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Abstract— Differential drive robots that can be modeled as
a kinematic unicycle are a standard mobile base platform
for many service and logistics applications. Safe and smooth
autonomous motion around obstacles is a crucial skill for uni-
cycle robots to perform diverse tasks in complex environments.
A classical control approach for unicycle control is feedback
linearization using a headway point at a fixed headway distance
in front of the unicycle. The unicycle headway control brings
the headway point to a desired goal location by embedding a
linear headway reference dynamics, which often results in an
undesired offset for the actual unicycle position. In this paper,
we introduce a new unicycle headway control approach with an
adaptive headway distance that overcomes this limitation, i.e.,
when the headway point reaches the goal the unicycle position
is also at the goal. By systematically analyzing the closed-
loop unicycle motion under the adaptive headway controller,
we design analytical feedback motion prediction methods that
bound the closed-loop unicycle position trajectory and so can be
effectively used for safety assessment and safe unicycle motion
design around obstacles. We present an application of adaptive
headway motion control and motion prediction for safe unicycle
path following around obstacles in numerical simulations.

I. INTRODUCTION

Autonomous mobile robots offer flexible automation so-
lutions for many real-life challenges, from assisting people
with daily activities (e.g., service robots [1]) to enhancing
transportation systems (e.g., warehouse robots [2]). A stan-
dard choice of a mobile robot base for many such indoor
application settings is differential drive robots that can be
modeled as a kinematic unicycle [3]. Safe and smooth control
of unicycle robots is essential to autonomously and reliably
complete different tasks around obstacles [4]. Accurate robot
motion prediction is a key enabler for safe unicycle motion
design in complex environments [5]–[9].

In this paper, we introduce a new unicycle headway con-
troller that uses an adaptive headway distance to asymptoti-
cally bring both the headway point and the unicycle position
to any given goal position. For the safety assessment of the
close-loop unicycle motion, we propose analytic (circular and
triangular) feedback motion prediction methods to accurately
bound the closed-loop unicycle motion trajectory under the
adaptive headway controller, as illustrated in Fig. 2. We apply
the proposed unicycle adaptive headway motion control and
motion prediction for safe path following around obstacles.
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Fig. 1. Example closed-loop unicycle motion trajectory x(t) (solid black
line) under the adaptive headway motion control towards a given goal x∗

(red point) where the headway point xε (purple point) is adaptively placed
based on the unicycle position distance to the goal. The unicycle motion
trajectory is bounded by a triangular (red) region defined by the goal position
x∗, the projected unicycle position

̂
x and the extended unicycle position x̂.

A. Motivation and Relevant Literature

Safe autonomous robot motion design requires an accu-
rate understanding and description of the closed-loop robot
motion under a feedback motion controller. Existing control
approaches for unicycle mobile robots mainly focus on the
stability and convergence of closed-loop unicycle motion
[10]–[14], but pay little attention to the geometric properties
of the resulting robot motion, which is essential for safety
[8], [15]. A classical feedback linearization approach for
unicycle control is based on the use of a headway (a.k.a.
offset) point that is at a fixed headway distance in front
of the unicycle and is smoothly steered towards a desired
goal by embedding some linear headway reference dynamics
[13], [14], [16]–[20]. However, the use of a fixed headway
distance causes a nonzero steady-state error for the unicycle
position since the unicycle robot stops at a headway distance
away from the goal while the headway point approaches the
goal location. In this paper, we propose a unicycle adaptive
headway controller based on an adaptive headway distance
that asymptotically decreases to zero as the headway point
converges to the goal location, which also ensures that the
unicycle reaches the goal.

Motion prediction for anticipating the future motion of
an autonomous system plays a key role in the safety as-
sessment, control, and planning of mobile robots around
obstacles [21]. Feedback motion prediction, i.e., finding a
bounding motion set on the closed-loop motion trajectory of
an autonomous mobile robot under a known control policy,
enables informative safety verification and assessment tools
[7]–[9], [22]. Reachability analysis offers computational
tools for estimating such motion sets for control systems
[23], [24], but often comes with a high computational cost.
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For globally convergent autonomous systems, the notion of
forward and backward reachable sets [25] is trivial because
the forward reachable set corresponds to the closed-loop
system trajectory due to the autonomous nature of the
system whereas the backward reachability set is the entire
state space due to the global convergence. In this paper,
by exploiting the linearity properties of headway control,
we propose new analytic (circular and triangular) motion
prediction methods to bound the unicycle robot motion under
the adaptive headway controller. We apply adaptive headway
motion control and motion prediction for safe unicycle path
following around obstacles and compare the performance of
the circular and triangular motion prediction methods with
the forward simulation of the closed-loop unicycle dynamics.

B. Contributions and Organization of the Paper

This paper introduces new adaptive headway motion con-
trol and motion prediction methods for safe unicycle motion
design around obstacles. In Section II, we present our adap-
tive headway control approach that asymptotically brings the
kinematic unicycle model to a desired goal position by using
an adaptive headway distance that depends on the unicycle
distance to the goal. As opposed to a fixed headway distance,
our use of an adaptive headway distance allows for both the
headway point and the unicycle position to asymptotically
reach the goal position. In Section III, based on a systematic
and careful analysis of the closed-loop unicycle motion,
we design two analytical (circular and triangular) feedback
motion prediction methods to bound the closed-loop unicycle
motion trajectory of the kinematic unicycle model under
the adaptive headway control. In Section IV, we present
an example application of the adaptive headway motion
control and motion prediction for safe path following around
obstacles in numerical simulations. We conclude in Section
V with a summary of our contributions and future directions.

II. UNICYCLE ADAPTIVE HEADWAY CONTROL

In this section, we briefly describe the standard headway
control approach for feedback linearization of the kinematic
unicycle robot model, and then present a new unicycle
headway control approach with an adaptive headway distance
to reach a given goal location. We highlight important geo-
metric properties of the proposed unicycle adaptive headway
controller to understand the resulting unicycle robot motion.

A. Kinematic Unicycle Robot Model

In the Euclidean plane R
2, we consider a kinematic

unicycle robot whose state is represented by its position
x ∈ R

2 and forward orientation angle θ ∈ [−π, π) that is
measured in radians counterclockwise from the horizontal

1 To ensure that the orientation angle θ stays within the interval [−π, π),
i.e., θ ∈ [−π, π), the integration of the angular velocity θ̇ is performed on

the unit circle S1 using the unit-vector transformations s=

[
s1
s2

]
:=

[
cos θ
sin θ

]

and θ := atan 2(s2, s1) and the unit-vector dynamics ṡ= θ̇

[
− sin θ

cos θ

]
. Note

that the unit-vector dynamics ṡ ensures that ‖s‖2=1 since d

dt
‖s‖2=0.

axis. The equations of motion of the kinematic unicycle robot
model are given by1

ẋ = v

[
cos θ
sin θ

]
and θ̇ = ω (1)

where v ∈ R and ω ∈ R are the scalar control inputs,
respectively, specifying the linear and angular velocity of
the unicycle robot. Hence, by definition, the unicycle robot
model is underactuated (i.e., three state variables, but only
two control inputs) and has the nonholonomic motion con-

straint of no sideway motion, i.e.,
[
− sin θ
cos θ

]T
ẋ = 0.

B. Unicycle Headway Motion Control

A standard feedback linearization approach for unicycle
control [14], [20], [26] is the use of a headway (a.k.a. offset)
point, denoted by xε ∈ R

2, that is at a certain (e.g., fixed or
varying) headway distance ε ≥ 0 in front of the robot as

xε := x + ε

[
cos θ
sin θ

]
(2)

so that the nonholonomic unicycle dynamics can be con-
trolled by embedding some desired (e.g., first-order linear)
reference dynamics for the headway point. Under the unicy-
cle dynamics in (1), the headway point evolves as

ẋε = (v + ε̇)

[
cos θ
sin θ

]
+ ω ε

[
− sin θ
cos θ

]
(3a)

=

[
cos θ −ε sin θ
sin θ ε cos θ

][
v + ε̇

ω

]
. (3b)

Hence, given a desired reference headway velocity profile
ẋε and a desired headway distance function ε, the linear and
angular velocity control inputs for a unicycle robot can be
determined for ε 6= 0 as

[
v

ω

]
=

[
cos θ sin θ
− sin θ

ε
cos θ
ε

]
ẋε −

[
ε̇

0

]
. (4)

For example, a classical choice of reference dynamics for
the headway point uses the first-order proportional error
feedback to move the headway point xε towards a given
goal position x∗ ∈ R

2 as [14], [20], [26]

ẋε = −κr(xε − x∗) (5)

where κr > 0 is a scalar positive control gain; and as a
headway distance, the existing literature on unicycle head-
way motion control [14], [20], [26] mainly assumes a fixed
positive headway distance (i.e., ε > 0 and ε̇ = 0), which
results in the following standard unicycle headway controller

[
v

ω

]
= −κr

[
cos θ sin θ
− sin θ

ε
cos θ
ε

]
(x− x∗)− κr

[
ε

0

]
(6)

that asymptotically brings the headway point to the goal but
leaves the robot at a headway distance away from the goal.
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C. Unicycle Control with Adaptive Headway Distance

In order to exactly move the unicycle robot to the goal
position using the headway control approach, we consider an
adaptive headway distance based on the Euclidean distance
of the unicycle position to the goal position as

ε := κε‖x− x∗‖, (7)

where κε > 0 is a fixed scalar coefficient. Under the unicycle
dynamics in (1), the time rate of change of the headway
distance ε in (7) is given by

ε̇ = κεv

[
cos θ
sin θ

]T
(x− x∗)

‖x− x∗‖ (8)

for any x 6= x∗, which depends on the linear velocity
input v. Therefore, using the general form of the unicycle
headway control in (4), the first-order headway reference
dynamics in (5), the adaptive headway distance in (7),
and the headway distance dynamics in (8), we design an
unicycle adaptive headway motion controller, denoted by
ux∗(x, θ) = (vx∗(x, θ), ωx∗(x, θ)), that determines the linear
velocity vx∗(x, θ) and the angular velocity ωx∗(x, θ) for the
unicycle model in (1) as2

vx∗(x, θ) =

κr‖x∗ − x‖
([

cos θ
sin θ

]T
x∗−x

‖x∗−x‖ − κε

)

1− κε

[
cos θ
sin θ

]T
x∗−x

‖x∗−x‖

(9a)

ωx∗(x, θ) =
κr

κε

[
− sin θ
cos θ

]T
x∗−x

‖x∗−x‖ (9b)

where κr > 0 and 1 > κε > 0. Here, it is important
to remark that the unity upper bound on κε is not only
a sufficient but also a necessary condition to avoid the
singularity in the linear velocity control in (9a) and also
to ensure the global convergence of our unicycle adaptive
headway controller (see Lemma 1 and Proposition 1).

The major significance of the adaptive headway distance
in (7) over a fixed headway distance is that the distance of
the headway point to the goal provides an upper bound on
the unicycle distance to the goal. (Due to page limitation, all
proofs of the lemmas are omitted and can be found in [28].)

Lemma 1 (Distance-to-Goal Bound) For any unicycle state
(x, θ) ∈ R

2 × [−π, π), the unicycle position distance to
the goal ‖x − x∗‖ is upper bounded by the distance of the
headway point to the goal ‖xε − x∗‖ as

1

(1− κε)
‖xε − x∗‖ ≥ ‖x− x∗‖ (10)

where 1 > κε > 0 is the headway distance coefficient in (7).

2Note that we set v = 0 and ω = 0 when the unicycle is at the goal
(i.e., x = x∗) to resolve the indeterminacy. This naturally introduces a
discontinuity in control at the goal position as necessitated by Brockett’s
theorem [27]. Otherwise, the unicycle adaptive headway motion control in
(9) is locally Lipshitz continuous everywhere, away from the goal position.

Proof. Using the triangular inequality, one can verify the
upper bound on ‖x− x∗‖ as

‖x− x∗‖ = ‖x− xε + xε − x∗‖
≤ ‖x−xε‖+‖xε−x∗‖ = κε‖x−x∗‖+‖xε−x∗‖

where ‖x−xε‖ = κε‖x−x∗‖ due to the definitions of the
headway point in (2) and the adaptive headway distance in
(7). Hence, by rearranging the terms in the equality, one can
conclude ‖x−x∗‖ ≤ 1

(1−κε)
‖xε−x∗‖ since 1 > κε > 0. �

Hence, as the headway point is asymptotically approaching
the goal location, the unicycle robot also reaches the goal
under the adaptive headway controller.

Proposition 1 (Global Convergence) The unicycle adaptive
headway motion controller ux∗ in (9) asymptotically brings
all initial unicycle states (x, θ) in R

2 × [−π, π) to any
given goal position x∗ ∈ R

2, that is to say, the closed-loop
trajectory (x(t), θ(t)) of the unicycle dynamics in (1) under
the adaptive headway controller in (9) satisfies

lim
t→∞

x(t) = x∗. (11)

Proof. By construction, the unicycle adaptive headway dis-
tance control policy in (9) realizes the first-order headway-
point reference dynamics in (5). The headway point xε under
the reference dynamics in (5) asymptotically reaches the goal
position since the squared Euclidean distance of the headway
point xε(x, θ) to the goal decreases over time as

d

dt
‖xε − x∗‖2=−2κr‖xε − x∗‖2 ≤ 0. (12)

Therefore, we also have the global convergence of the unicy-
cle position to the goal since the unicycle position distance
to the goal is bounded above by the headway point distance
to the goal (Lemma 1), i.e., 1

(1−κε)
‖xε−x∗‖ ≥ ‖x−x∗‖. �

D. Geometric Properties of Adaptive Headway Controller

In this part, we present some important geometric proper-
ties of the unicycle robot motion under the adaptive headway
controller that form the basis for the unicycle feedback
motion prediction later in Section III. Since the headway
point xε moves along a straight line segment towards the
goal x∗ under the headway reference dynamics in (5), it is
convenient to define the tangent vector tε and the normal
vector nε of the motion of the headway point as

tε :=





x∗ − xε
‖x∗ − xε‖

, if xε 6= x∗

0 , otherwise
(13a)

nε :=





R+π

2
tε , if (x∗ − x)

T

[
− sin θ
cos θ

]
≥ 0

R−π

2
tε , otherwise

(13b)

where Rφ :=

[
cosφ − sinφ
sinφ cosφ

]
denotes the 2D rotation

matrix with an angle of φ. Observe that both the tangent
tε and the normal nε are constant during the unicycle
motion under the adaptive headway controller away from
the goal. We also define the projected robot position

̂
x and
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the extended robot position x̂ with respect to the motion of
the headway point aŝ

x := x∗ + tεtε
T(x− x∗) (14a)

x̂ :=

̂
x +

κε√
1− κ2

ε

‖
̂
x− x∗‖nε (14b)

where the distances of the projected and extended robot
positions to the goal satisfy3

‖
̂
x− x∗‖ = tε

T(x∗ − x) (15a)

‖x̂− x∗‖ =
1√

1− κ2
ε

‖
̂
x− x∗‖. (15b)

A critical property of the projected and extended unicycle
positions is that they bound the actual unicycle position.

Lemma 2 (Unicycle Position Bound) For any unicycle state
(x, θ) ∈ R

2 × [−π, π), the unicycle position x is in between
the projected unicycle position

̂
x and the extended unicycle

position x̂, i.e.,

x ∈
[̂
x, x̂

]
, (16)

where [a, b] :=
{
αa + (1− α)b

∣∣α ∈ [0, 1]
}

denotes the
straight line segment between points a and b.

Lemma 3 (Unicycle Distance-to-Goal Bound) For any uni-
cycle state (x, θ) ∈ R

2 × [−π, π), the Euclidean distance
‖x− x∗‖ of the unicycle position to the goal position x∗ is
bounded below and above by the distances of the projected
and extended unicycle positions,

̂
x and x̂, to the goal as

‖
̂
x− x∗‖ ≤ ‖x− x∗‖ ≤ ‖x̂− x∗‖. (17)

Due to their strong geometric relation with the unicycle
position in Lemma 2 and Lemma 3, it is important to un-
derstand how the projected and extended unicycle positions
change under the adaptive headway controller in order to
understand the closed-loop unicycle motion.

Lemma 4 (Motion of Projected/Extended Unicycle Posi-
tions) For any unicycle state (x, θ) ∈ R

2×[−π, π), the pro-
jected unicycle position

̂
x and the extended unicycle position

x̂ evolve under the unicycle adaptive headway controller in
(9) towards any given goal position x∗ ∈ R

2 as

˙
̂
x = −κ

(̂
x− x∗

)
and ˙̂x = −κ(x̂− x∗) (18)

where κ = ‖x−x∗‖2

‖

̂

x−x∗‖

([
cos θ
sin θ

]T
tε

)2

if x 6= x∗, (and zero oth-

erwise). Hence, the distances of the projected and extended
unicycle positions to the goal are nonincreasing, i.e.,

d

dt
‖
̂
x− x∗‖2 ≤ 0, and

d

dt
‖x̂− x∗‖2 ≤ 0 (19)

3For any 0 < κε < 1 and x 6= x∗, the following relations hold

tε
T(x∗ − x) =

‖x∗ − x‖2

‖x∗ − xε‖

(
1− κε

[
cos θ
sin θ

]T (x∗ − x)

‖x∗ − x‖

)
≥ 0

‖x∗ −
̂
x‖ =

∣∣∣tεT(x∗ − x)
∣∣∣ = tε

T(x∗ − x).

and their solution trajectories satisfy for all t ≥ 0 that
̂
x(t) ∈

[
x∗,

̂
x(0)

]
and x̂(t) ∈ [x∗, x̂(0)]. (20)

Finally, as summarized below, two important geometric
features of the unicycle adaptive headway controller related
to the unicycle orientation are continuous goal alignment and
goal-aligned forward unicycle motion.

Lemma 5 (Goal Alignment) At any unicycle state (x, θ) ∈
R

2 × [−π, π) away from the goal position x∗ ∈ R
2 (i.e.,

x 6= x∗), the unicycle adaptive headway controller in (9)
adjusts the unicycle orientation towards the goal x∗∈R

2 as

d

dt

([
cos θ
sin θ

]T
x∗−x

‖x∗−x‖

)

≥ κr

κε

([
− sin θ
cos θ

]T
x∗−x

‖x∗−x‖

)2(
1−κε

[
cos θ
sin θ

]T
x∗−x

‖x∗−x‖

)
≥ 0

which is strictly positive when
[
− sin θ
cos θ

]T
x∗−x

‖x∗−x‖ 6= 0.

Lemma 6 (Goal-Aligned Forward Motion) Starting at t = 0
from any initial unicycle state (x0, θ0)∈ R

2×[−π, π) that is

aligned with the goal x∗ ∈R
2 as

[
cos θ0
sin θ0

]T
x∗−x0

‖x∗−x0‖
>κε, the

unicycle distance to the goal ‖x(t)− x∗‖ along the solution
trajectory (x(t), θ(t)) of the unicycle dynamics in (1) under
the adaptive headway controller in (9) is decreasing over
time and the unicycle moves in the forward direction with a
positive velocity for all future times t ≥ 0, i.e.,

d

dt
‖x(t)− x∗‖2 ≤ 0 and vx∗(x(t), θ(t)) ≥ 0 (21)

where the inequalities are strict for x(t) 6= x∗.

III. UNICYCLE FEEDBACK MOTION PREDICTION

FOR ADAPTIVE HEADWAY CONTROL

In this section, we present two (one circular and one
triangular) feedback motion prediction methods, as illustrated
in Fig. 2, for bounding the closed-loop motion trajectory
of the unicycle robot model under the adaptive headway
controller and show that these motion prediction methods
asymptotically shrink to the goal point and has a Lipschitz-
continuous minimum (e.g., collision) distance to any given
(e.g., obstacle) point, which are essential for provably correct
and safe robot motion design [8], [22].

A. Circular Unicycle Feedback Motion Prediction

One can use the decaying distance of the (extended)
unicycle position to the goal (Lemma 4 and Lemma 6) to
determine a circular closed-loop unicycle motion range.

Proposition 2 (Circular Unicycle Motion Prediction) Start-
ing at t = 0 from any initial state (x0, θ0) ∈ R

2×[−π, π), the
unicycle position trajectory x(t) under the adaptive headway
controller ux∗ in (9) towards any given goal x∗ ∈ R

2 is
contained for all future times t ≥ 0 in the circular motion
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prediction set Mux∗ ,B(x0, θ0) that is defined as

Mux∗ ,B(x0, θ0) :=




B(x∗, ‖x0−x∗‖), if

[
cos θ0
sin θ0

]T
x∗−x0

‖x∗−x0‖
≥κε

B(x∗, ‖x̂0−x∗‖), otherwise
(22)

where B(c, ρ) :=
{
z∈R

2
∣∣‖z−c‖ ≤ ρ

}
is the Euclidean

closed ball centered at c ∈ R
2 with radius ρ ≥ 0, and x̂

is the extended unicycle position associated with unicycle
state (x, θ) as defined in (14b).

Proof. If
[
cos θ0
sin θ0

]T
x∗−x0

‖x∗−x0‖
≥ κε, then the unicycle moves

forward and its distance to the goal ‖x(t)−x∗‖ is decreasing
along the motion trajectory (Lemma 6). Otherwise, we have
that ‖x(t)− x∗‖ is bounded above by ‖x̂(t)− x∗‖ (Lemma
3) which always decreases under the adaptive headway
controller (Lemma 4). Thus, the result follows. �

An important property of the circular unicycle motion
prediction is positive inclusiveness, which ensures that a
safety assessment based on the distance of feedback motion
prediction set to obstacles is consistent for all future times.

Proposition 3 (Positive Inclusion of Circular Motion Pre-
diction) The circular motion prediction set Mux∗ ,B(x, θ) of
the adaptive headway controller ux∗ towards any given goal
position x∗ ∈ R

2 is positively inclusive along the resulting
unicycle motion trajectory (x(t), θ(t)), i.e.,

Mux∗ ,B(x(t), θ(t)) ⊇ Mux∗ ,B(x(t
′), θ(t′)) ∀t′ ≥ t. (23)

Proof. The results follows from the fact that ‖x(t)− x∗‖ ≤
‖x̂(t)−x∗‖ (Lemma 3), and ‖x̂(t)−x∗‖ is decreasing along
the unicycle motion trajectory (Lemma 4), and ‖x(t)− x∗‖
start persistently decreasing once

[
cos θ(t)
sin θ(t)

]T
x∗−x(t)

‖x∗−x(t)‖ ≥ κε

(Lemma 6). �

Proposition 4 (Circular Motion Prediction Radius) The
circular motion prediction set Mux∗ ,B(x(t), θ(t)) asymptot-
ically shrinks to the goal position x∗ along the closed-
loop motion trajectory (x(t), θ(t)) of the unicycle adaptive
headway controller as its radius with respect to the goal
asymptotically decays to zero, i.e.,

lim
t→∞

min
x′∈Mux∗ ,B(x(t),θ(t))

‖x′ − x∗‖ = 0. (24)

Proof. The result follows from the fact that both the robot
position x(t) and the extended robot position x̂(t) asymptot-
ically converge to the goal x∗ (Proposition 1 and Lemma 4),
which define the radius of the circular motion prediction set
in (22) relative to the goal x∗. �

Proposition 5 (Circular Motion Prediction Distance) For any
unicycle state (x, θ) ∈ R

2 × [π,−π) away from the goal
x∗, the minimum distance minx′∈Mux∗ ,B(x,θ) ‖x′ − z‖ of the
circular motion prediction set Mux∗ ,B(x, θ) of the adaptive
headway controller ux∗ to any given point z ∈ R

2 is a locally
Lipschitz continuous function of the unicycle position x, the
unicycle orientation θ and the goal position x∗.

Fig. 2. Triangular motion bound (left, red) and triangular motion prediction
(right, orange) that contain the closed-loop unicycle motion trajectory
(solid black line) of the adaptive headway controller towards a given goal
(red point), starting from different initial unicycle states that share the
same circular motion prediction (yellow). The triangular motion prediction
(orange) is an extension of the triangular motion bound (red) in order to
ensure a Lipschitz-continuous distance-to-collision measure. (a) Negative
initial linear velocity (i.e., backward motion), (b) Zero initial linear velocity
(i.e., transition from backward to forward motion), (c, d) Positive initial
linear velocity (i.e., forward motion).

Proof. Due to the circular shape of Mux∗ ,B(x, θ), its mini-
mum distance to a point is determined by its center distance
‖x∗ − z‖ and its radius relative to the goal that is ‖x− x∗‖
if

[
cos θ0
sin θ0

]T
x∗−x0

‖x∗−x0‖
≥ κε; and ‖x̂ − x∗‖ otherwise. Note

that for each case, the radius of Mux∗ ,B(x, θ) is locally
Lipschitz continuous with respect to x, θ, and x∗. Now

observe that if
[
cos θ
sin θ

]T
x∗−x

‖x∗−x‖ = κε, then xε =

̂
x and

‖
̂
x − x∗‖ = ‖xε − x∗‖ =

√
1− κ2

ε‖x − x∗‖. Hence,
‖x̂−x∗‖ = 1√

1−κ2
ε

‖
̂
x−x∗‖ = ‖x−x∗‖. Therefore, the result

follows since the radius of Mux∗ ,B(x, θ) is a continuous
selection of locally Lipschitz continuous functions which is
also locally Lipschitz [29]. �

B. Triangular Motion Range Prediction

Although it has a simple analytical form, the circular
unicycle motion prediction Mux∗ ,B(x, θ) is conservative in
describing the closed-loop unicycle motion due to its sym-
metric form as illustrated in Fig. 2. To capture unicycle
motion direction more accurately, we introduce a triangular
unicycle motion prediction that contains the closed-loop
unicycle motion trajectory under adaptive headway control.

Lemma 7 (Triangular Unicycle Motion Bound) Starting at
t = 0 from any initial state (x(0), θ(0)) ∈ R

2 × [−π, π), the
unicycle position trajectory x(t) under the adaptive headway
control ux∗(v, ω) in (9) towards a given goal x∗ ∈ R

2 is
contained for all future times in a triangular set as

x(t) ∈




conv(x∗,x(0), xε(0)) , if

[
cos θ(0)
sin θ(0)

]T
x∗−x(0)

‖x∗−x(0)‖ ≥ κε

conv(x∗,

̂
x(0), x̂(0)) , otherwise

where one has conv(x∗,x(0), xε(0)) ⊆ conv(x∗,
̂
x(0), x̂(0))

if
[
cos θ(0)
sin θ(0)

]T
x∗−x(0)

‖x∗−x(0)‖ ≥ κε; and also x̂ = x and
̂
x = xε

if
[
cos θ
sin θ

]T
x∗−x

‖x∗−x‖ = κε. Here, conv denotes the convex hull

operator and xε(0) is the headway point defined in (2),
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̂
x(0) and x̂(0) are the initial projected and extended unicycle
positions defined in (14a) and (14b), respectively.

Proof. We have from Lemma 2 and Lemma 4 that x(t) ∈
[

̂
x(t), x̂(t)] where

̂
x(t) ∈ [x∗,

̂
x(0)] and x̂(t) ∈ [x∗, x̂(0)]

for all t ≥ 0. Hence, using the convex combination of
the boundary points, one can bound the unicycle position
trajectory as x(t) ∈ conv(x∗,

̂
x(0), x̂(0)) for all t ≥ 0.

If
[
cos θ(0)
sin θ(0)

]T
x∗−x(0)

‖x∗−x(0)‖ ≥ κε, then it also holds for all

future times, i.e.
[
cos θ(t)
sin θ(t)

]T
x∗−x(t)

‖x∗−x(t)‖ ≥ κε (Lemma 5) and

the unicycle robot always moves with a nonnegative linear
velocity towards the headway point (Lemma 6). Note that the
headway point satisfies xε(t) ∈ [x∗, xε(0)] due to the refer-
ence headway dynamics in (5). Hence, the unicycle position
trajectory can be bounded as x(t) ∈ conv(x∗, x(0), xε(0))
since the unicycle velocity ẋ(t) always points towards the
headway point xε(t) ∈ conv(x∗, x(0), xε(0)) which leaves
conv(x∗, x(0), xε(0)) positively invariant due to the sub-
tangentiality property on the set boundary [30].

Finally, by definitions (2), (14a), (14b), we have x ∈ [
̂
x, x̂]

and xε ∈ [x∗,

̂
x] if

[
cos θ(0)
sin θ(0)

]T
x∗−x(0)

‖x∗−x(0)‖ ≥ κε; and x̂ = x and
̂
x = xε if

[
cos θ
sin θ

]T
x∗−x

‖x∗−x‖ = κε. Therefore, conv(x∗, x, xε) ⊆

conv(x∗,
̂
x, x̂) if

[
cos θ
sin θ

]T
x∗−x

‖x∗−x‖ ≥ κε, where the equalities

are tight. �

The triangular bound on the unicycle position trajectory in
Proposition 7 changes discontinuously for the goal positions
that are placed almost perfectly behind the unicycle (i.e.,[
cos θ
sin θ

]T
(x∗−x) ≈ −1). To overcome this discontinuity issue,

we construct a triangular motion prediction set, denoted by
Mux∗ ,T(x, θ) for the adaptive headway controller ux∗ as

Mux∗ ,T(x, θ) :=




conv(x∗, x, x̂ε) , if

[
cos θ
sin θ

]T
x∗−x

‖x∗−x‖ ≥κε

conv(x∗, x̂+, x̂−), otherwise
(25)

where the triangle vertices are defined for x 6= x∗, using the
headway point xε in (2), the headway tangent tε in (13a),
and the projected unicycle position

̂
x in (14a), as

x̂ε := xε +
1−

[
cos θ
sin θ

]T
x∗−x

‖x∗−x‖

1− κε

ε

[
cos θ
sin θ

]
(26)

x̂+ :=
̂
x +

κε√
1− κε

‖
̂
x− x∗‖Rπ

2
tε (27)

x̂− :=
̂
x− κε√

1− κε

‖
̂
x− x∗‖Rπ

2
tε (28)

which are all set equal to x∗ for x = x∗. Note that the tri-
angular motion prediction set changes continuously because

conv(x∗, x, x̂ε)=conv(x∗, x̂+, x̂−) when
[
cos θ
sin θ

]T
x∗−x

‖x∗−x‖ =κε.

It is also important to observe that xε∈ [x, x̂ε] and
̂
x= x̂++x̂−

2 ,
and the extended unicycle position x̂ in (14b) is equal to
either x̂+ or x̂−. Hence, the triangular motion prediction

Mux∗ ,T(x(0), θ(0)) is a superset of the triangular bound on
the unicycle position trajectory x(t) in Proposition 7, i.e.,
x(t) ∈ Mux∗ ,T(x(0), θ(0)) for all t ≥ 0.

Proposition 6 (Triangular Motion Prediction Radius) The
triangular motion prediction set Mux∗ ,T(x(t), θ(t)) of the
adaptive headway controller ux∗ in (9) asymptotically
shrinks to the goal point along the resulting unicycle motion
trajectory (x(t), θ(t)) as its radius with respect to the goal
asymptotically decays to zero, i.e.,

lim
t→∞

min
x′∈Mux∗ ,T(x(t),θ(t))

‖x′ − x∗‖ = 0 (29)

Proof. The result follows from the fact that the vertices
points of the triangular motion prediction Mux∗ ,T(x(t), θ(t))
asymptotically converge to the goal x∗. �

Proposition 7 (Triangular Motion Prediction Distance) For
any unicycle state (x, θ) ∈ R

2× [−π, π) away from the goal
x∗, the minimum distance minx′∈Mux∗ ,T(x,θ) ‖x′ − z‖ of the
triangular motion prediction set Mux∗ ,T(x, θ) of the adaptive
headway controller ux∗ to any given point z ∈ R

2 is a locally
Lipschitz continuous function of the unicycle position x, the
unicycle orientation θ, and the goal position x∗.

Proof. Away from the goal position, the vertex points of
the triangular motion prediction set Mux∗ ,T(x, θ) are smooth

functions of x, θ, and x∗ for both the case of
[
cos θ
sin θ

]T
x∗−x

‖x∗−x‖ ≥
κε and otherwise. Hence, the triangular feedback motion
prediction set Mux∗ ,T(x, θ) can be expressed as an affine
transformation of a fixed triangle that is a smooth function
of x, θ, and x∗. Therefore, the distance of Mux∗ ,T(x, θ) is
locally Lipschitz continuous with respect to x, θ, and x∗

since the minimum set-distance is Lipschitz continuous under
smooth affine transformations (see Lemma 1 in [8]). �

IV. APPLICATION: SAFE UNICYCLE PATH FOLLOWING

VIA ADAPTIVE HEADWAY CONTROL AND MOTION PREDICTION

In this section, we demonstrate an application of the
adaptive headway control in (9) and the associated circular
and triangular feedback motion predictions in (22) and (25)
for safe unicycle path following around obstacles using a
time governor [22]. In brief, a time governor performs an
online time parametrization of a reference path for provably
correct and safe path following based on the safety assess-
ment of the predicted robot motion [22], which requires an
asymptotically shrinking motion prediction (see Proposition
4 and Proposition 6) with Lipschitz-continuous minimum
distance to any given (e.g., obstacle) point (see Proposition
5 and Proposition 7).

A. Safe Unicycle Path Following via Time Governors

For ease of exposition, we consider a disk-shaped unicycle
robot of body radius ρ > 0, centered at position x ∈ W

with orientation θ ∈ [−π, π), that operates in a known static
compact environment W ⊆ R

2 which is cluttered with a
collection of obstacles represented by an open set O ⊂ R

2.
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Hence, the robot’s free space, denoted by F, of collision-free
unicycle positions is given by

F :=
{
x ∈ W

∣∣B(x, ρ) ⊆ W \ O
}
, (30)

where B(x, ρ) :=
{
y ∈ R

d
∣∣‖y − x‖ ≤ ρ

}
is the Euclidean

closed ball centered at x with radius ρ, and ‖.‖ denotes the
standard Euclidean norm. Suppose p(s) : [smin, smax]→F be
a Lipschitz-continuous collision-free reference path that joins
a pair of collision-free start and goal positions xstart, xgoal∈
F such that p(smin) = xstart, p(smax) = xgoal. Starting at
t = 0 from the initial path parameter s(0) = smin, the initial
unicycle position x(0) = xstart and some initial unicycle
orientation θ(0) ∈ [−π, π), we construct a safe unicycle path
following controller with online path time-parametrization,
based on the adaptive headway control up(s) in (9) towards
the path point p(s), as

ṡ = min
(
κσdistF

(
Mup(s)

(x, θ)
)
,−κs(s−smax)

)
(31a)

ẋ = vp(s)(x, θ) (31b)

θ̇ = ωp(s)(x, θ) (31c)

where κσ, κs > 0 are fixed positive control coefficients,
and the safety of the unicycle motion is measured by the
minimum distance between a (e.g., circular or triangular)
feedback motion prediction set Mup(s)

(x, θ) of the adaptive
headway controller up(s) and the free space boundary ∂F as

distF(Mup(s)
(x, θ)) :=





min
a∈Mup(s)

(x,θ)

b∈∂F

‖a−b‖ , if Mup(s)
(x, θ)⊆F

0 , otherwise.
(32)

In summary, based on the safety level of the predicted
unicycle robot motion, the path parameter s is continuously
increased in (31) while the unicycle robot under adaptive
headway control up(s) moves towards the reference path
point p(s) which acts as a local goal. If the reference path
p has a nonzero clearance from the free space boundary
∂F, an asymptotically shrinking feedback motion prediction
with a Lipschitz continuous safety distance (32) ensures
that the path parameter trajectory s(t) and the unicycle
position trajectory x(t) under the time-governed unicycle
path following dynamics in (31) asymptotically converge to
the end of the reference path with no collision between the
robot and obstacles along the way [22], i.e.,

x(t) ∈ F ∀t ≥ 0

lim
t→∞

s(t) = smax

lim
t→∞

x(t) = p(smax).

4For all simulations, we set the headway distance coefficient κε = 0.5,
the control coefficient for the headway reference dynamics κr = 1,
and the control coefficients for the time governor in (31) κs = 4,
κσ = 4. We use the arc-length parametrization of a given reference
path p(s) such that the reference path length L determines the path
parameter range as [smin, smax] = [0, L]. All simulations are obtained
by numerically solving the time-governed unicycle path-following
dynamics in (31) using the ode45 function of MATLAB. Please see
the accompanying video for the animated robot motion. The open-
source code for our MATLAB and ROS implementations is available at
github.com/core-robotics-research/unicycle adaptive headway control.

(a) (b) (c)

Fig. 3. Time-governed safe unicycle path (red) following in an office-
like cluttered environment via adaptive headway control and the presented
feedback motion predictions. The safety of the unicycle motion is constantly
verified using (a) circular, (b) triangular, (c) forward-simulation-based
motion predictions. The unicycle robot motion is illustrated by blue lines,
where blue bars indicate robot speed. Yellow regions show an instance of
the feedback motion prediction during the robot motion towards the moving
reference path point (red point).

Fig. 4. Unicycle speed profile during safe path following in an office-
like cluttered environment for different unicycle feedback motion prediction
methods: circular MB, triangular MT, and forward-simulation-based MFS

and different headway distance coefficients κε = 0.5 (left), κε = 0.75
(right). A lower headway distance coefficient results in faster robot motion.

B. Numerical Simulations

In this part, we provide numerical simulations4 to demon-
strate safe unicycle path following based on adaptive head-
way control and associated circular and triangular feedback
motion prediction methods in an office-like environment
illustrated in Fig. 3. As a baseline ground-truth motion
prediction, we use the forward simulation of the adaptive
headway motion control assuming the reference path point
is kept fixed. In Fig. 3 and Fig. 4, we illustrate the result-
ing unicycle position trajectories and speed profiles during
safe unicycle path following using circular, triangular, and
forward-simulation-based motion predictions. The resulting
unicycle motion significantly differs in terms of the unicycle
speed and travel time, see Fig. 4, depending on the accuracy
of feedback motion prediction. As expected, forward simu-
lation performs the best in terms of average speed and travel
time with a significantly higher computational cost because
the safety assessment requires the numerical calculation
of the unicycle motion trajectory and the computation of
the distance-to-collision at each trajectory point. On the
other hand, the triangular unicycle motion prediction shows
a comparable performance like forward simulation with a
lower computation cost because of the explicit analytical
form of the motion prediction set in (25) and its simple
triangular shape. The circular unicycle motion prediction
yields the slowest path following motion because it is more
conservative and less accurate than the triangular unicycle
motion prediction that strongly depends on unicycle position
and orientation. We observe that the fully symmetric circular
motion prediction is more cautious about irrelevant sideways
collisions with walls while moving along a wall. Overall,
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accurate motion prediction is crucial for safe and fast robot
motion generation around complex (e.g., dynamic) obstacles.

V. CONCLUSIONS

In this paper, we design a new unicycle headway controller
using an adaptive headway distance that allows the unicycle
position to exactly converge a given goal position. We con-
struct new analytic circular and triangular feedback motion
prediction sets that bound the closed-loop unicycle motion
trajectory under the adaptive headway controller. Using on-
line path time parametrization, we present an application of
the adaptive headway controller and its feedback motion
prediction methods for safe path following of a unicycle
robot around obstacles. In our numerical simulations, we
observe that the analytic triangular feedback motion pre-
diction of the adaptive headway controller performs as well
as the computationally expensive forward system simulation
for capturing the closed-loop unicycle motion accurately and
generating safe and fast unicycle motion.

Our current work focuses on sensor-based safe unicycle
motion design using feedback motion prediction in real
hardware experiments, especially for safe robot navigation
in unknown dynamic environments [31]. We also investigate
the use of unicycle feedback motion prediction for multi-
robot navigation and crowd simulation [32].
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