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Abstract— Recent work has shown a variety of ways in
which machine learning can be used to accelerate the solution
of constrained optimization problems. Increasing demand for
real-time decision-making capabilities in applications such as
artificial intelligence and optimal control has led to a variety of
approaches, based on distinct strategies. This work proposes a
novel approach to learning optimization, in which the underly-
ing metric space of a proximal operator splitting algorithm is
learned so as to maximize its convergence rate. While prior
works in optimization theory have derived optimal metrics
for limited classes of problems, the results do not extend to
many practical problem forms including general Quadratic
Programming (QP). This paper shows how differentiable op-
timization can enable the end-to-end learning of proximal
metrics, enhancing the convergence of proximal algorithms for
QP problems beyond what is possible based on known theory.
Additionally, the results illustrate a strong connection between
the learned proximal metrics and active constraints at the
optima, leading to an interpretation in which the learning of
proximal metrics can be viewed as a form of active set learning.

I. INTRODUCTION

A substantial literature has been dedicated to the use of
machine learning to aid in the fast solution of constrained
optimization problems. This interest is driven by an increas-
ing need for real-time decision-making capabilities, in which
decision processes modeled by optimization problems must
be resolved faster than can be met by traditional optimization
methods. Such capabilities are of interest in various applica-
tion settings such as job scheduling in manufacturing [26],
[25], power grid operation [14], and optimal control [34].

A prominent application of machine learning in acceler-
ating optimization is to learn the parameters of a standard
solution algorithm, such that iterations to convergence are
minimized. Examples include gradient stepsizes [1], and
initial solution estimates [34]. This paper proposes an al-
ternative approach by parametrizing the underlying metric
space of an optimization algorithm which relies on proximal
operators. Proximal operators, which include projections, are
based on a notion of distance within a metric space and
employed in many practical optimization methods. While
most methods that employ proximal algorithms are typically
based on the standard Euclidean metric, it is well-known that
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many such methods are also guaranteed to converge for non-
Euclidean metrics defined as general quadratic forms over the
continuous space of positive definite matrices [4].

The possibility of accelerating convergence by selecting
non-Euclidean metrics within that space has been noted [18],
but no known method has shown to be effective over a
general class of optimization problems. For limited classes of
problems, optimal metric choices have been modeled as the
solution to an auxiliary optimization problem. But for many
problems including general quadratic programming (QP)
problems, such models are yet unknown [19]. Theoretical
insights have been used to suggest heuristic metric choices
for QP problems [18], [19], but the potential for improvement
over these heuristic rules has not been fully explored.

This paper proposes differentiable programming to both
explore the potential, and to overcome the challenges of
metric selection for more general classes of optimization
problems. Specifically, we propose a system of end-to-end
learning for proximal optimization, which trains machine
learning models to predict metrics that empirically minimize
solution error over a prescribed number of iterations on
a given problem instance. Enhanced convergence of two
proximal optimization methods is demonstrated on Quadratic
Programming (QP) problems, including test cases where the-
oretically prescribed heuristic metric choices perform poorly.

We demonstrate that while prior heuristic models of
optimal metric selection can fail in the presence of active
constraints at the optimal solution, our learned metrics are
correlated with the active constraints at optima, and can
accelerate convergence by ignoring the inactive constraints.
This leads to an interpretation of metric selection as a
problem which incorporates active set prediction, whose
difficulty may approach that of solving the optimization
problem itself. The proposed integration of optimization
and learning thus shows advantages in both accuracy and
efficiency over theoretical approaches to metric selection in
proximal optimization.

II. RELATED WORK

This paper’s topic is at the intersection of learning to
accelerate optimization, and metric selection in proximal
optimization. Before proceeding to the main contributions,
related work is summarized with respect to both areas.

A. Learning to Accelerate Optimization

Various systems for learning fast solutions to optimization
problems have been proposed. For example, several works
have shown how to learn heuristics such as branching rules
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[2], [20], [22] and cutting planes [33] in mixed-integer
programming. An early survey [6] provides a comprehensive
summary of machine learning in combinatorial optimization.
Further surveys on learning to branch [28] and learning to
cut [9] provide even more detail on the topic. To enhance
the resolution of optimization problems with continuous
variables, several works have also considered simplifying an
optimization problem by first learning its active constraints
[8], [29]. An altogether different paradigm aims to train deep
neural networks to produce solutions to optimization problem
directly. For example, several works consider end-to-end
learning of solutions to combinatorial problems [5], [21],
[24], [35]. Other works have shown how to learn solutions
to problems with general nonlinear constraints, either by
leveraging Lagrangian duality [15], [26], [31], differentiable
constraint corrections [10], or reparametrization of the feasi-
ble space [23]. Another closely related direction [34] focuses
on learning warm-starts to proximal algorithms for quadratic
programming.

B. Metric Selection in Proximal Optimization

The potential for accelerating the convergence of a proxi-
mal algorithm by optimizing its underlying proximal metric
has been theoretically demonstrated in previous works. The
authors in [19] derived the optimal choice of metric for
ADMM and Douglas-Rachford splitting algorithms on a
limited class of problems. Based on this result, they also
suggested heuristic methods for selecting an appropriate
metric for problems outside of that class. Similar results
were shown in [18] for a fast dual forward-backward splitting
method. Unfortunately, these theoretical results do not extend
to many problems of practical interest, including generic
Quadratic Programming (QP) problems. Furthermore, when
the optimal metric can be computed, it typically requires
solution of a difficult semidefinite program, reducing its
practical benefit in accelerating the solution of problems.
This paper demonstrates the use of end-to-end machine
learning to derive models whose predicted proximal metrics
can outperform the heuristic theory-based models of [19] on
several QP problems.

III. PRELIMINARIES

Let Sn
++ be the set of n × n positive definite matrices.

For M ∈ Sn
++ let Rn

M be the Hilbert space on Rn with the
corresponding inner product and norm defined respectively
for all x, y ∈ Rn as

⟨x, y⟩M = xTMy, and ||x||2M = xTMx .

We will denote by Γ(Rn
M ) the set of functions f : Rn →

R∪{∞} that are proper, closed and convex, where R∪{∞}
represents the extended reals. For f, g ∈ Γ(Rn

M ), Douglas-
Rachford splitting (DR) considers optimization problems of
the form

min
x∈Rn

f(x) + g(x) , (1)

and computes optimal solutions by following the iterations

yk = proxγg(xk) , (2a)

zk = proxγf(2yk − xk) , (2b)

xk+1 = xk + zk − yk , (2c)

where the proxγf is the proximal operator defined with
respect to the space Rn

M as

proxγf(x) = argmin
z∈Rn

f(z) +
1

γ
||x− z||2M , (3)

for γ > 0. It can be shown that if a solution of (1) exists then
the DR iterations will converge, in particular the sequence
proxγg(xk) will converge weakly to a solution and under
additional mild assumptions will converge strongly. Various
alternative formulations and relaxations of DR exist but in
this paper we will primarily restrict consideration to the
formulation (2); for proofs and additional details see for
example [3].

This formulation naturally gives rise to the question of the
selection of a positive-definite matrix M to define a metric
in (3) for a given problem to improve convergence of the
iterations (2). In [19] Giselsson and Boyd study the optimal
metric choice to improve convergence rate for DR applied to
the Fenchel dual of (1), which can be shown to be equivalent
to employing the alternating direction method of multipliers
(ADMM) on the primal problem [19], [16], [12]. In this case,
any choice of M other than the identity is equivalent to the
use of preconditioning in ADMM. A standard formulation
for problems to be solved by ADMM is given by

min
x∈Rn,y∈Rm

f(x) + g(y) (4a)

subject to: Ax+By = c (4b)

for f ∈ Γ(Rn
M ), g ∈ Γ(Rm

I ), A ∈ Rm,n, B ∈ Rm,m, and c ∈
Rm. ADMM applied to the preconditioned primal problem

min
x∈Rn,y∈Rm

f(x) + g(y) (5a)

subject to: MAx+MBy = Mc , (5b)

is equivalent to DR applied to its Fenchel dual when utilizing
the metric M . Thus dual DR using metric M can be
implemented by the primal ADMM iterations

xk+1 = argmin
x∈Rn

{f(x) + γ2||M(Ax+Byk − c) + uk||22} ,

(6a)

yk+1 = argmin
y

{g(y) + γ

2
||M(Axk+1 +By − c) + uk||22} ,

(6b)
uk+1 = uk +M(Axk+1 +Byk+1 − c) . (6c)

In [19] the authors show how to calculate the matrix M
which optimizes the convergence rate of ADMM applied
to (5), under the additional assumptions that f is strongly
convex and smooth, and that A has full row rank. In such
cases, an optimal metric M can be modeled as the solu-
tion to a related semidefinite programming problem (SDP).
However, those requisite assumptions exclude many practical
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optimization problems, including general-form quadratic pro-
gramming (QP) problems. For QP forms outside the scope
of these assumptions, the authors of [19] suggest heuristic
models of metric selection.

Significant work has been done to improve ADMM con-
vergence using preconditioning, for instance in [17], [7].
As pointed out in [19], in the case of QP problems these
methods ultimately amount to reconditioning the quadratic
objective function. The same is true of the heuristic method
they propose, which equates to selecting the optimal metric
for a related unconstrained QP. In this paper, we explore the
potential for empirically learning metrics to enhance con-
vergence of proximal algorithms on QP problems which do
not satisfy the assumptions required for metric optimization
presented in [19]. We investigate solution of QP problems
using learned metrics with DR applied to both the primal
and dual problems, implementing ADMM for solution of
the dual as given in (6).

IV. LEARNING METRICS TO ACCELERATE QUADRATIC
PROGRAMMING

The proposed system for metric learning in proximal op-
timization leverages a reformulation of general QP problems
which renders the metrics easier to learn. In this section, we
first introduce the problem reformulation before describing
details of the end-to-end learning approach. In brief, a
neural network model is trained to predict positive definite
matrices M as a function of the parameters which define an
optimization problem instance. Solution error after a fixed
number of iterations (2) or (6) is treated as a loss function and
minimized, by backpropagation through the solver iterations
in stochastic gradient descent training. While the system is
general and can in principle be applied to any problem of the
form (1), the scope of this paper is limited to demonstration
on QP problems.

A. Problem Reformulation

Let Q ∈ Rn,n be a positive semi-definite matrix, q ∈ Rn,
L ∈ Rm,n, b ∈ Rm, W ∈ Rk,n, and c ∈ Rk. We consider
QP problems of the form

argmin
x∈Rn

1

2
xTQx+ qTx (7a)

s.t. Lx = b (7b)
Wx+ c ≤ 0. (7c)

For implementation with both primal DR and ADMM we
introduce slack variables s ∈ Rm and reformulate the
problem as

argmin
z∈Rn+k

1

2
zT ITx QIxz + qT Ixz (8a)

s.t. Rz + r = 0 (8b)
Isz ≥ 0, (8c)

where In is the n× n identity matrix, and

z =

[
x
s

]
, R =

[
L 0
W Ik

]
, r =

[
−b
c

]
,

Is =

[
0 0
0 Ik

]
, Ix =

[
In 0
0 0

]
,

where the zero entries in the matrices are presumed to be of
dimension appropriate to make (8) coherent.

Note that even if the inequalities (7c) represent simple
box constraints on the variables x (for example x < 0) we
still introduce corresponding slack variables. This is done to
construct a splitting for both primal DR and ADMM with the
intent to increase the impact M can have on convergence,
as will be described in the next section.

1) QP Splitting: For implementation of both primal DR
and ADMM on problem (8) we use the splitting

f(z) = zT ITx QIxz + qT Ixz + i{z∈Rn+k : Rz+r=0}(z)
(9a)

g(z) = i{z∈Rn+k : Isz≥0}(z) (9b)

where for a set S we define the indicator function on S to
be

iS(x) =

{
0 x ∈ S

∞ x /∈ S .

With this splitting we implement the primal DR iteration as
given in (2), and implement ADMM as in (6), with A = I ,
B = −I , and c = 0. Minimization steps with respect to f can
be accomplished with for example the corresponding Karush-
Kuhn-Tucker conditions. Minimization steps with respect to
g for both algorithms equate to projections onto the positive
orthant. Slack variables are initialized at zero throughout.

For both ADMM and DR iterations using the splitting (9),
the proximal operators as given in (2b) and (6a) equate to
projections onto the relaxed constraint set (8b) with respect
to the underlying metric. With the slack variables for each
inequality constraint initialized at zero, a relatively large
corresponding weight in the metric matrix M will bias the
non-Euclidean projection to maintain those slacks near zero.
Hence if M has relatively large weights for just the slacks
corresponding to the active constraints of a problem, the
projection can approximate projection onto the active set.
Indeed, the learned metrics exhibit this expected behavior as
illustrated in Figure 2.

B. End-to-End Learning Framework

As suggested by the results of Section (V), the optimal
metric for solving of an instance of (8) can be closely related
to the active constraints at its optimal solution. Thus, it
is expected that learning the optimal metrics for solving a
class of problems may be nearly as difficult as learning their
optimal solutions. As is common in prior works on learning
to solve optimization problems, the metric learning problem
is formulated relative to a parametric optimization problem

x⋆(p) = argmin
x∈Rn

fp(x) + gp(x) , (10)
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and we learn to predict metrics for parametric problem
instances within a limited distribution. In the QP problem
(7), this corresponds to the elements Q, q, L, b, W , and c
each being potential functions of p. The metric M which
best solves problem (10) when formulated as in (9) is then
learned as a function of the problem’s parameters p ∈ Rv .
This learned function takes the form of a neural network
Nω : Rv → Sn

++ with weights ω, so that M = Nω(p). It
is trained over a distribution of problem parameters p ∼ P ,
for which a finite dataset of instances {pi}i∈T are drawn.
A target dataset {x∗(pi)}i∈T contains the corresponding
optimal solutions, as per (10).

To define a loss function for training Nω on these data, first
define the following function. Let Dk : Rv×Sn

++×Rn → Rn

denote the application of k iterations of DR or ADMM, on
problem (10) with parameters p using metric M , starting
from initial variable values x0. It yields a solution estimate
xk; that is, Dk(p,M, x0) = xk. The metric prediction model
Nω is then trained to minimize the overall loss function

min
ω

1

|T |
∑
i∈T

||Dk(pi,Nω(pi), Eθ(pi))− x∗(pi)||2 (11)

by stochastic gradient descent. This requires backpropagation
of gradients through the solver iterations which constitute
Dk. In this work, backpropogation is performed by automatic
differentiation in PyTorch [32].

In equation (11), the function Eθ is an oracle which returns
a starting point x0 for any parameter vector p. As part of an
overall mechanism for producing fast solutions to (7), it is
a neural network trained to produce direct estimates of the
optimal solution to (10) by mean square error regression:

min
θ

1

|T |
∑
i∈T

||Eθ(pi)− x∗(pi)||2 . (12)

C. Metric Representation

Finally, we describe the manner of representation used to
predict the metrics M via the model M = Nω(p). As a
neural network, Nω produces a vector of values m ∈ Rn

which is then scaled between predefined upper and lower
bounds [mmin,mmax]. Finally, a scalar parameter ρ ∈ R
is predicted and also scaled to fit within predefined bounds
[ρmin, ρmax]. The final metric is constructed as the diagonal
matrix M = diag(ρ · m). In this work we explore only
diagonal metrics for both ease of training and interpretability,
however wider classes of positive definite matrices could be
searched over and could provide additional improvements in
convergence.

V. NUMERICAL RESULTS

For illustrative purposes, this section begins with a re-
ductive two-dimensional problem on which some effects of
metric learning are most easily observed. Then, we demon-
strate the effect of metric learning on convergence for larger
examples consisting of a portfolio optimization problem, and
a model predictive control problem.

In the following experiments, predictive models Nω

and Eθ are fully connected neural networks with recti-
fied linear unit (ReLU) activation functions. The values
ρmin, ρmax,mmin,mmax can be treated as hyperparameters;
in practice, it is found that effective metrics can be learned
by searching over ρmax while the others remain fixed. All
numerical test cases in this work are implemented using
NeuroMANCER, an open source differentiable programming
library built on top of Pytorch [11].

A. Active Set Prediction

This section illustrates how metric learning correlates with
active set prediction in inequality-constrained problems, by
assigning higher metric weights to the coordinates which
correspond to slack variables on the problem’s active con-
straints. As an illustrative example, we consider a simple QP
problem:

min
x,y

x2 + y2 (13a)

subject to:
− x− y + p1 ≤ 0 (13b)
x+ y − p1 − 1 ≤ 0 (13c)
x− y + p2 − 1 ≤ 0 (13d)
− x+ y − p2 ≤ 0 (13e)

for parameters p1, p2 ∈ [−2, 2]. The constraint set defines a
box which is translated around the origin according to the
parameter choices as shown in Figure 2. After assigning slack
variables s, the constraints become

− x− y + p1 + s1 = 0 (14a)
x+ y − p1 − 1 + s2 = 0 (14b)
x− y + p2 − 1 + s3 = 0 (14c)
− x+ y − p2 + s4 = 0 (14d)
s1, s2, s3, s4 ≥ 0 (14e)

We train both ADMM and DR metrics over the parameter
space. The neural network map Nω returns diagonal metrics
with diagonals of the form

diag([wy, wx, w1, w2, w3, w4])

where the weights wx and wy correspond to the primal
variables, and the weights {w1, w2, w3, w4} correspond to
the slack variables for each of the constraints.

a) Settings: The initial prediction model Eθ uses hidden
dimension 80. For Nω we use hidden dimension 20, with
bounds ρmin = 0.05, ρmax = 1.0, mmax = 5.0, and
mmin = 0.2. We sample 2000 parameters uniformly at
random to construct a training set, and an additional 2000
parameters uniformly at random for a test set. The initial
solution estimator Eθ was trained for 200 epochs at learning
rate of 0.001. Both ADMM and DR were run for 10 steps
during training, and Nω was trained for 100 epochs at a
learning rate of 0.001 for both.
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b) Results: As shown in Figure 1, DR with a trained
metric converges the fastest, while ADMM using the heuris-
tic metric as presented in [19] converges most slowly.
Computation of the heuristic metric effectively ignores the
inequality constraints, and computes a metric that achieves
the fastest convergence with respect to the objective, were
no constraints present this metric would achieve the best
possible convergence. However, the results show that in the
presence of constraints it can be detrimental.

Conversely, the learned metrics appear to achieve faster
convergence by incorporating information about the active
constraints. Figure 2 and Figure 3 highlight the close cor-
respondence between the metric weights corresponding to
slack variables and whether the associated constraints are
active at the optimum for a problem.

Fig. 1: Comparison of convergence of DR and ADMM using
trained metrics versus not, as well as comparison to use of a
heuristic metric choice. Reported values are the mean error
at each iteration on 2000 test set problems.

B. Portfolio Optimization Problem

This experiment models the optimal allocation of assets in
an investment portfolio as a quadratic programming problem.
Given n investment assets, their future price differentials p ∈
Rn are treated as parameters in the following QP:

x∗(p) = argmin
x

xTΣx− pTx (15a)

subject to: 1Tx = 1 (15b)
x ≥ 0, (15c)

where Σ represents a constant covariance matrix. The ob-
jective (15a) balances maximization of future profit with
minimization of price covariance as a measure of risk.
Constraints (15b,15c) define a valid proportional allocation.

a) Settings: Data on price action per asset are collected
from the Nasdaq online database [30]. A training dataset
of 5000 observations for the future price differential p are
generated by adding Gaussian random noise to this data,
plus an additional 500 each for the validation and testing
sets. A 5-layer neural network with hidden layer dimension
equal to the problem size n is used to predict the elements
of a diagonal metric matrix M as a function of p. The
following parameters are fixed: mmin = 0.01, mmax = 1.0,
ρmin = 0.01. A search over the upper bound ρmax ∈
{1.0, 5.0, 10.0, 50.0, 100.0, 500.0} shows that the best results
occur for ρmax = 100.0 but remain similar for higher values
of ρmax.

(a) Optimal Solution

(b) Metric weight for each slack variable

Fig. 2: Plot (a) shows the optimal solution of (13) for
parameter choice p1 = p2 = p, for values of p ranging
from −1.25 to 1.25. As the feasible set is translated around
the origin the optimal solution marked by a red star can
be seen to trace along the constraints. Correspondingly, plot
(b) shows that the learned DR metric weights corresponding
to the slack variables for the inequality constraints are near
zero when the constraint is not active and larger when the
constraint is active, showing a clear correspondence between
the active set and metric weights on slack variables.

(a) DR (b) ADMM

Fig. 3: Plots of the learned metric weight for slack variables
and the corresponding constraint residual at the optimum on
two thousand test problems for metrics learned using DR and
ADMM. As constraint residuals becomes zero the constraints
become active and the metric weight for the corresponding
slack increases.
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b) Results: Figure 4 illustrates convergence of the
DR and ADMM algorithms in solving (15), under metric
prediction trained with k iterations in the loop, for k ∈
{5, 10, 15, 20, 25, 30}. At test time, 100 iterations of DR
and 150 iterations ADMM are applied regardless of k. The
plotted values represent mean relative solution error in the
L2 norm. Dotted black curves correspond to a baseline in
which the standard Euclidean metric is used.

The following observations apply to both DR (at left)
and ADMM (at right). The metric prediction model which
is trained using k solver iterations always attains the best
accuracy at exactly k solver iterations. Additionally, the
models trained using more solver iterations k at each training
step perform better as more solver iterations are performed
at test time. This implies that an accelerated DR or ADMM
model intended for exactly k solver iterations should be
trained using k solver iterations, while a model intended for
solver iteration until convergence should train using large
values of k.

Note additionally that in this particular experiment, train-
ing for small k comes at a cost of slower long-term con-
vergence in the case of DR. In ADMM, models trained with
larger k generally perform equally or better than with smaller
k. An exception is observed for k = 30 in ADMM, in which
error is minimized at iteration 30 at the cost of higher error
in both earlier and later iterations. In all but one case, the
learned metrics outperform the Euclidean metric at test time.

Fig. 4: Results of training proximal metrics for DR and
ADMM on Portfolio Optimization, to minimize error at
increments of 5 iterations.

c) Comparison with Heuristic Metric Selection: In or-
der to compare the proposed metric learning for ADMM
against the theoretically prescribed heuristic metric choice
given in [19] we test the metric learning experiment on
problem (15) with a reduced size of n = 20 assets. Problem
size is reduced to allow a heuristic metric to be calculated
efficiently.

To illustrate the effect of active constraints on the viability
of the heuristic metric, results for ADMM are compared on
two variants of problem (15). The first is as given in (15),
and the second replaces the equality constraint (15b) with a
scaled asset allocation budget 1Tx = 10. This increase in
budget has the effect of reducing the percentage of active

constraints over problem parameters. Figure 5 shows the
results due to each allocation budget, at left and right respec-
tively. In the larger budget case few constraints are active
on average over the test set. This approximates a problem
setting with no constraints where the heuristic metric would
be optimal, and it can be seen to improve convergence in
comparison to the Euclidean metric. Further, the learned
optimal metrics perform similarly when trained for more
than k = 5 iterations. On the other hand, the smaller budget
leads to more active constraints and the heuristic metric
performs poorly. Conversely, the trained metric achieves a
greater improvement in convergence rate with respect to the
Euclidean metric than in the high budget case, highlighting
the capacity for improvement by incorporating information
about active constraints.

Fig. 5: Comparison of trained and heuristic metrics for
ADMM for Portfolio Optimization. The left plot presents
a case where problem constraints are routinely active over
problem parameters, while the right shows a case in which
problem constraints are more rarely active.

C. Quadcopter Control
We also test metric learning on a standard reference

tracking model predictive control problem implemented for
a linear discrete time dynamical model of a quadcopter. Let
the dynamics be defined by A ∈ Rn,n, B ∈ Rn,m, and the
cost function be defined by positive semi-definite matrices
Q ∈ Rn,n and R ∈ Rm,m. Here we take the parameter
p ∈ Rn to be the initial state of the system and solve

u∗(p), x∗(p) = argmin
x,u

N∑
k=0

(xk+1 − r)TQ(xk+1 − r) + uT
k Ruk

(16a)
subject to:
x1 = Ap+Bu0 , (16b)
xk+1 = Axk +Buk , (16c)
ua ≤ uk ≤ ub , (16d)
xa ≤ xk ≤ xb , (16e)
∀k ∈ {0, 1, 2, . . . N} . (16f)

The optimal solution produces control actions uk ∈ Rm that
drive the state of the system xk ∈ Rn from a given initial
state p towards the reference point r ∈ Rn over a finite
number of time steps k ∈ {1, 2, . . . N}. The control actions
must also keep the state within the bounds xa, xb ∈ Rn
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while staying within the control bounds ua, ub ∈ Rm. In
practice the problem (16) is solved iteratively with the control
implemented for just the initial time step, then the problem
is re-solved from the new system state at the next time step.
Thus the problem can be understood to be parameterized by
the initial state and reference point.

Here we assume a fixed reference point at the origin and
sample over a range of initial system states. The matrices
describing the quadcopter model dynamics and objectives as
well as state and control bounds are given in the Appendix
VI-A, they were taken from a set of benchmark problems
curated in [27], with data from the repository [13].

a) Settings: The quadcopter model has a 12 dimen-
sional state and 4 dimensional control input. Only the first
two state variables are constrained, and are restricted to the
interval [−π/6 , π/6]. To generate training data we take
the reference point r to be the origin and we generate initial
states p uniformly at random with the first two variables sam-
pled from [−π/6 , π/6] and the rest from [−0.8, 0.8]. This
choice was made such that generated problems were feasible,
and state constraints were routinely active at solutions. We
solve the problem (16) over a 10 step horizon, resulting in
n = 304 variables with 132 inequality constraints, and 132
equality constraints. Diagonal elements of a metric matrix
M are predicted on a per-instance basis using a 5-layer
ReLU network of hidden layer size 400. As in Section V-
B, the parameter choices: mmin = 0.01, mmax = 1.0,
ρmin = 0.01 are fixed. A search over the upper bound
ρmax ∈ {1.0, 5.0, 10.0, 50.0, 100.0, 500.0} shows that the
best results occur for ρmax = 50.0 and remain similar for
higher values of ρmax.

b) Results: Convergence of both DR and ADMM due
to the various trained metric prediction models are illustrated
in Figure 6. Prediction models are trained using k steps
of each algorithm for {5, 10, 15, 20, 25, 30, 35, 40}. Solution
error over the full horizon needed for convergence is not
shown, to make visible the effects of training up to the first
40 iterations. This is consistent with the intended application
in real-time optimization, which demands solutions within
stringent time constraints.

With regards to the effect of k, similar observations apply
as in the portfolio optimization experiments. Models trained
to minimize error at iteration k consistently perform best
after exactly k iterations. Meanwhile, training with larger k
generally benefits long-term convergence. Note that nearly
all trained models reach a relative error of 1 × 10−2 in a
fraction of the iterations required by the standard variant
with a Euclidean metric.

VI. CONCLUSION

Metric learning as presented here for parametric QP prob-
lems can consistently result in orders of magnitude improve-
ments in solution accuracy at low a number of iterations. The
most benefit is observed in problem settings with a significant
number of inequality constraints relative to the problem size
that are routinely active over parameters of interest. Notably,
this is exactly the case in which the theoretically prescribed

Fig. 6: Results of training proximal metrics for DR and
ADMM on Quadcopter Control, to minimize error at incre-
ments of 5 iterations.

heuristic metrics are not guaranteed to be optimal. Future
work is needed to understand the capacity for metric learning
to reduce solution time on large-scale problems. By relying
on a problem reformulation with slack variables, the total
number of variables is expanded resulting in a larger overall
problem size. On the other hand, it allows for metric learning
to potentially significantly reduce the number of iterations
required to achieve a given accuracy as seen here. Because
it is independent of other strategies for learning to accel-
erate optimization, it may have significant potential to be
combined with previously proposed techniques. Combining
the proposed metric learning with nonoverlapping strategies
such as prediction of solution warmstarts may further reduce
overall solution times.

APPENDIX

A. Quadcopter Model Details

Q = diag([0, 0, 10, 10, 10, 10, 0, 0, 0, 5, 5, 5],

R = diag([0.1, 0.1, 0.1, 0.1]),

ua = [9.6, 9.6, 9.6, 9.6] − 10.5916,

ub = [13., 13., 13., 13] − 10.5916

A =



1.0 0 0 0 0 0
0 1.0 0 0 0 0
0 0 1.0 0 0 0

0.0488 0 0 1.0 0 0
0 −0.0488 0 0 1.0 0
0 0 0 0 0 1.0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0.9734 0 0 0 0 0
0 −0.9734 0 0 0 0
0 0 0 0 0 0

0.1 0 0 0 0 0
0 0.1 0 0 0 0
0 0 0.1 0 0 0

0.0016 0 0 0.0992 0 0
0 −0.0016 0 0 0.0992 0
0 0 0 0 0 0.0992
0 0 0 0 0 1.0
0 1.0 0 0 0 0
0 0 1.0 0 0 0

0.0488 0 0 0.9846 0 0
0 −0.0488 0 0 0.9846 0
0 0 0 0 0.9846 0


,

1559



B =



0 −0.0726 0 0.0726
−0.0726 0 0.0726 0
−0.0152 0.0152 −0.0152 0.0152

−0 −0.0006 −0 0.0006
0.0006 0 −0.0006 0.0000
0.0106 0.0106 0.0106 0.0106

0 −1.4512 0 1.4512
−1.4512 0 1.4512 0
−0.3049 0.3049 −0.3049 0.3049

−0 −0.0236 0 0.0236
0.0236 0 −0.0236 0
0.2107 0.2107 0.2107 0.2107


.
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