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Abstract— In cooperative multiagent reinforcement learning
(MARL), a team of agents learns to work together to complete
a task. Centralized approaches to MARL quickly become
intractable as the number of agents increases, necessitating
decentralized learning algorithms which take advantage of
task decompositions to train the agents individually. However,
these task decompositions typically require careful human
engineering. In this work, we develop algorithms to automat-
ically decompose a team task into a collection of subtasks
that can be used for decentralized reinforcement learning. We
use reward machines—structured representations of reward
functions—to encode team tasks and to automatically generate
task decompositions that enforce the following three properties.
1) Task Consistency: We generate decompositions that are
consistent with the team’s task—if the agents individually learn
to accomplish their subtasks, we guarantee that the composition
of their learned behaviors will accomplish the original task. 2)
Minimized Coordination: Inter-agent coordination during task
execution can be costly. We minimize the coordination that’s
necessary to execute the decomposed tasks, which simplifies
the decentralized learning problem by reducing each agent’s
interdependencies with its teammates. 3) Fairly Distributed:
We maximize a weighted sum that balances the total utility
of the agents and the fairness of the decomposition, which
we define in terms of the distribution of assigned subtasks
between the agents. Experimental results in three-agent and
five-agent MARL tasks show the method’s novel capabilities.
The algorithm automatically generates task decompositions that
are consistent with the team task, that reduce unnecessary co-
ordination between the agents, and that take the agent’s utility
over subtasks into account. When used to define decentralized
objectives, the generated task decompositions result in team
policies that efficiently complete the task. Meanwhile, baseline
decompositions yield policies that fail to complete the task.

I. INTRODUCTION

In cooperative multiagent reinforcement learning
(MARL), a team of agents learns to complete a common
objective through interactions with each other and with
a shared task environment. The computational and data
requirements of centralized approaches to MARL, in which
the single decision-making policy is trained using data
collected from the entire team, scale exponentially in the
number of agents. These issues necessitate decentralized
MARL algorithms, which learn separate policies for the
individual agents in a distributed fashion.

One approach to decentralized RL is to decompose the
team task into subtasks to be completed by individual agents.
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The agents can then be trained individually on their assigned
subtasks, simplifying the learning problem. However, in gen-
eral such task decompositions must be constructed manually,
and they can be difficult to design in practice.

In this work, we present a framework and algorithms
for the automatic decomposition of cooperative MARL
tasks. Specifically, we use reward machines (RM)—finite
transitions systems that encode reinforcement learning
objectives—to represent the team tasks. This structured
representation enables formal analysis and computation of
task decompositions; the task RM can be decomposed into
a collection of subtask RMs, each of which encodes the
required local behavior of an individual agent [1].

Using the team task RM, we first define a strategy reward
machine—a simpler version of the RM that only encodes one
of the (potentially many) ways that the team could complete
the task. We then present four conditions that we use to
define feasible decompositions of this strategy RM. We use
these conditions to check whether a candidate decomposition
will result in decentralized behavior that both completes
the team task and is consistent with the heterogeneous
capabilities of the individual agents. Furthermore, we define
score functions to compare the feasible decompositions in
terms of their relative fairness, the total utility they provide
to the agents, and the amount of coordination they require
from the agents at runtime. Finally, we present an algorithm
to automatically search for a decomposition that satisfies the
aforementioned conditions and that maximizes a weighted
combination of these score functions.

We apply decentralized algorithms for MARL to train
the agents to complete the automatically generated task
decompositions. To train the individual agents to complete
their local subtasks while simultaneously preventing them
from interfering with the local subtasks of their teammates,
we introduce the notion of an accident avoidance RM, which
we use to define the reward signals observed by the agents
during training.

We demonstrate our proposed task decomposition al-
gorithm through three-agent and five-agent decentralized
MARL tasks. The agents efficiently learn to complete the
team tasks using the automatically generated decompositions.
Meanwhile, decentralized MARL using a baseline decompo-
sition algorithm fails to learn successful behavior.

II. RELATED WORK

Task decomposition of multiagent systems with known
system models has been approached in several ways. For
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example, [2] and [3] study conditions for the decomposi-
tion of team task automata and [2] presents a hierarchical
algorithm for generating task decompositions. [4] and [5]
take an automata-based approach to identify potential de-
compositions of an LTL task specification. Similar to our
work, [6] study methods to minimize the necessary coordi-
nation between agents during the execution of a team task.
However, these approaches assume the existence of a known
environment model, while we consider task decompositions
to be used in a learning setting.

Meanwhile, [7], [8] use reward machines, finite-state ma-
chines encoding temporally extended tasks in terms of atomic
propositions, to break tasks into stages for which separate
policies can be learned. [9] and [10] propose to simultane-
ously learn reward machines and RL policies. Similarly, [11]
propose to learn automata-based representations of RL tasks.
However, these works apply reward machines to single agent
RL problems, whereas our primary focus is on their use for
task decomposition in the MARL setting.

Algorithms to solve MARL problems have been studied
extensively [12], [13], [14], [15]. Many of these algorithms,
such as independent q-learning [16], offer decentralized
approaches to training: the agents independently apply re-
inforcement learning algorithms on data that is generated
by their collective interactions. Other so-called centralized
training decentralized execution methods instead update the
agents’ policies in a centralized fashion, while ensuring that
the learned policies may be executed in a decentralized fash-
ion at runtime [17], [18], [19]. These works, similar to [20],
[21], typically decompose the joint q-function itself to allow
for decentralized execution. However, we note that all of the
aforementioned works train the agents simultaneously and
thus either suffer from the multiagent coordination problem
[22], the non-stationarity of the learning problem [13], or
from the sample inefficiency that arises during centralized
training. By contrast, we use reward machines as a method
to specify subtasks and to train individual agents to complete
them, in the absence of their teammates.

A number of works have recently applied techniques and
ideas from the formal methods community to MARL prob-
lems. The authors of [23] present extended Markov games; a
mathematical model allowing multiple agents to concurrently
learn to satisfy multiple non-Markovian task specifications.
[24], [25] present automata and logic-based reward shaping
methods for multiagent reinforcement learning. Similarly,
[26] present a method for logic-based multiagent reward
shaping while enabling distributed training for the local
objectives of the agents.

The authors of [1] use reward machines to specify team
task decompositions and to design decentralized MARL
algorithms. We build on this work by developing techniques
to synthesize such task decompositions automatically, while
ensuring that the criteria necessary for correct task decompo-
sition are met. This relaxes the assumption of user-specified
knowledge of the task decomposition. Furthermore, we relax
the conditions presented in [1] for a reward machine to be
used in decentralized MARL, and we present methods to

quantitatively compare task decompositions. These contri-
butions are necessary for the automation of compositional
approaches to decentralized MARL.

III. PRELIMINARIES

A. Markov Decision Processes and Stochastic Games
In single agent reinforcement learning (RL), we use

Markov Decision Processes (MDPs) to model the task en-
vironment. An MDP is a tuple M = ⟨S,A, p, r, γ⟩, with a
finite set of states S, a finite set of actions A, a transition
probability function p : S × A → ∆(S) where ∆(S) is the
set of all probability distributions over S, a reward function
r : S × A × S → R and a discount factor γ ∈ (0, 1]. A
stationary policy π : S → ∆(A) maps a state s ∈ S to a
probability distribution over actions. The objective in RL is
to find an optimal policy π∗ that maximizes the expected
discounted sum of future rewards, from any state.

We denote a team of n agents by Λ = (α1, . . . , αn). In
multiagent reinforcement learning (MARL), the environment
is instead modeled by a stochastic game—the multiagent
extension of an MDP.

Definition 1 (Stochastic Games). A stochastic game is a
tuple G = ⟨S1, . . . , Sn, A1, . . . , An, p, R, γ⟩. In a stochastic
game, Si is the finite set of states of agent i, and Ai the
finite set of actions available to agent i. We define the joint
states of the team of n agents as S = S1 × S2 . . .× Sn, the
joint set of actions as A = A1 ×A2 . . .×An, the transition
function as p : S×A → ∆(S) (where ∆(S) is a probability
distribution over S), the reward function R : S×A×S → R,
and the discount factor γ ∈ (0, 1].

We assume local transition probability functions pi :
Si × Ai → ∆(Si) independently govern the dynamics of
each agent. From the local transition probability functions,
the joint transition function is constructed as p(s′|s,a) =
Πn

i=1pi(s
′
i|si, ai) for all joint states s, s′ ∈ S and joint

actions a ∈ A. We note that although the stochastic state
transitions of the agents are independent, their optimal poli-
cies may still depend on their teammates’ states as a result
of the joint reward function.

In a stochastic game, a team policy is defined as π : S →
∆(A). Similar to RL, the objective in MARL is to find a
policy π∗ that maximizes the expected discounted reward
from any joint state s ∈ S. In this work, we consider team
policies that are defined in terms of the local policies πi :
Si → ∆(Ai) of the individual agents. That is, we define
π(a|s) =

∏n
i=1 πi(ai|si), where si ∈ Si and ai ∈ Ai are the

ith components of the joint states s ∈ S and joint actions
a ∈ A, respectively.

B. Reward Machines
Definition 2 (Reward Machine). A reward machine is defined
by the tuple, R = ⟨U,Σ, uI , F, δ, σ⟩ with states U , events Σ,
initial state uI , terminal states F ⊂ U , transition function
δ : U × Σ → U , and reward function σ : U × U → R.

Intuitively, we use reward machines to capture the steps
required for an agent (or team of agents) to complete their
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task. Each state represents a separate stage of the task. For
example, the reward machine shown in Fig. 1 encodes the
following task: two agents work together to chop down a tree,
the tree falls, one agent transports the log to the work bench,
and finally the experienced woodworker carves something
from the log, earning the team a reward. Here, each ai event
corresponds to agent i arriving at the tree to help cut down
the tree and li corresponds to agent i leaving the tree before
it falls down. The event timber signals the tree falling, each
tri corresponds to agent i transporting the log to the craft
table, ar signals the successful arrival of the log, and craft
represents the woodworker successfully crafting the log.

In this work, we limit our discussion to task completion re-
ward machines: the agents only receive a reward if they reach
a final state. The reward function is defined as σ(u1, u2) = 1
if u1 /∈ F and u2 ∈ F , and σ(u1, u2) = 0 otherwise.

We note that functions δ and σ are partial functions, only
defined for subsets of U and Σ. A run on a sequence of events
ξ = e0...ek ∈ Σ∗ is the sequence u0e0u1e1...ukekuk+1,
where ui ∈ U for i = 0, 1, ...k+1, u0 = uI and δ(ui, ei) =
ui+1 for all i = 0, 1, ..., k. Since δ and σ are partial functions,
not every sequence of events ξ ∈ Σ∗ has a valid run on a
reward machine R. We define Tr(R) as the set of all event
sequences that have valid runs on R. For an event sequence
ξ ∈ Tr(R), R(ξ) is the reward output of the corresponding
run. Specifically, for ξ = e0...ek, R(ξ) = 1 if uk+1 ∈ F and
uk /∈ F and R(ξ) = 0 otherwise. Additionally we define
reach(u0,R)|Σ0 ⊂ U , where u ∈ reach(u0,R)|Σ0 if there
exists a transition sequence in R starting from u0 and ending
at u using only events in Σ0.

We define reward machine projections following [1]. In-
tuitively, a projection of the team reward machine onto an
agent’s local event set Σi ⊂ Σ represents the team task from
the point of view of agent i, who may only observe events
from Σi. The projection of a reward machine onto an event
space Σi ⊂ Σ is formally defined as the tuple Proj(R)|Σi =
Ri = ⟨Ui, u

i
I ,Σi, δi, σi, Fi⟩ where Ui = U/ ∼i is a set of

equivalence classes over U for the equivalence relation ∼i

defined in [1], ui
I is the equivalence class containing uI , Fi is

the equivalence class containing F , δi : Ui×Σi → Ui is the
projected transition function defined such that ui

2 = δi(u
i
1, e)

if and only if there exist u1, u2 ∈ U such that ui
1 = [u1]i,

ui
2 = [u2]i, and u2 = δ(u1, e), and σi : Ui × Ui → R is the

projected output function defined such that σi(u
i
1, u

i
2) = 1

if ui
1 /∈ Fi, u

i
2 ∈ Fi and σ(ui

1, u
i
2) = 0 otherwise. In our

definition of δi, [u1]i ∈ Ui denotes the equivalence class,
defined by equivalence relation ∼i, that contains u1 ∈ U .

Given an event sequence ξ ∈ Σ∗, we define the projection
of the sequence onto local event set Σi, PΣi

(ξ) ∈ Σ∗
i ,

recursively using the relationships PΣi
(ε) = ε, PΣi

(ξe) =
PΣi

(ξ)e if e ∈ Σi, and PΣi
(ξe) = PΣi

(ξ) if e /∈ Σi for
any ξ ∈ Σ∗. Here, ε denotes the empty string. To simplify
notation, we use Ri(ξ) to denote Ri(PΣi(ξ)) when Σi ⊆ Σ.

C. Relating Reward Machines to Stochastic Games

To use RMs to specify an RL task, we first need to define
a relationship between the stochastic game G and the task
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(a) Reward machine encoding the three-agent crafting task.
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A3

(b) Crafting task environment.

Fig. 1: The multi-agent crafting task. In (b) two agents must
meet up at the tree, cut the tree down, then transport the log
when it appears to the crafting table. The solid black squares
are walls. (a) Illustrates the RM encoding this task.

RM R. We define this relationship with the labeling function
L : S ×U → 2Σ, which we assume to be known a priori. At
each time step, this function takes the joint state of the agents
and the reward machine states, and it outputs a collection
of reward machine events occurring at that time step. We
assume that all events fit into one of two categories: an
event attributed to a single agent or a communication event
signaling a change in the environment.

For example, in the reward machine in Fig. 1a, events
a1, l1 correspond to agent 1 arriving and leaving the tree,
respectively, and tr1 corresponds to agent 1 transporting
the log, while events timber and ar signal changes in the
environment such as the tree falling down.

D. Reinforcement Learning with Reward Machines

In single agent RL, agents can learn policies to maximize
the reward output by a reward machine using q-learning [8].
Agents estimate the value of an action given a state s of an
MDP M and a reward machine state u, effectively learning
a separate q-function for each stage of the task encoded in
the RM R.

In multiagent RL, agents can learn independently via
decentralized q-learning [1]. Similar to the single agent
case, agents learn local policies for individual states of
the projected reward machine Ri. One key feature of this
method is that the learning is completely decentralized;
agents are trained to maximize the reward output by their
projected reward machines in the absence of their teammates.
To accomplish this distributed training, the agents must be
aware of any shared local events that they have with their
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Fig. 2: Strategy RM for the crafting example with a strategy set ΣS = {a1, l1, a2, l2, timber, tr3, ar, craft}.

teammates. The occurrence of shared events are simulated
randomly during training. We refer to [1] for further details.

In general, finding a suitable collection of decentralized
reward machines Ri for a particular team task is non trivial.
The focus of this paper is on automatically synthesizing
individual reward machines Ri = Proj(R)|Σi that can be
used for decentralized learning.

IV. AUTOMATIC DECOMPOSITIONS OF TEAM TASKS

In order to decompose the team task we first compute the
team’s strategy, which describes the specific events that the
team plans to execute, in the event that there are multiple
ways to complete the task. By specifying such a team
strategy we obtain an intermediate reward machine that
encodes only the transitions that the team plans on taking. We
obtain the team strategy by assigning individual local event
sets that represent the roles assigned to individual agents. We
formulate the problem as a tree search. At each node of the
tree, we check four conditions relating to the feasibility of
the associated decomposition. Finally, to select a preferred
feasible decomposition, we define a number of criteria used
to score each node.

A. Representation of a Team Strategy
Before we can formalize the search for a task decomposi-

tion, we develop a representation of the team’s strategy. We
define the team’s strategy set ΣS ⊂ Σ as the set of all events
the team plans on executing in order to earn a reward. We
note that ΣS will be selected automatically during the task
assignment algorithm, described further in Section IV-D. To
represent the team’s strategy, we define a strategy reward
machine, RS , which encodes only the stages of the task
that the team plans to execute, as well as the events that
they plan to use to transition between these stages. Formally,
RS = ⟨US ,ΣS , uI , F, δS , σS⟩, where

US = {u ∈ U : F ∈ reach(u,R)|ΣS

and u ∈ reach(uI ,R)|ΣS
}.

We define δS : US × ΣS → US as

δS(u, e) =

{
δ(u, e) ifu, δ(u, e) ∈ US

undefined otherwise.

Similarly, we define σS : US × US → R as

σS(u1, u2) =

{
σ(u1, u2) ifu1, u2 ∈ U

undefined otherwise.
.

For example, in the team task represented in Fig. 1, an ex-
ample strategy set is ΣS = {a1, a2, timber, tr3, ar, craft},
where agent 1 and agent 2 cut down the tree, the tree falls,
agent 3 transport the log, arrives at the table, and then crafts
the log. The corresponding strategy reward machine RS is
represented in Fig. 2. Note that this is a much simpler RM
that captures only a subset of the original task RM, encoding
a single sequence of events that the team plans to execute.

In practice, we obtain the strategy reward machine RS

from a given strategy set ΣS by first removing all transitions
from R with an event outside of ΣS . We then remove
any transitions with events in our strategy set that lead to
“dead states”—states from which there is no sequence of
the remaining events that lead to the final state. Finally, we
remove any states that are no longer reachable from our
initial state.

We define a strategy set ΣS along with its corresponding
strategy reward machine RS to be a valid strategy if there
exists ξ ∈ Tr(RS) such that R(ξ) = 1. In other words,
any valid strategy set ΣS must allow for a valid sequence
of transition on RS that results in a team reward. The team
strategy depicted in Fig. 2 is valid as the sequence of events
a1 a2 timber tr3 ar craft completes the task.

B. Feasible Decompositions of Strategy Reward Machines

In this section we present conditions to ensure that a
task decomposition R1, . . .Rn of reward machine R ac-
curately describes the team task and can be successfully
applied to decentralized reinforcement learning. Throughout
this section, we consider the collection of local event sets
Σ1, . . . ,Σn ⊂ Σ assigned to agents α1, . . . , αn, the strategy
set ΣS = ∪n

i Σi, the corresponding strategy reward machine
RS , and resulting task decomposition Ri = Proj(RS)|Σi .

We now present the first condition:

Condition 1. Strategy set ΣS = Σ1∪ . . .∪Σn must be valid.

The next condition concerns constraints on the task as-
signment, which we represent as forbidden and required
event assignments, and which we assume are provided by
the task designer. We define the set of forbidden event
assignments F ⊂ Σ × Λ as follows: if (e, αi) ∈ F , then
e /∈ Σi. For example, in the crafting task agent 1 cannot
be assigned event a2 as it corresponds to an action agent
2 preforms via the construction of the labeling function.
Therefore (a2, α1) ∈ F .
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Similarly, we define the set of required event assignments:
E ⊂ Σ×Λ such that if (e, αi) ∈ E, then e must be included
in the individual event space Σi.

Condition 2. Given forbidden event assignments F , required
event assignments E, if (e, αi) ∈ F , then e /∈ Σi. Similarly,
if (e, αi) ∈ E, then e ∈ Σi.

The next condition we present ensures the equivalence be-
tween joint execution of the task decomposition R1, . . . ,Rn

and the group execution of the strategy reward machine RS .

Condition 3. Given the valid strategy set ΣS =
⋃n

i Σi and
strategy reward machine RS , for any sequence of transitions
ξ ∈ Tr(RS), RS(ξ) = 1 if and only if Ri(ξ) = 1, and
RS(ξ) = 0 if and only if Ri(ξ) = 0 for all i.

This condition says that the individual agents all complet-
ing their individual task descriptions Ri is equivalent to the
team completing the team strategy RS .

For a task decomposition R1, ...,Rn, Condition 3 can be
verified by checking for bisimilarity between RS and the
parallel composition of the individual reward machines [1]:∥∥n

i=1
Ri

∼= RS .

This condition can be checked automatically, using the
Hopcroft-Karp algorithm presented by [27].

While Condition 3 guarantees the correct execution of
the team’s strategy when all agents correctly complete their
planned portion of the task, these guarantees are lost if an
agent causes the team to deviate from the strategy RM. In
other words, unplanned events can force the team into a
portion of the original team RM R that is not included in
the strategy RM RS .

To avoid such unplanned events, we define an augmented
reward machine which we use to generate the reward func-
tion that the agents will use during training. Formally, given
team reward machine R, individual reward machine Ri =
Proj(RS)|Σi = ⟨Ui, u

i
I ,Σi, δi, σi, Fi⟩ and team strategy ΣS ,

an accident avoidance RM is defined as the tuple Ra =
⟨Ui∪{ux},Σ, ui

I , Fi, δa, σa⟩. Here, δa : Ui×Σ → Ui∪{ux}
with

δa(u
i, e) =



δ(ui, e) if δi(ui, e) defined,
ux if δi(ui, e) undefined

and δ(u, e) defined
for u ∈ U, [u]∼ = ui,

undefined otherwise,

and σa : RS ×RS ∪ {ux} → R

σa(u1, u2) =


1 if σS(u1, u2) = 1

−1 if u2 = ux

0 otherwise.

An accident avoidance reward machine outputs a negative
reward whenever an unplanned transition occurs. Fig. 3
illustrates an accident avoidance RM for the strategy RM
shown in Fig. 2. The dashed transitions in Fig. 3 lead to ux,

uIstart u1 u2
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a3

a3, l3

tr1, tr2

a1
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timber

uIstart u1 u2
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ux

u2 u3
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Fig. 3: Accident Avoidance RM for the strategy RM shown in
Fig. 2. Dashed transitions result in a negative reward during
training as they do not belong to the strategy.

an absorbing state and produces a negative reward. During
training, agents will learn to avoid unplanned events: agent
3 will learn to avoid cutting down the tree and agent 2 will
learn to avoid transporting the log.

Condition 4. For a strategy reward machine RS and individ-
ual reward machines R1, ...,Rn. The corresponding accident
avoidance reward machines (Ri)a must be deterministic.

We consider a task decomposition R1, . . . ,Rn to be
feasible if it meets all four conditions outlined in this section.

C. Comparing Task Decompositions

We now introduce various criteria to allow us to quantita-
tively compare different feasible task decompositions during
the tree search, which we describe in Section IV-D. To aid
in this discussion, we define the set of task assignments for
a given task decomposition R1, ...,Rn: G = {(e, αi)|αi ∈
Λ, e ∈ Σi}. This is the set of all event-agent pairs (e, α)
such that e is assigned to agent α.

1) Minimizing Necessary Agent Coordination: We con-
sider the number of events assigned to agents. By doing
so, we reduce the size of the resulting projected reward
machines, and thus reduce the size of the policy that must be
learned via RL. Minimizing the number of events assigned
to agents’ local event sets also limits the number of shared
events needed to complete a task. Shared events represent
moments of coordination between agents: multiple agents
must synchronize their understanding of the current stage of
the task. By minimizing the number of events assigned to
each agent, we remove excess coordination, communication,
and training for the agents. To quantify this concept, we give
each decomposition a score:

E(G) = |(Σ× Λ) \ (F ∪ G)|
|(Σ× Λ) \ (F ∪ E)|

, (1)

where F is the set of all forbidden task assignments and
E is the set of all required task assignments. This score
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has a lower bound of E = 0, which occurs when the task
assignment is as large as possible: G = (Σ × Λ) \ F . It
has an upper bound of E = 1, which occurs when the task
assignment is as small as possible: G = E.

2) Encouraging Fair Task Decompositions: We consider
how fairly a decomposition distributes the work between
agents. This quality is designed to encourage decompositions
that result in a true team effort, as opposed to decompositions
in which one agent does the overwhelming majority of the
work for the team. To quantify the fairness of a decomposi-
tion, we assign a fairness score:

X (G) = 1 –
∑n

i (|Σi| – lavg)

|G|
, (2)

where lavg =
∑n

i |Σi|/n is the average length of event
spaces between agents. This score has an upper bound of
X = 1, which occurs when all agents have the same number
of events assigned to them, and a low score when there is a
large difference in the sizes of their event sets.

3) Maximizing Agent Utility in Task Decompositions:
Finally, we consider the total utility of a task assignment.
We calculate the utility score U given a utility function Hi

for each agent i, where Hi : Σ → R and Hi(e) ≥ 0 for all
e ∈ Σ. This function returns the utility that an agent receives
when a particular event is assigned to them. The utility score
is given by

U(G) =
∑

(e,αi)∈G Hi(e)∑
(e,αi)∈(Σ×Λ)\F Hi(e)

. (3)

This score has an upper bound of U = 1 when the total
utility of the agents is equal to the total possible utility of
the agents, and has a lower bound of U = 0 when the agents
get no utility from the task assignment.

As different teams prioritize these scores differently, the
total score is a sum with variable weights. Each task decom-
position can then be assigned a total score:

s(G) = wEE(G) + wXX (G) + wUU(G) (4)

where wE , wX and wU are the corresponding weights. Us-
ing these scores, we qualitatively compare decompositions.
Decompositions with higher scores s are a preferred decom-
position for the team.

D. Automatic Task Assignment and Decomposition

In this section, we outline the Automatic Task Assignment
and Decomposition algorithm (ATAD). To automatically
decompose a reward machine, we formulate a tree of task
assignments G and search for a feasible decomposition
R1, ...,Rn with corresponding task assignment G∗ that max-
imizes the total decomposition score s(G∗).

In the search tree, each node corresponds to a specific task
assignment G, and the root corresponds to the largest possible
assignment Go = (Σ× Λ) \ F . Every node has exactly two
children. One child is the exact replica of the parent node,
the other is the parent node with a specific event-agent pair
removed. In this way, each level of the tree corresponds to the
removal (or inclusion) of a particular event-agent assignment
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l1 timber
timber

tr1

ar

Fig. 4: Subtask RM generated by the baseline decomposition
for agent 1.

(e, αi) ∈ (Σ × Λ) \ (E ∪ F). The order in which each
assignment (e, α) ∈ (Σ×Λ)\(E∪F) is removed is random.
The result is a tree that has a leaf for each element in 2G .

At each node, ATAD checks if the corresponding task
assignment G satisfies Condition 1. If the node does not
satisfy Condition 1, the algorithm stops searching along
that branch. If the algorithm reaches a leaf node G, it then
compares that node’s score s(G) to the best score from any
of the previously traversed leaf nodes s(G∗). If the score
is improved, ATAD checks Conditions 3 and 4 to verify
whether the decomposition is feasible. If the leaf is feasible,
ATAD updates the best task assignment G∗. Note that by the
construction of the tree, any leaf will automatically satisfy
Condition 2.

If the team only requires a decomposition that is valid,
the search can be terminated as soon as it reaches a leaf that
satisfies Conditions 3 and 4. Alternatively, if the team has
a minimum allowable score for a decomposition, the search
can be terminated as soon as a leaf is found that satisfies all
conditions and has a score above the desired threshold.

Using the task decomposition generated via ATAD, agents
learn policies on their individual accident avoidance reward
machines using decentralized q-learning.

V. NUMERICAL EXPERIMENTS

In this section we present the results of experi-
ments that apply the proposed ATAD algorithm to the
decomposition of three-agent and five-agent cooperative
MARL tasks. Code to reproduce all experiments is avail-
able at: https://github.com/smithsophia1688/
automated_task_assignment_with_rm.

A. Three-Agent Crafting Task

We begin by considering the crafting task illustrated in
Fig. 1b, which we implement as a 10x10 gridworld. Each
agent has five available actions: move up, move down, move
left, move right, or don’t move. We also include stochasticity
in the environment transitions: every time an agent selects
an action, it has a 2% chance of accidentally slipping and
arriving in an unintended neighboring state.

We apply ATAD to the team reward machine depicted
in Fig. 1a, and we use the resulting task decomposition
for decentralized q-learning. The accident avoidance reward
machines that were automatically generated by ATAD for the
crafting team task are shown in Fig. 3.
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Fig. 5: Numerical results for the three-agent crafting task.
We plot the median (over 100 experimental runs) of the
number of steps required for task completion during testing.
The shaded regions enclose the 25th and 75th percentiles.

For comparison, we also compute a baseline task decom-
position and train the agents to complete the resulting sub-
tasks using the same decentralized q-learning procedure as
for the ATAD decomposition. This default decomposition is
generated by only enforcing the required event assignments
from Condition 2. In other words, each agent is assigned
all events that are not strictly forbidden. Fig. 4 illustrates
agent 1’s local reward machine generated by the baseline
decomposition. We note this default decomposition meets
conditions 4, 2, and 1, but it fails to meet condition 3.

We train the agents using q-learning with a discount
parameter γ = .9 and learning rate of α = .8. Agents
selected actions using a soft-max exploration policy with
temperature parameter T = .02 [28].

Each training episode is 1000 time steps long. Periodically
throughout training, we test the learned policies and we
measure their performance with respect to the team task.
Agents do not learn during these team testing executions, and
we record the number of time steps that the team requires
to complete its task.

Fig. 5 plots the team’s performance with respect to its
task as a function of the number of elapsed training steps.
Specifically, we plot the median (over 100 separate experi-
mental runs) of the number of steps required for team task
completion during testing. The shaded regions enclose the
25th and 75th percentiles.

ATAD yields task decompositions that enable efficient
decentralized learning. Our approach quickly learns an ef-
fective collection of decentralized policies. The team is
able to complete the entire task in less than 200 timesteps.
The conditions that we enforce during the automated task
decomposition procedure guarantee that so long as the agents
independently learn policies completing their subtasks, then
the team will jointly complete the original task.

Meanwhile, the baseline task decomposition fails to learn
policies that complete the task at all. A lack of coordination
between the agents, because of the baseline decomposition
violating Condition 3, results in the agents becoming “by-
standers”. Each agent learns to expect that its teammates
will complete the relevant subtasks instead of completing
them itself. Without proper guarantees that the independently
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Fig. 6: An illustration of the five-agent buttons task environ-
ment. Pressing a red button results in failure of the task.
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Fig. 7: RM for the five-agent buttons experiment. Transitions
a, b signal previously red buttons turning green. The team
receives a negative reward in state ux.

learned policies will jointly result in the team’s success,
the agents are not properly coordinated and do not learn to
complete their required portion as they expect other agents
to complete it for them. This demonstrates the importance
of the conditions that we formulate for automated task
decomposition in MARL.

B. Five-Agent Buttons Task

We now consider a five-agent task in which the agents are
required to push a series of buttons in a specific order. Each
agent is assigned a specific button that it is able to push—
agent i can only push button bi. The team receives a reward
of −1 in the event that an agent pushes a button out of order
and the training episode is terminated. After two buttons are
pushed in order, the team receives a reward of 1 and the
episode terminates. Fig. 6 illustrates the task environment.

Using ATAD, the team of agents decomposes the team
RM shown in Fig. 7 and automatically selects a given
strategy. The experimental results are presented in Fig. 8.
The top plot shows the average number of training steps
to task completion during the periodic testing of the team’s
decentralized learning. The bottom plot shows the average
discounted reward received during testing. Experiments were
carried out with the same parameters as in the previous
crafting experiment except with a discount factor γ = .99
and 15× 15 gridworld.

For both the baseline decomposition and ATAD, the agents
receive negative reward during the early stages of training be-
cause they press buttons out of turn. Both methods eventually
learn to stop pressing buttons out of order. However, only the
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Fig. 8: Numerical results for the five-agent buttons task.

decomposition generated by ATAD results in a collection of
policies that eventually complete the task.

VI. CONCLUSIONS

We present a framework and algorithms for the auto-
matic decomposition of cooperative multiagent reinforce-
ment learning (MARL) tasks. We develop: 1) conditions that
ensure that candidate task decompositions result in behaviors
that are consistent with the team task, 2) score functions to
compare the candidate decompositions, and 3) an algorithm
to automatically search for a decomposition that maximizes
a combination of the score functions, while also satisfy the
conditions. We experimentally demonstrate that the proposed
approach yields task decompositions that can be efficiently
learned by decentralized MARL algorithms. Future work will
apply the proposed framework to MARL problems involving
partial observability and large state-action spaces, and will
study how the task decomposition might be iteratively refined
during training.
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