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Abstract—In competitive multi-player interactions, simulta-
neous optimality is a key requirement for establishing strategic
equilibria. This property is explicit when the game-theoretic
equilibrium is the simultaneously optimal solution of coupled
optimization problems. However, no such optimization prob-
lems exist for the correlated equilibrium, a strategic equilibrium
where the players can correlate their actions. We address the
lack of a coupled optimization framework for the correlated
equilibrium by introducing an unnormalized game—an exten-
sion of normal-form games in which the player strategies are
lifted to unnormalized measures over the joint actions. We
show that the set of fully mixed generalized Nash equilibria
of this unnormalized game is a subset of the correlated
equilibria of the normal-form game. Furthermore, we introduce
an entropy regularization to the unnormalized game and prove
that the entropy-regularized generalized Nash equilibrium is
a sub-optimal correlated equilibrium where the degree of
sub-optimality depends on the magnitude of regularization.
We derive a closed form solution for an entropy-regularized
generalized Nash equilibrium and verify via simulation its
computational complexity.

I. INTRODUCTION

As autonomous and artificial intelligence-assisted tech-
nology become ubiquitous in our daily lives, game theory
emerges as an important tool for modeling and analyzing
the interactions between autonomous agents. Within a game,
player interactions are at a competitive equilibrium when
their strategies are simultaneously optimal: no player can
achieve a better objective by unilaterally deviating from its
current strategy. For the Nash equilibrium and the Stack-
elberg equilibrium, simultaneous optimality is an explicit
property: these equilibria solve optimization problems with
coupled objectives and constraints. The connection to op-
timization has directly led to the application of gradient-
based algorithms to computing game-theoretic equilibria in
autonomy and artificial intelligence [1]-[3].

The correlated equilibrium is an extension of the Nash
equilibrium to the joint action space. By utilizing a cor-
relation device to enable inter-player coordination, a cor-
related equilibrium achieves better social welfare than the
Nash equilibrium without compromising on simultaneous
optimality [4]. Furthermore, since correlated equilibria form
a connected polytope [5], fairness and other system-level
metrics can be optimized smoothly over these equilibrium
strategies. Scenarios that allow correlation device-enabled
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coordination include urban mobility [6], [7], robotics [8],
and power markets [9].

Despite its advantages, the correlated equilibrium’s com-
putation complexity grows exponentially in the number of
players and actions, and the lack of a coupled optimization
framework describing has made it difficult to apply gradient-
based algorithms to its computations. Presently, we pose
and answer the following question: can we construct a
coupled optimization problem whose optimal solution is the
correlated equilibrium of a normal-form game?
Contributions. Our contribution is two-fold: 1) we introduce
unnormalized games: an extension of normal-form games
in which the player strategies are unnormalized measures,
and prove that a strictly positive generalized Nash equilib-
rium of the unnormalized game is a correlated equilibrium
of the normal-form game, 2) we formulate an entropy-
regularized unnormalized game, prove that its generalized
Nash equilibria are sub-optimal correlated equilibria of the
normal-form game and find a closed-form expression of a
generalized Nash equilibrium. We also evaluate the compu-
tation complexity of the generalized Nash equilibrium and
its approximation to correlated equilibrium via simulations.
Relevant research. First introduced in [4], the correlated
equilibrium exists in both finite and infinite games, including
games that possess no Nash equilibria [10]. A correlated
equilibrium definition requires both a correlation device and
the resulting probability distribution over the joint action
space [11]. The correlated equilibrium have been defined and
formulated differently depending on the game formulation
[2], [12]. Its extensions under further game structure include
constrained correlated equilibrium [13], quantal correlated
equilibrium [14], extensive-form correlated equilibrium [15],
and coarse correlated equilibrium [16]. Learning dynamics
that converge to the correlated equilibrium include uncou-
pled no-regret learning dynamics [17] and evolution dynam-
ics [18]. However, they do not provide closed-form solutions
of the correlated equilibrium.

II. EQUILIBRIA CONCEPTS IN NORMAL FORM GAMES

We consider a normal-form game with N players. Let
[A;](A; € N) denote the set of actions available to player
i, and let [A] = [A4] x ... x [AN](A = [];¢n) 4i) denote
the set of all joint actions available in the game. We denote
player 4’s action as a; € [4;], the action taken by player ¢’s
opponents as a_;, and every player’s joint action as a :=
(a1,...,an) € [A]. Under a joint action a € [A], player 4
incurs a cost ¢;(a), where ¢; : [A] — R for all 7 € [N].
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We denote the A;—dimensional probability simplex over
[A;] as A;, the joint probability simplex as A = Ay X ... x
Ay, and the A-dimensional probability simplex over [A] as
A 4. Player i’s strategy z; € A, is a probability distribution
over the action set [A;]. Under the strategy z;, player i
selects an action a; with the probability x;(a;) for all a; €
[A;]. The joint strategy x := (z1,...,2n) € [[;cn A
is the collection of all of the players’ strategies. Let the
opponent strategy, action space, and strategy space be given
by z_; = (z1,...,2i-1,Tiy1,...,2N), [As] = Hj;éi[Aj]’
A =11 i Aj, respectively. Under the joint strategy x,
the expected cost for player ¢ is given by

Eanz(li(a)] = Z zi(a;) Z r_i(a—i)li(ai,a_;).

a;€[A;] a_;€[A_]
(D

We use /; : [A;] x A_; — R to denote player i’s expected
cost for playing action a; conditioned on the other players
playing the strategy x_;:

Zi(ai;x,i) = E[Zi(ai,a,i) |aj ~ Tj, Vi # i],Vi € [N} 2)
Using the notation 7, player i’s expected cost (1) under strat-
egy ; is given by Eqmy[li()] = X, c (4 @i(ai)i(as; )
when the other players choose strategies x_;.

Each player minimizes its expected cost E,~.[¢;(a)]
through unilateral changes in its own strategy x; € A;. At
the joint strategy @ = (1,...,2y) and for each i € [N],
if 2; minimizes Zaie[Ai] xi(ai)@(ai;x,i) simultaneously,
z is a Nash equilibrium.

Definition 1 (Nash equilibrium). The joint strategy x* =
(x7,...,2%) € A is a Nash equilibrium if for each i € [N],

Z a2} (ai)li(as;zt;) < Z zi(ai)li(ai x25), ¥V zi € A

a; €[A4] a; €[A;]
3)

The set of Nash equilibria is equivalent to the set of KKT
points of the following coupled linear program for each i €
[N]. In general, this set is disconnected [5].

i i\ Ug g, i),
frsnélg Zaie[Ai] xi(a;)li(a; x_;) o
st Za"e[Ai] xz(al) = 1axi(ai) 2 07 Vai € [Az]v

Nash equilibrium extends the notion of single-player opti-
mality to simultaneous optimality under unilateral deviations
in the players’ strategies [19]. A Nash equilibrium strategy
(x7, ...,z ) ensures that, against the other players’ strategy
¥, 7 minimize player ¢’s expected cost within player 4’s
own strategy space A,.

Independent decision-making induces inequity. A Nash
equilibrium implicitly assumes that the players make de-
cisions independently—i.e., z;,z; are independent proba-
bility distributions for all 4,5 € [N], j # ¢. While this
assumption holds for game-theoretic models such as the
Prisoner’s Dilemma [20], it fails to take advantage of the
additional coordination structure that exists in large-scale
cyber-physical systems. Furthermore, independent decision-
making often induces inequity among players.

Example 1 (Vehicle standoff). Consider a single-lane road
with bi-directional traffic and an unexpected pothole on its
right side. Vehicles can choose to veer left or right to pass
each other. The two pure Nash equilibria are (left, right)
and (right, left), but the traffic direction that chooses the
pothole side will constantly be at a disadvantage. A mixed
Nash equilibrium can ensure that both traffic directions are
equally likely to encounter unexpected potholes, but it also
means that with positive probability, both directions’ vehicles
will choose the same roadside and stall traffic.

A more robust solution is coordinating both traffic direc-
tions to alternate between the Nash equilibria (left, right) and
(right, left). This requires correlation between the vehicles.

Definition 2 (Correlated strategy). The A-dimensional prob-
ability distribution y € A 4 is a correlated strategy if y(a) >
0 denotes the probability of the joint action a = (ay,...,ay)
occurring, for all a € [A] and }_ (4 y(a) =1 [5], [21].

To use correlated strategies, players must have the incen-
tive and the means to coordinate. As Example 1 illustrates,
one incentive is to improve fairness among players, and
one possible coordination method is a traffic operator. In
general, inter-player coordination is conducted via a corre-
lation device [11]. Presently, we assume that there exists a
correlation device that can realize all correlated strategies
given by Definition 2.

Every joint strategy induces a correlated strategy, but
not every correlated strategy can be reduced to a joint
strategy. Furthermore, all correlated strategies induced by
joint strategies are rank one in their tensor form.

Example 2 (Rank of correlated strategy tensors). Consider a
two-player normal form game with finite action sets [U] and
[V']. We will cast the correlated strategy y € Ayvy to a matrix
Y € RU*V. For a joint strategy (xvy,xy) € Ay x Ay, the
corresponding correlated strategy Y is given by Y = xe‘T/.
Thus, all the joint strategies © = (xy, xy ) produce rank one
correlated strategies in its matrix form.

On the other hand, let Yy be any feasible correlated
strategy, then the complete set of correlated strategies is
given by Yo + N where N is defined as

N={Yy eRVV|1Ty1=0, Y + Y, >0},

From the constraint 17Y1 = 0, matrices in N have a
maximum rank of min{U,V'} — 1.

Example 2’s tensor formulation of correlated strate-
gies extends to the N-player setting: every joint strategy
(x1,...,2N), where x; € A; for all i € [N], induces a
correlated strategy ¢ given by

J(ar,...,an) = [Ligpn zilai), V(ai,... an) € [A]. (5)

If we cast § € A4 to an N-dimensional tensor Y €
RA1x-XAN we observe that § is again a rank one tensor.

Comparison of solution spaces A and A 4. The joint
strategy’s and correlated strategy’s solution spaces differ
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significantly in size. A joint strategy is given by N inde-
pendent probability distributions x; € A;, and its overall
dimension is ), A;. On the other hand, a correlated strategy
has dimension A = Hie[ N] A;. When the number of players
or the number of player actions increases, the joint strategy
space A’s dimension scales linearly, while the correlated
strategy space A 4’s dimension scales exponentially.

Optimality in correlated strategy space A 4. A corre-
lated strategy is optimal for player 7 if no action a; € [A;]
can replace a; € [A;] in all joint actions involving a;, such
that player ¢’s expected cost ¢; improves. This notion of
optimality is the same as the Nash equilibrium (3). However,
unlike the Nash equilibrium, defining the optimality of an
independent strategy is no longer sufficiently descriptive. We
formally define correlated equilibrium as below.

Definition 3 (Correlated equilibrium [4]). The correlated
strategy y € A 4 (Definition 2) is a correlated equilibrium if
forall i € [N] and a;,d; € [Ai],

Za_ie[A_i] (gi(aivafi) - gi(&iaafi))y(aiaafi) <0. (6)

Intuitively, condition (6) implies that player ¢ cannot
independently swap action a; for a; while the other play-
ers play a_; and achieve a lower expected cost. On the
set of correlated strategies induced by joint strategies, the
correlated equilibrium condition (6) is equivalent to the Nash
equilibrium condition (3).

Lemma 1. Over the set of correlated strategies induced by
joint strategies as in (5), the correlated equilibrium condi-
tion (6) is equivalent to the Nash equilibrium condition (3).

See [22, App.A] for proof.

Correlated equilibrium polytope. In the original formu-
lation of a correlated equilibrium [4], the set of correlated
equilibria is shown to be equivalent to the following linear
polytope on the joint action space.

PCEzz{yEA\lTyzl,yzO,

Do ie(as Y(aia—;) (ei(aiaa—i) - ei(di,a—i)) <0,
Vas,a; € [Ai], i€ [N]}. )

In [5], the authors showed that in addition to being a
connected polytope, Pcog’s boundary set 9Pc g contains the
correlated strategies induced by Nash equilibria. However,
computing the Pcg suffers from the curse of dimensionality
both due to the dimension of A being exponential in the N
and the number of Pcp’s constraints, 37,y (‘27‘), being
exponential in A;.

III. LIFTING CORRELATED EQUILIBRIUM

While a correlated equilibrium has the interpretation of
being a ‘simultaneously optimal’ strategy in literature, this
interpretation lacks an explicit optimization formulation like
the one that exists for Nash equilibrium in the form of (4).
In this section, we formulate a novel game in which the
player strategy spaces are lifted from the probability measure

spaces over [A;] to an unnormalized measure space over
[A] = [I,(n[As]- We show that a fully mixed generalized
Nash equilibrium of the lifted game corresponds to a fully
mixed correlated equilibrium of the normal form game.

We first relax probability measures to unnormalized mea-
sures with finite mass [23], [24]. A vector « is an unnormal-
ized measure if

a € RY/{0}, a(a) >0, Va € [A]. (8)

Given two unnormalized measures «y,as over [A], we
denote their element-wise product by «; o s, such that

(o1 0 az) € RY, (a1 0 an)(a) = ai(a)az(a), Va € [A].

We consider the decomposition of a correlated strategy y
(Definition 2) into N unnormalized measures.

Definition 4 (Normalized Decomposition). Given a cor-
related strategy y € Aga, (aq,...,an) is a normalized
decomposition of y and y is a product of (a1,...an) if

y=aio...0ap, oz,-ERf, Vi € [N]. 9)

Definition 4 decomposes y element-wise rather than fac-
toring it vector-wise into a joint strategy (5). Furthermore, the
mapping («,...,ay) — y is surjective but not injective.

Lemma 2. Every correlated strategy y € A 4 has an infinite
number of decompositions in the form of (9). Furthermore,

if (a1,...,an) satisfies

1T(alooaN):17O[7ZO, \V/ZG[N], (10)

then y = oy o...oap is a correlated strategy.
See [22, App.B] for proof.

Example 3 (Normalized decompositions). We can represent
the unnormalized measures of a two player game where
Ay = Ay € N by Ay x As-dimensional matrices, o €
RAYXA2 - gych that any element-wise product o; o o s
equivalent to the Hadarmard product between their matrix
counterparts. The following are all valid normalized decom-
positions and their correlated strategy product.

0 1 0
0 1]=1{0
0 1 0

0

0

0

0 0
1 2] =
3 4

A. Unnormalized game

We define an unnormalized game that extends the
normal-form game as follows: instead of choosing probabil-
ity distributions supported on each player’s individual action
space, each player ¢ chooses an unnormalized measure «;
over the joint action space [A] as defined in Definition 8,
constrained by the condition fact that y = oy o...ay is a
correlated strategy. The player objectives remain the expected
cost incurred by each player (2), which is a multi-linear
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o =O
oO=O
oO=O
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= o O
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function of the unnormalized measures through (9) and (2).
Each player’s optimization problem is given by

min >aepar lila)aa(a) ... an(a),
Ry (11)
s.t. D peaylaro..oayn)(a) =1.

In the unnormalized game, each player’s strategy «; has
the same dimension as the correlated strategy of the orig-
inal finite game. Given the other players’ strategies a_;,
player ¢ uses their strategy «; to optimize the expected cost
> aepar lila)oa(a) ... an(a), constrained by a mass con-
straint: 3, 4(a10...0an)(a) = 1. The optimal solution
here is a generalized Nash equilibrium, where, in addition
to minimizing their expected cost, each player’s strategy is
feasible with respect to the other players’ strategies.

Definition 5 (Generalized Nash equilibrium [25]). A joint
strategy (af,...,ak ) is a generalized Nash equilibrium if
for all i € [N], «f is optimal for (11) with respect to o* .

?

A generalized Nash equilibrium extends the Nash equilib-
rium (3) to games where each player’s strategy feasibility
depends on the other players’ strategies. In the unnormalized
game, all players share the mass constraint given by (10). We
further restrict our analysis to fully mixed measures.

Assumption 1 (Fully mixed measures). The unnormalized
measure o € R? satisfies a(a) > 0, Va € [A].

When a correlated strategy is fully mixed, all of its nor-
malized decompositions (s, ..., an) satisfy Assumption 1.
Games with certain player cost structures, such as zero-sum
games and games with non-dominant strategies, tend to have
fully mixed Nash and correlated equilibria [26], [27].

B. Generalized Nash equilibrium and correlated equilibrium

We show that y is a correlated equilibrium of the normal
form game if its decomposition («y,...,ay) is a general-
ized Nash equilibrium of the unnormalized game.

Proposition 1. If (a1, ...,an) is a generalized Nash equi-
librium of the unnormalized game (11) and «; satisfies As-
sumption 1 for all i € [N), then the product y = aj0...0ay
is a correlated equilibria of the normal form game (6).

Proof. We prove this proposition by showing that Assump-
tion 1 and the coupled KKT conditions of (11) together
imply the correlated equilibrium condition in (6). From [25,
Thm.3.3], the coupled KKT conditions of (11) are necessary
and sufficient for (aq,...,an) to be a generalized Nash
equilibrium of the unnormalized game.

From the unnormalized game (11) for player i, we as-
sign the Lagrange multipliers o; € R for the constraint
> aejalaro...oan)(a) =1 and p;(a) for the constraints
a;(a) > 0. The first-order gradient condition and the com-
plementarity condition of the KKT are given by

0=¢;(a)a—;(a) —o;a_i(a) — pi(a) =0,
12)

_J>0 ai(a)=0 .
wi(a) { 0 aia)>0 ,V(3,a) € [N] x [A].

When a_;(a) > 0, the KKT conditions above imply that

= oy,
tila) {> T,
From Assumption 1, a_;(a) > 0 and «;(a) > 0 for all
a € [A]. Therefore, p;(a) = 0, o; = £;(a) for all a €
[A]. In particular, ¢;(a;,a_;) = £;(a;,a—;) for all a;,a; €
[A;]. The correlated equilibrium condition (6) (¢;(a;,a—;) —
4;(a;,a-4))y(ai,a—;) will then evaluate strictly to 0 for all
a; € [A;] and ¢ € [N]. We conclude that y = o 0... 0y
is a correlated equilibrium. O

if aj(a) >0

%wzo,V@MemXML

13)

Remark 1. Proposition 1 suggests that a correlated equi-
librium is fully mixed only if {;(a) evaluates to the same
value for all a € [A]. While this may seem restrictive,
we use entropy regularizations in Section IV to produce
games in which the regularized costs are all equal for each
opponent action a—_;. We can show that the generalized
Nash equilibrium under regularization will approximate the
correlated equilibrium of the normal-form game even if no
fully mixed correlated equilibrium exists.

Proposition 1’s implication does not hold in reverse: if
y is a fully mixed correlated equilibrium, its normalized
decomposition may not be a generalized Nash equilibrium
of the unnormalized game.

Example 4 (Correlated equilibria not captured by gNE).
Consider a 2 X 2 matrix game where player one chooses the
row and player two chooses the column. The player costs
are given by matrices A and B, respectively, defined as

3 3 1 2

2 4]’ Fa = {1 0}'

We vectorize the joint action space as [A] = {a1, a2, as,a4},
corresponding to the counterclockwise sequence of joint

actions in matrix P; starting from the top left. For y € Ay to
be a correlated equilibrium as defined in (6), it must satisfy

P =

3y(a1) + 3y(as) — 2y(a2) — 4y(az) <
ly(a1) + 1y(a2) — Oy(as) — 2y(as) <
We can verify that ycg = [ L 1Y satisfies (14). If

4 % 4 4
player two uses strategy as(a;) = % for all j € [4], player
one’s unnormalized game is given by

o (14)
0

rglln% (3 (a1) + 201 (a2) + 4o (a3) + 3o (as))
st >0 a1(aj) =2,01(a;) >0, Vi € [4].

We verify that o1 = [1/2 1/2 1/2 1/2] satisfies oy o
oy = ycg but it does not minimize (15). Specifically,
a1 =1[0 1 1/2 1/2] can achieve a lower objective than
oy against ap = [1/2 1/2 1/2 1/2].

From Proposition 1, we conclude that if the generalized
Nash equilibrium of (11) is strictly positive, then their prod-
uct y is a fully mixed correlated equilibrium of the original
normal-form game. A natural follow-up question is, when do
strictly positive correlated strategies exist? We explore this
in the following section using entropy regularizations.

5)
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IV. ENTROPY-REGULARIZED CORRELATED EQUILIBRIA

We demonstrate how entropy regularization can be applied
to the unnormalized game to the find e-correlated equilibria
of the original normal-form game. Consider the entropy-
regularized counterpart of the unnormalized game (11),
where each player solves the optimization problem given by

min Zae[A (Zi(a) + )\% (log (ai(a)) - 1))a¢(a)a,i(a),

a; ER
S.t. ZaG[A] (a1 o...

16)

oapn)(a) =1.

Here, \; > 0, A\; € R denotes the magnitude of the entropy
regularization. The total entropy of the correlated strategy
Yy =ai0...0ay is given by Eae[A] y(a)log (y(a)), such
that Zae[ Al y(a)log(w;) is equivalent to player ¢’s contribu-
tion to the total entropy. For two unnormalized measures that
achieve equal costs ¢4 li(a)ai(a)a—i(a), (16) favors
the measure with the greater entropy and thus achieving a
lower cost as defined by (11).

Remark 2. In game models of multi-robot systems [6], [8],
the model parameters are often obtained from noisy and
imperfect data. Given imperfect models, policies with higher
entropy can protect players against any individual modeling
flaw. Entropy regularization is often used to improve the pol-
icy robustness to modeling inaccuracies [28], [29]. In games,
a entropy-regularized Nash equilibrium is a logit quantal
response equilibrium [30] and is more robust than the Nash
equilibrium in systems involving human players [31].

We can show that the entropy-regularized unnormalized
distribution game has the following closed-form solution.

Proposition 2. In the entropy-regularized unnormalized
game where each player solves (16), there exists a gener-
alized Nash equilibrium (a1, ..., ay), where « is given by

ai(a) _ exp (—Aiéi(a)) -

(Za exp (-3, Ajej(a))) %

, Vi,a € [N] x [A].

a7
See [22, App.C] for proof. The correlated equilibrium
corresponding to (17) is

exp (*E]- Aﬂj(a))
2o, exp (_Zj Aﬂj(@)) ’

yla) = a € [A]. (18)
The resulting correlated equilibrium is a softmax function
over the regularized and weighted sum of individual player
costs, where the level of entropy introduced is controlled
by A\;: as A\; — 0 is, the resulting correlated equilibrium
converges to the completed mixed correlated strategy. We
note that while Proposition 2 provides a solution for the
entropy-regularized unnormalized game (16), other general-
ized Nash equilibria exist. In particular, each strictly positive
generalized Nash equilibrium is an e-correlated equilibrium
of the original normal form game (11).

Corollary 1 (e-correlated equilibrium). If the entropy-
regularized generalized Nash equilibrium (a1, . ..,ay) sat-
isfies Assumption 1 for each i € [N|, their product y (18) is
an e-correlated equilibria—i.e., for all i € [N],

Zy Ag, G 2 az7 ) ( (ala z)) <+, vaiadi € [Al]7
i

(19)
where €; = max, ;c[4) log (ozz( )/ ai(a )) and € = max; €;.

See [22, App.D] for proof.

V. COMPUTING e¢-CORRELATED EQUILIBRIUM

We apply the results of Section IV to compute the gener-
alized Nash equilibrium of the unnormalized game (11) and
evaluate its feasibility as an e-correlated equilibrium of the
original normal-form game.

In Figure 1, we simulate normal-form games (4) with
N = {2,3} players and individual action spaces of size

= {2,5,10} and evaluate the accuracy of the entropy-
regularized generalized Nash equilibrium (18) over K =
1000 randomly generated costs. We plot the empirical vi-
olation with a 5% standard deviation range of the corre-
lated equilibrium condition (6) under e (empirical) and the
theoretical bound max; €;/A; (19) under € (bound) for the
regularization values A = {0.1, 10, 30,100, 1000, 1e4}. We
assume that all players use the same entropy regularization,
A; = A, Vi € [N]. Shown in Figure 1, the results demonstrate
statistical decrease in correlated equilibrium violations as the
entropy regularization increases.

For each game, we compute its entropy-regularized gen-
eralized Nash equilibrium y* via (18) and evaluate y*’s
empirical sub-optimality €., = € (empirical) as

— Ei(a;, a,i)) .

(20)
We note that ¢, is equivalent to the distance between ..
and the correlated polytope in co vector norm.

Finally, we note that a key challenge in applying correlated
equilibrium for autonomous interactions is its poor scalability
in the number of agents and actions. To this end, (18)
provides an approximation that significantly reduces the
computation complexity. We evaluate the computation com-
plexity of (18) in Figure 2, and observe that while its
computation time scales poorly in the number of players, it is
significantly lower than the computation time of solving for
a correlated equilibrium polytope via linear programming:
CVXPY computes a correlated equilibrium for a N = 3
player game with action space A; = 3 in ~ 1.87 seconds,
whereas approximating it via (18) only takes 4e — 3 seconds.

max >, oy gyt (aia)(Ci(ai,a-)

VI. CONCLUSION

We introduce an extension of normal-form games and
show that for fully mixed unnormalized measures, the set
of generalized Nash equilibria of the unnormalized measure
game produces fully mixed correlated equilibria in the orig-
inal normal-form game. Additionally, we use entropy regu-
larization to compute correlated strategies that are within e
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2: Computation time (seconds) of the e-correlated equilibrium

for different numbers of players and actions.

distance of the correlated equilibrium polytope. Future work
involves exploring the set of generalize Nash equilibrium and
optimizing fairness metrics over it.
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