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Abstract— Composite learning robot control (CLRC) is an
adaptive control approach that achieves exponential parameter
convergence without using a stringent condition termed persistent
excitation (PE). For robots with low degrees of freedom (DoFs),
a filtered regressor of the robot dynamics needed in CLRC can
be calculated analytically without joint accelerations, but this is
difficult for high-DoF robots. Under the linear parameterization
by the recursive Newton-Euler algorithm, this paper proposes
an acceleration-free recursive CLRC (RCLRC) method for high-
DoF robots to achieve exponential parameter convergence under a
weakened condition termed interval excitation (IE). The proposed
method has a low computational cost and avoids undesirable accel-
eration estimation that seriously affects performance. Simulations
and experiments on a 7-DoF robot manipulator have verified the
superiority of the proposed RCLRC, where it outperforms its
analytical version in both estimation and tracking.

I. INTRODUCTION

Adaptive control is appealing for realizing superior robot
tracking control under parameter uncertainties and external dis-
turbances, and linear parameterization is a crucial assumption
for adaptive robot control [1]. Two basic methods for adaptive
control are direct and indirect adaptive control [2]. Composite
adaptive robot control (CARC) combines joint tracking and
torque prediction errors to drive parameter estimation, resulting
in faster convergence of both tracking and parameter estimation
errors [3]. Joint accelerations are usually inaccessible in real-
world robots. To calculate the prediction error, a stable low-
pass filter can be applied to the linearly parameterized model to
generate a filtered regressor of the robot dynamics. For robots
with low degrees of freedom (DoFs), the filtered regressor
can be easily obtained by analytically calculating the filtered
expression of each element in the regression matrix without
joint accelerations. However, this is challenging for high-DoF
robots because the term-by-term treatment of all elements in
the large-size regressor is tedious and inflexible.

The classical recursive Newton-Euler (RNE) algorithm is
appealing to derive the linear parameterization of the robot
dynamics due to the convenience of implementation and low
computational cost [4]. Recursive CARC (RCARC) using the
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RNE algorithm provides a computationally efficient way for
high-DoF robots without acceleration signals in the filtered
regressor [5]–[7]. However, the base parameter model, which
is required to obtain the identifiable linear combination of un-
known parameters to handle the lack of structural identifiability
[8], has not been used in existing RCARC methods. Besides, a
stringent condition of persistent excitation (PE) is required in
RCARC to achieve parameter convergence.

Composite learning robot control (CLRC) makes use of
instantaneous data together with online historical data to drive
parameter estimation, which guarantees exponential parameter
convergence under a relaxed condition of interval excitation
(IE) [9]. CLRC has been extensively studied based on some
real-world robots [10]–[18], but most studies consider only the
low DoF cases. A preliminary evaluation of CLRC for high-
DoF robot manipulators in [13] employs the analytical method
for the linear parameterization of the dynamic model, which
requires observation methods, such as disturbance observers
[19], extended high-gain observers [20], and dirty derivative
filters (DDFs) [21], to estimate acceleration signals before
regressor filtering, but the estimation inaccuracy under noisy
measurement may seriously influence parameter convergence,
resulting in degraded tracking performance.

This paper proposes an acceleration-free recursive CLRC
(RCLRC) strategy for robotic manipulators with high DoFs.
First, the linear parameterization of a generalized dynamic
model with an auxiliary variable is implemented via spatial
vector algebra [22] to calculate the filtered dynamic model and
alleviate the regressor’s computational complexity from the
orders O(n4) to O(n2), where n is the number of DoFs [23].
Second, an automatic recursive method named the recursive
parameter nullspace (RPN) algorithm [24] is applied to derive
a base parameter model to overcome the lack of structural
identifiability. Third, the filtered regressor is recursively calcu-
lated without acceleration signals. Finally, an acceleration-free
composite learning law is formulated to overcome the negative
effect of inaccurate acceleration estimation.

Throughout this paper, R, R+, Rn and RN×N represent the
spaces of real numbers, positive real numbers, real n-vectors,
and real N×N -matrices, respectively, σmin(Θ) ∈ R+ denotes
the minimum singular value (MSV) of Θ ∈ RN×N , ∥x∥ is
the Euclidean norm of x ∈ Rn, I is an identity matrix with a
proper dimension, diag(x1, x2, · · · , xn) is a diagonal matrix
with diagonal elements x1 to xn, sign(xi) is a signum function,
O(n) signifies that the upper bound on the growth rate is n,
and argmaxx∈S f(x) := {x ∈ S|f(y) ≤ f(x), ∀y ∈ S} with
f : R 7→ R and S ⊂ R, where x = [x1, ..., xn]

T ∈ Rn, xi ∈
R is the ith element of x, and n and m are positive integers.

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 4739



II. PRELIMINARIES

In this paper, spatial vectors that combine the angular and
linear quantities of link motions and forces [22] are applied to
simplify the derivation and programming of the RNE algorithm.
Several important definitions are introduced below. A spatial
velocity vector of Link i is defined by

vi :=

[
ωi

νi

]
∈ R6

where ωi ∈ R3 and νi ∈ R3 are angular and linear velocities
of Frame i related to Frame i − 1, represented in Frame i,
respectively. A spatial force vector of Link i is defined by

fi :=

[
τsi
f si

]
∈ R6

where τsi ∈ R3 denotes a torque applied to Link i, and fsi ∈
R3 is an applied force. For any vector a = [a1, a2, a3]

T ∈ R3,
its cross-product operator a× is defined by

a× :=

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 .

A spatial transformation matrix for transforming the spatial
motion vector from Frame i− 1 to Frame i is defined by

Xi
i−1 :=

[
Ri

i−1 0
−Ri

i−1ri−1,i× Ri
i−1

]
∈ R6×6

where Ri
i−1 denotes the rotation matrix from Frame i− 1 to

Frame i, ri−1,i is the origin position of Frame i relative to
that of Frame i − 1, expressed in Frame i − 1. The spatial
inertia that describes the inertial property of Link i related to
the origin of Frame i is defined as follows:

Ji =

[
Joi mici×

−mici× miI

]
∈ R6×6 (1)

where mi ∈ R is the mass of Link i, Jci ∈ R3×3 is the inertia
tensor related to the center of the mass of Link i, ci = [cxi,
cyi, czi]

T ∈ R3 is a vector pointing from the origin of Frame
i to the Link i’s center of mass, expressed in Frame i and the
inertia tensor related to the local frame, Joi, satisfies Joi =
Jci +mi(c

T
i ciI − cic

T
i ), and its expanded form is defined by

Joi =

Jxxi Jxyi Jxzi
Jxyi Jyyi Jyzi
Jxzi Jyzi Jzzi

 .

The RNE algorithm in a spatial vector form is given by [22]

Forward:

 v0 = 0,a0 = −g0
vi = Xi

i−1vi−1 + q̇isi
ai = Xi

i−1ai−1 + q̈isi + vi × q̇isi

with i = 1, 2, ..., n, g0 = [0, 0, 0, 0, 0, 9.81]T and

Backward:

 fB
i = Jiai + [vi×]∗Jivi

fi = fB
i + [Xi

i+1]
∗fi+1

τi = sTi fi

with i = n, n− 1, ..., 1, fn+1 = 0, where si ∈ R6 is an axis
vector determined by the joint type, τi ∈ R is the ith joint

torque, and ai ∈ R6 is an spatial acceleration vector of Link i,
defined by ai := v̇i, and vi× is a cross-product operator for
the spatial velocity vi defined by

vi× :=

[
ωi× 0
νi× ωi×

]
.

Note that [vi×]∗ = −[vi×]T and [Xi
i+1]

∗ = [Xi+1
i ]T.

The following definitions are also introduced for the conve-
nience of control analysis [9].

Definition 1: A bounded signal Φ(t) ∈ Rn×N is of IE if
∃Te, τd, σ ∈ R+ such that

∫ Te

Te−τd
ΦT(τ)Φ(τ)dτ ≥ σI .

Definition 2: A bounded signal Φ(t) ∈ Rn×N is of PE if
∃τd, σ ∈ R+ such that

∫ t

t−τd
ΦT(τ)Φ(τ)dτ ≥ σI, ∀t ≥ 0.

III. PROBLEM FORMULATION

Consider an n-DoF serial manipulator with revolute joints.
In this study, the kinematics is derived by the modified Denavit-
Hartenberg (DH) convention, and the dynamics is given by an
Euler-Lagrange formulation as follows:

M(q)q̈ + C(q, q̇)q̇ +G(q) + F (q̇) = τ (2)

in which q, q̇ and q̈ ∈ Rn denote the joint angular position,
velocity, and acceleration, respectively, M ∈ Rn×n denotes
an inertia matrix, C ∈ Rn×n is a centripetal-Coriolis matrix,
G ∈ Rn is a gravity torque, τ ∈ Rn is an input torque, and
F ∈ Rn is a friction torque given by [25]

Fi(q̇i) = fviq̇i + fcisign(q̇i) + foi

where fvi, fci, foi ∈ R+ denote coefficients of viscous friction,
Coulomb friction, and Coulomb friction offset of the ith joint
for i = 1 to n, respectively. Then, the linearly parameterized
model of the friction torque can be written as follows:

F (q̇) = Φfric(q̇)Wfric

with a friction regressor Φfric := [diag(q̇), diag(sign(q̇)), I] ∈
Rn×3n and a friction parameter vector Wfric := [fT

v , fT
c ,

fT
o ]T ∈ R3n, in which fv = [fv1, fv2, · · · , fvn ]T, fc = [fc1,

fc2, · · · , fcn ]T, and fo = [fo1, fo2, · · · , fon ]T. Then, define
the left-hand side of (2) in a generalized form

H(q, q̇, ζ, ζ̇) = M(q)ζ̇ + C(q, q̇)ζ +G(q) + F (q̇) (3)

with ζ ∈ Rn being an auxiliary variable.
Property 1: M(q) is symmetric positive-definite and satis-

fies m0In ≤ M(q) ≤ m1In with constants m0,m1 ∈ R+.
Property 2: Ṁ(q)−2C(q, q̇) is skew-symmetric such that

xT(Ṁ(q)−2C(q, q̇))x = 0, ∀q, q̇, x∈ Rn.
Property 3: H(q, q̇, ζ, ζ̇) can be linearly parameterized by

H(q, q̇, ζ, ζ̇) = Φfull(q, q̇, ζ, ζ̇)Wfull (4)

with a full regressor Φfull(q, q̇, ζ, ζ̇) := [Φlink,full(q, q̇, ζ, ζ̇),
Φfric(q̇)] ∈ Rn×13n and a full parameter vector Wfull :=
[WT

link,full,W
T
fric]

T ∈ R13n, in which Wlink,full ∈ R10n is a
link parameter vector stacked downward by the n columns of
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the link’s dynamic parameters in order, namely, Wlink,full =
[WT

1 ,WT
2 , · · · ,WT

n ]T, where for i = 1 to n, one has

Wi := [mi,micxi,micyi,miczi, Jxxi,

Jyyi, Jzzi, Jxyi, Jxzi, Jyzi]
T.

The terms Φlink,full(q, q̇, ζ, ζ̇) and Wlink,full in (4) can be
transformed into compact forms

Φlink,base(q, q̇, ζ, ζ̇) = Φlink,full(q, q̇, ζ, ζ̇)Pm,

Wlink,base = PpWlink,full

in which Wlink,base ∈ Rm and Φlink,base(q, q̇, ζ, ζ̇) ∈ Rn×m

are a link base parameter vector and its regressor, respectively,
Pm ∈ R10n×m and Pp ∈ Rm×10n can be determined by
the robot’s modified DH parameters, and m is the number of
identifiable combinations. Then, the parameterized form (4)
can be transformed into a compact form

H(q, q̇, ζ, ζ̇) = Φ(q, q̇, ζ, ζ̇)W (5)

in which W := [WT
link,base,W

T
fric]

T ∈ RN is an identifiable
parameter vector, and Φ(q, q̇, ζ, ζ̇) := [Φlink,base(q, q̇, ζ, ζ̇),
Φfric(q̇)] ∈ Rn×N is its regressor with N = m+ 3n.

The problem of RCLRC design applied for high-DoF robot
manipulators is as follows: Given the desired trajectories qd(t),
q̇d(t), q̈d(t) ∈ Rn, the measurement of the joint position q,
and the estimation of the joint velocity q̇ under known kine-
matic parameters and unknown dynamic parameters, the CLRC
control law τ is implemented recursively, and a composite
learning law for the parameter estimate Ŵ ∈ RN is derived
recursively without resorting to the acceleration signal q̈, such
that the position tracking error e(t) := qd(t) − q(t) and the
parameter estimation error W̃ (t) := W − Ŵ (t) exponentially
converge to zero under the relaxed IE condition.

IV. CLOSED-FORM COMPOSITE LEARNING CONTROL

Consider the robot parameterized model (2) with (5) under
Properties 1-3 (ζ = q̇). Using a stable filter L(s) := α

s+α , one
gets a filtered parameterized model

τf(t) = Φf(q, q̇)W (6)

with τf := L(s)[τ ] and Φf(q, q̇) := L(s)[Φ(q, q̇, q̇, q̈)], in
which α ∈ R+ is a filtering constant, and s is the complex
Laplace operator. Define an excitation matrix

Θ(t) :=

∫ t

t−τd

ΦT
f (τ)Φf(τ)dτ (7)

where τd ∈ R+ is the length of integration duration. In CARC,
a torque prediction error is defined by

ε(t) := τf(t)− Φf(q, q̇)Ŵ (t) (8)

and a generalized prediction error is defined by

ξ(t) =

{
Θ(te)W −Θ(te)Ŵ (t), t ≥ Te

Θ(t)W −Θ(t)Ŵ (t), otherwise
(9)

with te := argmaxζ∈[Te,t] σmin(Θ(ζ)) and Θ(Te) ≥ σI .

Let es(t) := ė(t) + Λe(t) denote a sliding tracking error,
where Λ ∈ Rn×n is a positive-definite diagonal matrix. The
composite adaptive control law is given by [9]

τ = Kces +Φ(q, q̇, q̇r, q̈r)Ŵ (10)

where the parameter estimate Ŵ is updated by

˙̂
W = Γ(ΦT(q, q̇, q̇r, q̈r)es + κξ) (11)

in which q̇r(t) := q̇d(t) + Λe(t) is a joint “reference velocity”,
Γ ∈ RN×N is a positive-definite diagonal matrix of learning
rates, and κ ∈ R is a weighting factor.

For low-DoF robot manipulators, the filtered regressor Φf

in (6) can be easily obtained by using analytical expressions
such that the usage of the acceleration signal q̈ can be avoided
[2]. However, for high-DoF robot manipulators, it is difficult
to calculate Φf without resorting to q̈ because the analytical
formula of the regressor Φ in (5) may be not available. Even
when the analytical formula of Φ is available, it may contain
hundreds of elements such that analytically calculating their
filtered expressions is tedious and inflexible.

V. RECURSIVE-FORM COMPOSITE LEARNING CONTROL

The central task to derive RCLRC is the recursive implemen-
tation of two regressors: 1) Φ(q, q̇, ζ, ζ̇) that appears in both
the control law (10) and the parameter estimation law (11);
2) Φf(q, q̇) that only appears in the parameter estimation law
(11). The recursive implementation of Φ(q, q̇, ζ, ζ̇) involves
recursive linear parameterization which lays the foundation to
the recursive implementation of Φf(q, q̇).

Define W l
i as the lth parameter in the parameter vector Wi

of Link i. The spatial inertia matrix Ji of Link i can be written
as a linear combination of constant displacement matrices
Rl ∈ R6 by taking parameters as coefficients:

Ji =
∑10

l=1
W l

iRl (12)

where Rl is constituted by Boolean bits with a sign, denoting
the placement and sign of the lth parameter in the expression
of Ji in (1). The dynamic model (3) formulated by the spatial
vector-based RNE algorithm is given as follows [5]:

Forward:


v0 = 0,u0 = 0, u̇0 = −g0
vi = Xi

i−1vi−1 + ζsi
ui = Xi

i−1ui−1 + ζisi
u̇i = Xi

i−1u̇i−1 + ζ̇isi + vi × ζisi

(13)

with i = 1, 2, ..., n, g0 = [0, 0, 0, 0, 0, 9.81]T and

Backward:


fB
i = Jiu̇i + [vi×]∗Jiui

fi = fB
i + [Xi

i+1]
∗fi+1

Fi(q̇) = fviq̇i + fcisign(q̇i) + foi
τi = sTi fi + Fi(q̇)

(14)

with i = n, n− 1, ..., 1,fn+1 = 0, where ui ∈ R6 denotes a
generalized spatial velocity for the auxiliary variable ζ, and
q̇i and Fi(q̇) are the ith elements of q̇ and F (q̇), respectively.
With ζ = q̇, the control torque τi of Joint i satisfies

τi − Fi(q̇) =
∑n

j=i
sTi [X

i
j ]
∗fB

j . (15)

4741



For the convenience of analysis, the robot dynamics can be
rewritten into a matrix form

τ1 − F1(q̇)
τ2 − F2(q̇)

...
τn − Fn(q̇)

 =


sT1 sT1 [X

1
2 ]

∗ · · · sT1 [X
1
n]

∗

0 sT2 · · · sT2 [X
2
n]

∗

...
... . . .

...
0 0 · · · sTn


︸ ︷︷ ︸

A


fB
1

fB
2
...

fB
n


︸ ︷︷ ︸

B

with A ∈ Rn×6n and B ∈ R6n. Substituting (12) into the
expression of fB

i in (14), one obtains

fB
i =

∑10

l=1
W l

i (Rlu̇i + [vi×]∗Rlui︸ ︷︷ ︸
fi,l

) (16)

where fi,l ∈ R6 is a force wrench related to l-th parameter.
Then, fB

i can be rewritten into a matrix form

fB
i =

[
fi,1,fi,2,fi,3, · · · ,fi,10

]︸ ︷︷ ︸
Fi


W 1

i

W 2
i

...
W 10

i


︸ ︷︷ ︸

Wi

(17)

with Fi ∈ R6×10. Then, B can be rewritten into

B =


F1

F2

. . .
Fn


︸ ︷︷ ︸

H


W1

W2

...
Wn


︸ ︷︷ ︸
Wlink,full

(18)

with H ∈ R6n×10n. The parameterized model is obtained by

τ = AHWlink,full +Φfric(q̇)Wfric

= AHPmWlink,base +Φfric(q̇)Wfric.
(19)

The RCLRC employs the RPN algorithm proposed in [24] to
calculate the projector matrices Pm and Pp for transforming to
the base parameter form. After the formulation of the recursive
linear parameterization for the robot dynamic model, it is
possible to calculate the filtered robot dynamics recursively
to avoid using q̈. The derivation process is restated here for
self-consistency with additional projection to the forms of the
base parameters and the consideration of the friction torque.
It is worth noting that linear filtering to an input is essentially
the convolution of the input with the impulse response of the
linear filter in the time domain. With Property 2, the rewritten
filtered dynamic model (2) is given by [5]

τf(t) = w(0)M(q)q̇ − w(t)M(q(0))q̇(0)

+L(s)[−αM(q)q̇ − CT(q, q̇)q̇ + F (q)].
(20)

Linear parameterization results of M(q)q̇ and CT(q, q̇)q̇
enable the calculation of Φf recursively by using their spatial
vector-based expressions derived in [5] as follows:

[M(q)q̇]i =
∑n

j=i
sTi [X

i
j ]
∗Jjvj , (21)

[CT(q, q̇)q̇]i =
∑n

j=i
(sivi×)T[Xi

j ]
∗Jjvj . (22)

Fig. 1. A 7-DoF collaborative robot named Panda from Framka Emika Inc.
for experimental studies.

0.45 0.5 0.55 0.6 0.65
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
2-D Caretesian Trajectory in Task 2

0 10 20 30

-2

0

2

4
Joint Trajectories in Task 1

0 10 20 30

Time (s)

-2

0

2

J1 J2 J3 J4

J5 J6 J7

Fig. 2. The desired trajectories for two control tasks. Note that Task 1 is used
for evaluation in the transient stage at t ∈ [0, 30], and Task 2 is a trajectory
consisting of five repeating ∞-like trajectories on the X-Y plane of Frame 0 at
t ∈ [100, 150] for evaluation in the steady stage. The first three repetitions of
the ∞-like trajectories are at low speeds, while the last two are at high speeds.
The period between the two tasks is used to wait for parameter convergence.

In a manner similar to derivating the recursive linear param-
eterization for (3) [as in (15)-(19)], one can get Φ1(q, q̇) ∈
Rn×10n and Φ2(q, q̇) ∈ Rn×10n, the regressors of M(q)q̇
and CT(q, q̇)q̇, respectively, which satisfy

M(q)q̇ = Φ1(q, q̇)PmW, (23)

CT(q, q̇)q̇ = Φ2(q, q̇)PmW. (24)

Then, the recursive form of (20) is given by

τf(t) = [w(0)Φ1(q, q̇)− w(t)Φ1(q(0), q̇(0))]PmWlink,base

+ L(s)[−αΦ1(q, q̇)− Φ2(q, q̇)]PmWlink,base

+ L(s)[Φfric(q̇)]Wfric.

In summary, the filtered regressor Φf with the consideration
of friction can be recursively computed by

Φf(q, q̇) = [Φf,link, L(s)[Φfric(q̇)], (25)
Φf,link = w(t− r)Φ1(q(r), q̇(r))|t0Pm

+ L(s)[−αΦ1(q, q̇)− Φ2(q, q̇)]Pm. (26)
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Fig. 3. Performance comparisons of two controllers in simulations. (a) The norms of the link parameter estimation error W̃link. (b) The norms of the friction
parameter estimation error W̃fric. (c) The norms of the tracking error e in Task 1. (d) The norms of the tracking error e in Task 2.

0 50 100 150

Time (s)

0

1

2

3

4
(a)

by CLRC

by RCLRC

100 110 120 130 140 150

4.15

4.2

4.25

0 50 100 150

Time (s)

0

0.5

1

1.5

2(b)
by CLRC

by RCLRC

0 5 10 15 20 25 30

Time (s)

0

0.05

0.1

0.15

0.2

(c)
by CLRC

by RCLRC

100 110 120 130 140 150

Time (s)

0

0.05

0.1

0.15

(d)
by CLRC

by RCLRC

Fig. 4. Performance comparisons of two controllers in experiments. (a) The norms of the link parameter estimation Ŵlink. (b) The norms of the friction
parameter estimation Ŵfric. (c) The norms of the tracking error e in Task 1. (d) The norms of the tracking error e in Task 2.

VI. SIMULATION RESULTS

A collaborative robot with 7-DoFs named Franka Emika
Panda in Fig. 1 is simulated in MATLAB software to verify
the proposed RCLRC, where the solver is set as fixed-step
ode2 with a step size of 0.2 ms. The parameter vector Wfull of
the dynamics (2) is from the identified result in [25]. Set the
control parameters α =5, τd =30 s, Λ = 10I , Γ =0.2I , κ =

1, and Ŵ (0) = 0 ∈ R64. The control gain Kc is set to be

Kc,i =

{
k∗i e

0.1 ln(0.1)t, t ≤ 10
0.1k∗i , t > 10

with i = 1, 2, · · · , 7 and k∗ = [20, 20, 20, 20, 8, 8, 5], where
Kc,i is the ith diagonal element of Kc. The CLRC in [9] is
selected as a baseline, where the shared parameters of the two
controllers are set to be the same values for fair comparisons.
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It is assumed that q and q̇ are measurable, but q̈ in CLRC is
estimated by a DDF: q̈ ≈ λds

s+λd
[q̇] with λd = 50. The desired

output qd with two tasks for simulations are shown in Fig. 2.
Task 1 is a tracking task for achieving parameter convergence,
and Task 2 is a period movement with low and high speeds for
verifying the accuracy of parameter estimation.

Simulation results are shown in Fig. 3, where the CLRC
does not achieve the convergence of the estimation errors W̃link

and W̃fric to 0 [see Fig. 3(a)-(b)] as it utilizes the estimated
acceleration q̈. In contrast, the proposed RCLRC exhibits the
rapid convergence of W̃link and W̃fric to 0 after 30 s [see Fig.
3(a)-(b)], and its tracking performance is better in Task 2 [see
Fig. 3(d)], which implies that: 1) The exponential stability and
parameter convergence by the RCLRC are guaranteed under
IE, significantly relaxing PE; 2) the acceleration-free filtered
regressor Φf is beneficial for parameter estimation.

VII. EXPERIMENTAL RESULTS

An experimental platform of the Panda robot is shown in Fig.
1, where control algorithms run on a personal computer with
AMD Ryzen 7 3700X CPU and Ubuntu 20.04 operating system.
Both the controllers have the same parameter values as those in
the simulations except Γ = diag(0.1, 0.1, · · · , 0.1) and λd = 8.
The sampling time is set as 1 ms, and the control system works
smoothly since the computational times for both the controllers
are within 1 ms. Experimental results are exhibited in Fig. 4,
where the norms of the parameter estimates Ŵlink and Ŵfric

converge to certain constants after 30 s for both the controllers
[see Figs. 4(a)-(b)]. However, the proposed RCLRC performs
superior trajectory tracking compared with the CLRC in Task
2 [see Fig. 4(d)], which verifies that the RCLRC achieves the
better estimation of Wlink and Wfric. The little difference in
tracking accuracy between the two controllers in Task 1 [see
Fig. 4(c)] is due to the balance between tracking and estimation
speeds during the process of parameter convergence.

VIII. CONCLUSION

In this paper, we have presented an acceleration-free RCLRC
method with guaranteed parameter convergence under the IE
condition. The novelty of the proposed method lies in that the
spatial vector-based RNE algorithm is utilized for robot dynam-
ics modeling, resulting in the acceleration-free calculation of
the filtered regressor. Simulations and experiments on a 7-DoF
robot have validated that the proposed method outperforms the
acceleration-based CLRC method in parameter estimation and
trajectory tracking. We would enhance the proposed algorithm
with more technical analysis and provide more comprehensive
simulations and experiments in further studies.
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