set of
indices for the links and E is a set of ordered pairs that
indicates the relations among the links. In particular, we
have (i, j) ∈ E , i, j ∈ V if the link i is the parent of link
j. For robot with only spherical and revolute joints, E has
two disjoint subsets, Es and Er, respectively, representing the
relations among spherical and revolute joints. We denote nl

and nj as the number of links and joints.

We define respectively Vt and Vr the subsets of V whose
translations and rotations are to be determined. We denote
some special indices, including base to represent a base frame
(i.e., a frame rigidly attached to W) and ee to represent the
end-effector. We assume that there exists a path from any
base = p1 to the end effector ee = pn, given by Pfk =
{p1, p2, . . . , pnfk

} ⊆ V , where (pi, pi+1) ∈ E ,∀pi, pi+1 ∈
Pfk.

B. Modeling kinematic chains using rotations and translations

The poses {Ri,Ti} represent the rigid body transformation
(rotation and translation) from the reference frame Bi to the
world frame, i.e., Ri =

WRBi
and Ti =

WTBi
. To simplify

the notation, we denote the relative rotation from Bj to Bi,
BiRBj

as iRj , and the relative translation BiTBj
is as iTj .

In this paper, we assign a reference frame Bi to each link
and parameterize our problem on subsets of {Ri,Ti}. This
parameterization allows us to derive linear or semidefinite
constraints, as we discuss in Section VI.

Bj

Bi xi

yi

zi

xj

yj

zj

Fig. 1: The reference frames of two connected links (i, j) ∈
Er, each associated with a reference frame (Bi and Bj).

A general set of variables to be solved for the IK problem
is

x = {Tit ∈ R3,Rir ∈ SO(3)|it ∈ Vt, ir ∈ Vr}. (2)

We denote as nt and nr, respectively, the number of free
translations and rotations in x. For convenience, we define u
as the vectorization of all the free rotations

u = stack({vec(Rir)}ir∈Vr). (3)

IV. KINEMATIC CONSTRAINTS

In this section we discuss how to model translation con-
straints on connected links as linear equality constraints and
then investigate revolute joints and develop linear constraints
on the joint axes and angle limits.

A. Joint translations

Given the rigid structure of the robot, the relative translation
between two reference frames on connected links (i, j) is
fixed. For (i, j) ∈ E , the following relation holds:

Tj −Ti = Ri
iTj . (4)

In this equation, the translation iTj is given by the structure
of the robot, while all the others are variables to be determined
through the IK process. Using this relation, we can write the

4732

translation of the end-effector as a function of the rotations
along a path of links Pfk. For ∀i, j ∈ Pfk, we have

Tee = Tbase +
∑
i

Ri
iTj

= Tbase +
∑
i

(iTT
j ⊗ I3)vec(Ri)

= Tbase + (Mte ⊗ I3)vec(R),

(5)

where R =
[
R1,R2, . . . ,Rn

]
and Mte ∈ R1×3n is con-

structed with iTj . Equation (5) provides a linear expression
for end-effector location from the rotations. This expression
allows us to algebraically eliminate the translations from our
problem, and solve for the rotations alone (this is discussed
more in detail in Section VI-A). Assuming the links are
connected in a chain, and that at least one Ti is known
(e.g., the robot base is fixed), then all the translations can be
recovered using (4) once the rotations are determined.

Remark 1: Observe that (5) enables us to impose ad-
ditional structural constraints on the robot. For example,
consider a situation where two manipulators are working
collaboratively with their end-effectors rigidly attached. For
each of them, the end-effector position is a function of its
rotations R. To fulfill the cooperation requirements we can
simply let these two functions equal to each other, resulting
in a linear constraint on the closed chain.

B. Revolute joint axis constraints

For each pair of links (i, j) ∈ Er that are connected with
a revolute joint, the orientations Ri and Rj are limited by
the equation

Rj = RiReRθ (6)

where Rθ : R 7→ SO(3) is a function of the joint angle θ
defined such that Rθ = I when θ = 0, and Re is a parameter
defined as the rotation from Bj to Bi when θ = 0. Without
loss of generality, we assume that Rθ is a rotation about
the z−axis, meaning that frames Bi and Bj share the same
z−axis, that is:

RiRee3 −Rje3 = 0. (7)

We propose the following proposition for the constraint on
revolute joint axis.

Proposition 1: For a robot with links V connected by
relation E and variables defined by (2), the revolute joint
common axis constraint (7) is satisfied for all (i, j) ∈ Er if
the rotations Rir ∈ SO(3),∀ir ∈ Vr and for all (i, j) ∈ Er,
Ri, Rj satisfy

(eT3R
T
e ⊗ I)vec(Ri)− (eT3 ⊗ I)vec(Rj) = 0. (8)

Proof: Equation (8) is equivalent to (7) after using the
vectorization property of Kronecker product.

C. Revolute joint angle limits

In physical systems, the joint angle θ in (6) is limited to an
interval [−ϕ1, ϕ2], ϕ1, ϕ2 > 0. Without loss of generality, we
can assume this interval to be symmetric, i.e., ϕ1 = ϕ2 = α
(if not, we can translate the origin of the angle θ so that it

is in the middle of the interval). With this assumption, the
joint angle constraint becomes |θ| ≤ α.

We are interested in developing angle limit constraints on
the rotations. We define the following sets:

Aij = {Ri,Rj : RiRee1 −Rje1 ∈ S
(√

2− 2 cos(αij)
)

A = {{Ri} : (Ri,Rj) ∈ Aij ,∀(i, j) ∈ E}
(9)

where S(r) is a ball with radius r and centered at the origin.
These sets exactly capture the joint limit constraints, as shown
in the following proposition.

Proposition 2: For a robot with links V connected by
relation E and variables defined by (2), the revolute joint
angle limit constraint is satisfied if {Ri} are rotations, and
{Ri} ∈ A.

Proof: Observe that in (6) the rotations Rj and RiRe

share the same z-axis and their x- and y-axes are on the same
plane. The angle θ can be seen as the angular displacement
from the x-axis of RiRe to that of Rj . Therefore, for
two vectors wi = RiRee1 and wj = Rje1, we have
θ = ∠(wi,wj) and −αij < ∠(wi,wj) < αij . Substituting
(6), and the expressions for wi,wj into ∥wi − wj∥2 we
have ∥wi − wj∥2 = 2 − 2 cos(θ) ≤ 2 − 2 cos(αij) for
θ ∈ [−αij , αij], which gives the bound (see Fig. 2 for a
visualization)

wi −wj ∈ S
(√

2− 2 cos(αij)
)
. (10)

This is equivalent to (Ri,Rj) ∈ Aij and {Ri} ∈ A, from
which the claim follows.

αij

−wj

wj

wi

wi−wj

Fig. 2: The joint limit between two links (i, j) ∈ Er can
be written as an angle limit between two unit vectors wi =
RiRee1 and wj = Rje1 (purple sector), which can be
further bounded by a ball (painted yellow) on wi −wj .

V. MODELING AND RELAXATION OF THE FEASIBLE SET

In this section we introduce how to model and relax
the feasible set defined by the kinematic constraints in the
previous section.

A. Relaxation of the feasible set for revolute joints

We are interested in developing constraints that are linear or
semidefinite Linear Matrix Inequalities (LMIs). First, we drop
the manifold constraint Rir ∈ SO(3); by doing so, we can

4733

treat Rir as a simple real matrix; this constraint is revisited
in Section V-B. Observe that the condition for joint axis in
Proposition 1 is linear in the vectorized rotations u defined
in (3). We therefore concatenate (8) for each (i, j) ∈ Er as

Aaxisu = baxis. (11)

Next, from Proposition 2 the joint angle limit constraint
requires that for every pair (i, j) ∈ Er, (Ri,Rj) satisfies the
ball bound (10), which can be approximated using linear
inequalities, namely, a polyhedron. Specifically, for each
(i, j) ∈ Er, multiple points are uniformly chosen on the
ball that bounds wi − wj in (10), and the polyhedron is
defined as the hull formed by all faces tangent to the ball at
the selected points. Because wi and wj are linear in u, the
linear inequalities for all (i, j) ∈ Er can then be concatenated
as

Aangleu ≤ bangle. (12)

B. Relaxation of SO(3)

Our definition of u requires that each Rir ∈ SO(3), i.e.,

RT
irRir = I3 and det(Rir) = +1. (13)

These constraints are nonconvex in u. We propose a novel
way to relax SO(3) using convex constraints. For Rir =[
R

(1)
ir

R
(2)
ir

R
(3)
ir

]
, equation (13) is equivalent to

∥R(1)
ir

∥ = 1

∥R(2)
ir

∥ = 1

R
(1)
ir

·R(2)
ir

= 0

R
(1)
ir

×R
(2)
ir

= R
(3)
ir

(14)

We define a new variable Y =[
Y1 Y2 . . . Yir . . . Ynr

]
∈ R7×7nr , ir ∈ Vr

with

Yir =

R(1)
ir

R
(2)
ir
1


R(1)

ir

R
(2)
ir
1


T

∈ R7×7. (15)

Observe that Yir is a symmetric rank-1 matrix with the top
left 6×6 block containing all the element-wise multiplication
of (R

(1)
ir

,R
(1)
ir

), (R
(1)
ir

,R
(2)
ir

), and (R
(2)
ir

,R
(2)
ir

). The last
column of Yir consists of R(1)

ir
, R(2)

ir
, and 1. The advantages

of choosing this structure are that:
1) the first three equations of (14) are linear in Yir and for

all ir ∈ Vr, these three equations can be concatenated
as a linear equality constraint;

2) R
(1)
ir

× R
(2)
ir

is linear in Yir , meaning that we can
represent R(3)

ir
as a linear function of Yir ;

3) since each column of Rir is linear in Yir , there exists
a linear transformation g such that u = g(Y), which
makes the revolute joint axis and angle limit constraints
linear in Yir as well.

Definition 1: We define explicitly a linear transformation
g(Y) : R7×7nr 7→ R9nr which is given by the composition
of the following operations.

1) For each Yir , extract the first and second 3× 1 vectors
of the last column y1 and y2.

2) Compute y3 = y1×y2 using the needed elements from
the top left 6×6 block of Yir . (Note that this is a linear
operation and is different from directly computing the
cross product.)

3) Concatenate vertically y1,y2, and y3 in sequence for all
ir ∈ Vr.

Definition 2: We define U as the set of the vectors u =
stack({vec(Rir)}) ∈ R9nr such that

Aaxisu = baxis, (16a)
Aangleu ≤ bangle, (16b)
Rir ∈ SO(3),∀ir ∈ Vr (16c)

and the set Ū of ū = g(Y) ∈ R9nr such that

Aaxisū = baxis, (17a)
Aangleū ≤ bangle, (17b)
Astructurevec(Y) = bstructure (17c)
Yir ⪰ 0,∀ir ∈ Vr (17d)

where (17c) is a constraint that imposes the following
structure on Y: for each Yir ,

1) the sum of the first three diagonal entries, equals 1 and
so does that of the next three;

2) the trace of the 3× 3 block including on rows 1 to 3,
and columns 4 to 6 of Yir equals 0;

3) the bottom right entry of Yir equals 1.
The structure constraint restrict the structure of Yir in order
to enforce the relations in (14).

We show some useful results about U and Ū .
Proposition 3: The set Ū is compact.

Proof: Any Yi ⪰ 0 can be decomposed as Yi = UΣUT

where U is an orthonormal matrix and Σ is a diagonal matrix
containing all the eigenvalues of Yi. The set of all Yi defined
in (17) is closed and bounded because every element of U
belongs to [0, 1], while (17c) and (17d) restrict each elements
of Σ to the interval [0, 3]. Therefore Ū is compact, as it
is the image of a product of compact sets under the linear
transformation g(·).

Proposition 4: The relaxed set Ū contains every element
of U , i.e., U ⊂ Ū .

Proof: Any u ∈ U also satisfies (17a) and (17b). For
every u ∈ U , we can construct a Y with rank-1 matrices Yir

as discussed in (15), which satisfies (17c). The only non-zero
eigenvalue of Yir equals 3 because tr(Yir) = 3. Therefore
Yir ⪰ 0 and ū = g(Y) ∈ Ū .

Proposition 5: The set U exactly matches the intersection
of Ū and R1, i.e., U = Ū ∩ R1, where R1 is the set of
u = g(Y) ∈ R9nr such that each Yir ∈ R7×7 of Y is
rank-1.

Proof: For any ū = g(Y) ∈ Ū ∩R1, because Yir ⪰ 0
and rank(Yir) = 1, we can write each Yir as

Yir =

y1

y2

1

y1

y2

1

T

. (18)

4734

The structural constraint (17c) acts on the entries of Yir such
that {

tr(y1y
T
1) = tr(y2y

T
2) = 1

tr(y1y
T
2) = 0

(19)

which is equivalent to ∥y1∥ = ∥y2∥ = 1 and yT
1y2 = 0. We

form a new matrix R̃ir =
[
y1 y2 y1 × y2

]
. It is clear

that R̃ir satisfies (14) and thus (13) and (16c). Observe that
the transformation g is defined such that ũ = g(Y) is the
concatenation of all the vec(R̃ir). We also have ũ satisfies
(16a) and (16b) because g(Y) satisfies (17a) and (17b).

On the other hand, for any solution u ∈ U , we can always
construct the columns of each Rir and form a corresponding
rank-1 Ỹir such that Ỹ contains all Ỹir satisfies (17).

Proposition 6: The set U is a subset of the boundary of
Ū , i.e., U ⊂ ∂Ū .

Proof: From Proposition 5 we have U = Ū ∩R1. Thus
for any u = g(Y) ∈ U , each Yir of Y is rank-1 and has a
zero eigenvalue and therefore for any t > 0 there exists a
matrix M such that Yir + tM /∈ S+. Thus u = g(Y) is on
the boundary of Ū .

VI. OPTIMIZATION

This section first introduces how to build an inverse
kinematics optimization problem, then discusses how to
relax this problem by dropping a rank constraint, and finally
introduces a rank minimization algorithm to find low-rank
solutions.

A. Inverse kinematics problem

The inverse kinematics problem aims to find the optimal
and feasible x∗ such that the end-effector, ee, reaches a
desired location Tgoal with an orientation Rgoal. This can
be encoded as the cost

∥vec(Ree)− vec(Rgoal)∥22 + ∥Tee −Tgoal∥22. (20)

We define a selction matrix Eee ∈ R3n×3 such that REee =
Ree then substituting it along with (5) into the cost to get

f0(R) = ∥(ET
ee ⊗ I3)vec(R)− vec(Rgoal)∥22

+ ∥(Mte ⊗ I3)vec(R) +Tbase −Tgoal∥22 (21)

Vectorizing (21), we can define an equivalent quadratic func-
tion f(u) such that f(u) = f0(R). Our inverse kinematics
problem is then defined as

Problem 1 (Inverse kinematics):

min
u=stack({vec(Rir)})

f(u) (22a)

subject to u ∈ U (22b)
As defined above, the set U is the feasible set such that any
u ∈ U satisfies the joint axis and angle limit constraints.
When f(u) = 0, from (20) we know that the pose of the
end-effector matches the target.

B. Rank constrained problem

Using Proposition 5 we can equivalently write the inverse
kinematics problem as

Problem 2a (Rank constrained inverse kinematics):

min
Y∈R7×7nr

h(Y) (23a)

subject to u = g(Y) ∈ Ū ∩ R1 (23b)
where h(Y) = f ◦ g(Y). This problem has a quadratic
objective function and a convex constraint except for u ∈ R1,
which requires the rank of each Yir to be one. We define the
following relaxed problem which is obtained from Problem
2a but with the omission of the rank constraint u ∈ R1.

Problem 2b (Relaxed inverse kinematics):

min
Y∈R7×7nr

h(Y) (24a)

subject to u = g(Y) ∈ Ū (24b)
From Proposition 5 we know that the feasible set of

Problem 2a equals that of Problem 1. Additionally, from
Propositions 4 and 6, the feasible set of Problem 1 is a subset
of that of Problem 2b and every feasible solution to Problem
1 lies on the boundary ∂Ū .

C. Rank minimization via eigenvalue maximization

We propose a way to solve for rank-1 matrices by
manipulating their eigenvalues by using the following.

Proposition 7: Consider a matrix M0 ∈ Sm+ , whose
eigenvalues are λ1 ≥ · · · ≥ λm. Consider the function
λ1(M) = λ1 defined for all M in a neighborhood N(M0) ⊂
Sm+ of M0. When tr(M) = c and c ∈ R, M0 is a rank-1
matrix if and only if M0 = argmax(λ1(M)).

Proof: The trace of a matrix is also the sum of all of
its eigenvalues, which are all non-negative when the matrix
is positive semidefinite. When tr(M) = c, the condition
M0 = argmax(λ1(M)) is achieved when λ1(M0) = c and
λ2(M0), . . . , λm(M0) = 0, meaning that rank(M0) = 1.
On the other hand, when tr(M) = c, rank(M0) = 1 implies
that the only positive eigenvalue λ1(M0) equals c and since
0 ≤ λ1(M) ≤ c we have M0 = argmax(λ1(M)).

Observe that the structure constraint (17c) of Problem 2a
restricts that the trace of each Yk,ir always equals 3. Using
Proposition 7 we can rewrite Problem 2a as the following
problem:

Problem 2c (Eigenvalue maximization):

max
Y∈R7×7nr

∑
ir∈Vr

λ1(Yir) (25a)

subject to Y = argmin(h(Y)) (25b)
u = g(Y) ∈ Ū (25c)

We propose a gradient-based approach to Problem 2c, in
which we first find a solution to Problem 2b and then minimize
the rank by iteratively solving the following SDP

Problem 3 (Sequential problem):

max
Uk∈R7×7nr

∑
ir∈Vr

vec(Uk,ir)
T(V

(1)
k−1,ir

⊗V
(1)
k−1,ir

) (26a)

subject to ∇h(Uk) = 0 (26b)
g(Yk−1 +Uk) ∈ Ū (26c)

4735

The variable Uk is an update of Yk, i.e., Yk,ir =
Yk−1,ir +Uk,ir . The objective function (26a) is the inner
product of vec(Uk,ir) and the gradient of the largest eigen-
value λ1 of Yk−1,ir with respect to Yk−1,ir itself, which
can be computed using Lemma 1:∑

ir∈Vr

vec(Uk,ir)
T ∂λ1(Yk−1,ir)

∂Yk−1,ir

=
∑
ir∈Vr

vec(Uk,ir)
T(V

(1)
k−1,ir

⊗V
(1)
k−1,ir

),
(27)

where V
(1)
k−1,ir

is the normalized eigenvector of Yk−1,ir

corresponding to λ1. With this, (26a) ensures that each Uk,ir

moves in the direction of the largest possible improvement
in terms of increasing the sum of largest eigenvalues of the
matrices Yk,ir . Since the trace of Yk,ir is fixed, when the
largest eigenvalue is increased, the other eigenvalues will
decrease and eventually make each Yk,ir a rank-1 matrix.
The constraint (26b) ensures that h(Yk) = h(Y0) throughout
the iterations, where Y0 is the solution of Problem 2b. The
constraint (26c) makes sure that the updated u = g(Yk)
remains on the feasible set Ū .

The complete algorithm that solves inverse kinematics
Problem 1 is summarized in Algorithm 1.

Algorithm 1 Iterative SDP Inverse Kinematics Solver
Input Tgoal, Rgoal, µ, ϵ1, ϵ2, kmax

Output x∗

1: Solve Problem 2b to get an initial solution Y0 and set
k = 1.

2: while ∃λ1,ir ≤ 3− ϵ1 & ∥Uk∥F ≥ ϵ2 & k ≤ kmax do
3: For each Yk−1,ir , compute the largest eigenvalue

λ1,ir and the corresponding normalized eigenvec-
tor V(1)

k−1,ir
.

4: Solve Problem 3 to get Uk.
5: Update Yk,ir = Yk−1,ir +Uk,ir for all ir ∈ Vr

and set k = k + 1.
6: end while
7: Recover the rotations {Rir} by reshaping g(Yk−1).
8: Recover the translations {Tit} using (4).
9: return x∗ defined in (2).

D. Convergence analysis

We provide below a convergence analysis for proposed
algorithm. We start with the following assumption.

Assumption 1: Problem 1 is feasible and there exists a
u∗ ∈ U such that f(u∗) = 0.

Proposition 8: When Assumption 1 holds, the correspond-
ing Y∗ = g−1(u∗) is a global minimizer of Problem 2b.

Proof: By Proposition 4, Y∗ satisfies all the constraints
in Problem 2b. The cost satisfies h(Y∗) = f ◦ g(Y∗) =
f(u∗) = 0. Since Problem 2b is convex, and min(h(Y)) = 0,
the solution Y∗ is a global minimizer of Problem 2b.

Proposition 9: Every globally optimal solution Y∗ of
Problem 2c is also an optimal solution of Problem 2a, and
u∗ = g(Y∗) ∈ ∂Ū .

Proof: For a maximizer Y∗ of Problem 2c, by
Proposition 7 it holds that u∗ = g(Y∗) ∈ R1 and since
Y∗ = argmin(h(Y)) it is an optimal solution to Problem 2a.
Using Proposition 5 and 6 we have u∗ ∈ Ū ∩R1 = U ∈ ∂Ū .

Proposition 10: When Assumption 1 holds and k → +∞,
it holds that Yk → Ỹ∗ and ũ∗ = g(Ỹ∗) ∈ ∂Ū , where g(Ỹ∗)
is a local maximizer of Problem 2c.

Proof: Consider another version of Problem 2c (we
refer it as Problem 2d) where the constraint (25b) is replaced
with ∇h(Y) = 0. This new constraint can be seen as a
convex relaxation of (25b) because ∇h(Y) = 0 implies that
Y is the minimizer of the convex function h. The objective
function of this problem is convex in Y because λ1(Yir) =

supV
(1)T
ir

YirV
(1)
ir

is convex in Yir . As a result, Problem
2d is a maximization of a convex function over a convex set.
Algorithm 1 can be seen as a gradient approach to Problem
2d. Since Ū is compact, when k → +∞, u = g(Y) →
g(Ỹ∗) ∈ ∂Ū and g(Ỹ∗) is a local maximizer. To see why, for
any point Y in the neighborhood N(Ỹ∗) such that g(Y) ∈
Ū ∪ {∇h(Y) = 0}, it holds that λ1(Ỹ

∗) ≥ λ1(Y) because
by contradiction if there were a Ȳ ∈ N(Ỹ∗) and Ȳ =
Yk−1 + Ūk such that λ1(Ȳ) ≥ λ1(Ỹ

∗), then the fact that
Uk = argmax(

∑
ir∈Vr

vec(Uk,ir)
T ∂λ1(Yk,ir)

∂Yk,ir
) would not

hold.

VII. SIMULATION RESULTS

To check if our IK solver can find postures for complicated
constraints such as closed kinematic chain and joint limits,
the proposed method is implemented on a humanoid dual-arm
Rethink Robotics Baxter robot. The robot possesses two arms
mounted on a fixed torso. Each arm has 7 revolute joints
with angle limits. We model the arms of the robot as one
closed kinematic chain by rigidly aligning the two grippers
on a common line with a fixed distance to simulate the task
of collaboratively holding a box. The objective is to solve for
postures of the robot given some predetermined goal poses
of the end-effector.

Unlike most traditional IK solvers, which can only deal
with open kinematic chains, our solver can evaluate the
kinematic chain as a whole without cutting it into separate
sub-trees. This can be done by adding a linear constraint
discussed in Remark 1 to Problems 2b and 3.

Figure 3 shows a solution to a given Tgoal and Rgoal

using our IK solver. In this example, the total number of
free links is nr = 15, which defines the size of variables
Y ∈ R7×7nr . The total numbers of rows are 77 for equality
constraints and 6112 for inequality constraints. The end-
effector is set as the midpoint of the two grippers and is
treated as a link of the robot asigned with the reference frame
{Ree,Tee}. The errors of the end-effector pose, err(Ree) =
∥vec(Ree)−vec(Rgoal)∥2 and err(Tee) = ∥Tee−Tgoal∥2
are 1.59 · 10−8 and 4.61 · 10−9, respectively. We verified that
all the poses satisfy the imposed constraints in Problem 1
along with the translation relation (4). Figure 4 shows some
results regarding the computation process where 4a shows

4736

the change of the largest eigenvalue, λ1 of each Yk,ir during
the rank minimization process. We observed that values of λ1

increase iteratively, eventually reaching the maximum value
of 3 (given by the trace constraint) at k = 5. Figure 4b
presents the 7 eigenvalues of every Yir in the final solution,
where all eigenvalues except λ1 are below the tolerance ϵ1.
This shows that each Yir in the solution is approximately
a rank-1 matrix. With the above results, we can say that in
this example, the solver successfully solves the IK problem.

To test the performance of our solver on multiple dif-
ferent targets, we implement it on a set of random end-
effector poses. We build this set by randomly sampling
500 points in a space Tgoal =

[
x, y, z

]T ∈ Tgoal, where
x ∈ [0.4, 0.75], y ∈ [−0.2, 0.2], and z ∈ [0.2, 0.7]. For
each point, we asign a randomly generated orientation
Rgoal = Rz(α)Ry(β)Rx(γ) ∈ Rgoal, where α ∈ [0, π/2],
β ∈ [0, π], and γ ∈ [π/2, 0]. These poses are selected
based on the mutual reachable space of the arms but are
not guaranteed to have feasible IK solutions. For comparison,
we applied a BFGS IK solver (available with the MATLAB
generalizedInverseKinematics class) to the same
problem set. It is worth-mentioning that this solver can only
find solutions to open kinematic chains. Therefore, for a
mutual end-effector pose of the two arms, the BFGS solver
is applied twice, one for each arm, which is different from
our method. Moreover, unlike our method, the BFGS solver
requires an initial guess every time, which is set to be the zero
joint angles in this simulation. The MOSEK [14] SDP solver
is employed to solve the SDP problems within our method.
Eventually, the results are visualized in Figure 5, where the
sampled goals are colored in terms of which of the methods
succeed. It is seen that in the tested 500 problems, in 355
times both methods succeed (71%, green dots); in 28 times
only our method succeeds (5.6%, blue dots); in 33 times
only BFGS succeeds (6.6%, purple dots); and in 84 times
both solvers fail (16.8%, red dots). The solvers are compared
for their performance in Table I including success rates and
for successful solutions: the average time covering only the
time consumed in the SDP solver and the average errors of
the end-effector poses. Some other results of our method
are also listed. This includes maximal ∥Rir − P (Rir)∥F ,
which is the maximal value of all Frobenius norms of the
difference between computed Ri and its projection P (Rir) on
SO(3) (see [20]), for all ir ∈ Vr in the successful solutions.
This shows how close to the SO(3) manifold the computed
rotations are. Another result is the maximal value within all of
the second largest eigenvalues of every Yir in the successful
solutions. This shows how close to rank-1 matrix each Yir

is.

Looking at the results in Table I, we see that although
having a similar success rate and precision, our method
computes the results slower than the BFGS solver. However,
the last two columns of Table I shows that our method finds
valid solutions with rank-1 Yir and the recovered rotations are
on SO(3), which verifies that the proposed rank minimization
algorithm works. From the results in Figure 5 we see that

the proposed method can find solutions in problems that the
BFGS solver fails. Another interesting finding is that, in all
of the problems that BFGS solver succeeds on, none of them
failed with “infeasible” status in step 1 of Algorithm 1 when
our method is applied, meaning that at least in the tested
problems there does not exist a feasible IK problem that is
infeasible to Problem 2b. This would otherwise contradict
Proposition 4, which enables us to certify infeasibility by
solving Problem 2b as a feasibility problem and we are sure
that the problem is infeasible when no feasible solution can
be found.

Fig. 3: An example posture solved for Baxter, where the two
arms are modeled as one closed kinematic chain.

0 1 2 3 4 5

1.6

1.8

2

2.2

2.4

2.6

2.8

(a) The largest eigenvalues λ1 of each
Yk,ir over iteration k, where each
line corresponds to one matrix.

1 2 3 4 5 6 7
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

(b) The eigenvalues of each Yir in
the solution, where all eigenvalues
except the largest one are below the
tolerance ϵ1 (red dashed line)

Fig. 4: Computational results of the solution in Fig. 3

Method Success rate Avg. time err(Ree)

SDP 76.6% 1.2629 s 1.0308e-08
BFGS 77.6% 0.1966 s 1.3452e-08

Method err(Tee) max(∥Rir − P (Rir)∥F) maximal e2

SDP 3.7495e-09 6.9394e-06 6.7919e-06
BFGS 5.9359e-09

TABLE I: Performance of the proposed IK solver on 500
different goals compared against the BFGS solver

4737

Fig. 5: Implementations of the proposed method and a
traditional BFGS Gradient Projection method on a dual-arm
Baxter for 500 different end-effector poses with the results:
both of the solver succeed (green dots); only our solver
succeeds (blue dots); only BFGS succeeds (purple dots); both
solvers fail (red dots).

VIII. CONCLUSIONS

In this paper we offer a new relaxation of the feasible
sets in inverse kinematics problems. The relaxed set contains
every feasible solutions, meaning that we can use it to certify
infeasibility. We show through simulations that the proposed
method is applicable to closed kinematic chain and can
serve as an alternative approach for existing solvers. The
objective costs developed in this work is defined separately
from the constraints, meaning that we can replace it with
other formulations designed for different kinematic problems.
For instance, we will in the future include costs for forces
and grasping tasks, which will take into consideration entire
kinematic chains and better demonstrate advantage of the
rotation parameterization. To further hone the performance we
can also try to algebraically remove the equality constraints to
reduce the number of variables in the SDP solver. Moreover,
we are interested in including more kinematic constraints such
as prismatic joints to extend the capability of our method.

REFERENCES

[1] A. Aristidou and J. Lasenby. Fabrik: A fast, iterative solver for the
inverse kinematics problem. Graphical Models, 73(5):243–260, 2011.

[2] A. S. Bandeira, N. Boumal, and A. Singer. Tightness of the maxi-
mum likelihood semidefinite relaxation for angular synchronization.
Mathematical Programming, 163:145–167, 2017.

[3] P. Beeson and B. Ames. Trac-ik: An open-source library for improved
solving of generic inverse kinematics. In 2015 IEEE-RAS 15th
International Conference on Humanoid Robots (Humanoids), pages
928–935, 2015.

[4] H. Dai, G. Izatt, and R. Tedrake. Global inverse kinematics via mixed-
integer convex optimization. The International Journal of Robotics
Research, 38(12-13):1420–1441, 2019.

[5] R. Diankov. Automated construction of robotic manipulation programs.
2010.

[6] M. Giamou, F. Marić, D. M. Rosen, V. Peretroukhin, N. Roy, I. Petrović,
and J. Kelly. Convex iteration for distance-geometric inverse kinematics.
IEEE Robotics and Automation Letters, 7(2):1952–1959, 2022.

[7] M. L. Husty, M. Pfurner, and H.-P. Schröcker. A new and efficient
algorithm for the inverse kinematics of a general serial 6r manipulator.
Mechanism and machine theory, 42(1):66–81, 2007.

[8] B. Kenwright. Inverse kinematics–cyclic coordinate descent (ccd).
Journal of Graphics Tools, 16(4):177–217, 2012.

[9] T. Le Naour, N. Courty, and S. Gibet. Kinematics in the metric space.
Computers & Graphics, 84:13–23, 2019.

[10] H.-Y. Lee and C.-G. Liang. Displacement analysis of the general spatial
7-link 7r mechanism. Mechanism and machine theory, 23(3):219–226,
1988.

[11] M. Li, G. Liang, H. Luo, H. Qian, and T. L. Lam. Robot-to-robot
relative pose estimation based on semidefinite relaxation optimization.
pages 4491–4498, 2020.

[12] J. R. Magnus. On differentiating eigenvalues and eigenvectors.
Econometric Theory, 1:179–191, 1985.

[13] F. Marić, M. Giamou, A. W. Hall, S. Khoubyarian, I. Petrović, and
J. Kelly. Riemannian optimization for distance-geometric inverse
kinematics. IEEE Transactions on Robotics, 38(3):1703–1722, 2021.

[14] MOSEK ApS. The MOSEK optimization toolbox for MATLAB manual.
Version 10.0., 2022.

[15] R. Muller-Cajar and R. Mukundan. Triangualation-a new algorithm
for inverse kinematics. 2007.

[16] L. Peng, M. Fazlyab, and R. Vidal. Semidefinite relaxations of
Truncated Least-Squares in robust rotation search: Tight or not. 2022.

[17] M. Raghavan and B. Roth. Inverse kinematics of the general 6r
manipulator and related linkages. 1993.

[18] J. Saunderson, P. A. Parrilo, and A. S. Willsky. Semidefinite descriptions
of the convex hull of rotation matrices. SIAM Journal on Optimization,
25(3):1314–1343, 2015.

[19] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo. Modelling,
planning and control. Advanced Textbooks in Control and Signal
Processing. Springer,, 2009.

[20] S. Umeyama. Least-squares estimation of transformation parameters
between two point patterns. IEEE Transactions on Pattern Analysis &
Machine Intelligence, 13(04):376–380, 1991.

[21] H. Yang. Certifiable Outlier-Robust Geometric Perception. PhD thesis,
Massachusetts Institute of Technology, 2022.

[22] H. Yang and L. Carlone. A quaternion-based certifiably optimal solution
to the Wahba problem with outliers. pages 1665–1674, 2019.

[23] H. Yang, J. Shi, and L. Carlone. TEASER: Fast and certifiable point
cloud registration. 37(2):314–333, 2020.

[24] T. Yenamandra, F. Bernard, J. Wang, F. Mueller, and C. Theobalt.
Convex optimisation for inverse kinematics. In 2019 International
Conference on 3D Vision (3DV), pages 318–327. IEEE, 2019.

4738

