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Abstract— In this paper, we present an optimal control
framework to address motion coordination of connected auto-
mated vehicles (CAVs) in the presence of human-driven vehicles
(HDVs) in merging scenarios. Our framework combines an
unconstrained trajectory solution of a low-level energy-optimal
control problem with an upper-level optimization problem that
yields the minimum travel time for CAVs. We predict the
future trajectories of the HDVs using Newell’s car-following
model. To handle potential deviations of HDVs’ actual behavior
from the predicted one, we design a safety filter for CAVs
based on control barrier functions. The effectiveness of the
proposed control framework is demonstrated via simulations
with heterogeneous human driving behaviors.

I. INTRODUCTION

Emerging vehicular technologies in automation and com-
munication have generated new opportunities to enhance
traffic safety and efficiency [1]. Prior research efforts have
shown that in environments consisting solely of connected
automated vehicles (CAVs), the traffic throughput and energy
consumption can be significantly improved under different
vehicle coordination strategies such as optimal control [2]–
[4], model predictive control [5], control barrier functions
[6], and learning-based control [7], [8]. It is expected that
CAVs will gradually penetrate the market and interact with
human-driven vehicles (HDVs) over the next several years.
The presence of HDVs, however, complicates vehicle coor-
dination, given the existing limitations on predicting precise
driving behavior [9].

Addressing coordination of CAVs in a mixed traffic en-
vironment, where CAVs and HDVs co-exist, has attracted
considerable attention recently. Some examples include game
theory combined with reinforcement learning [10], dynamic
programming [11], statistical modeling of human uncertain-
ties [12], and reachability analysis [13], [14]. Efforts on
experimental validation with scaled robotic cars have been
reported in [15]. In mixed autonomy, traffic bottlenecks
such as merging roadways and intersections pose significant
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challenges to the decision-making and control of CAVs. A
centralized algorithm for socially compliant navigation at an
intersection given the social preferences of the vehicles was
presented in [16]. A hierarchical on-ramp merging control
strategy for CAVs was presented in [17], where an upper-
level planner computes an expected merging position and a
low-level trajectory controller guarantees constraints under
uncertainties of HDVs. A vehicle coordination problem for
a signal-free intersection using vehicle platooning was ad-
dressed in [18].

In this paper, we extend the framework developed in [2],
[4] for CAV coordination to a mixed-traffic merging scenario.
We present an optimal control formulation to derive the tra-
jectories for the CAVs, in which the unconstrained trajectory
solution of a low-level energy-optimal control problem is
embedded in an upper-level optimization problem aimed at
finding the minimum travel time for the CAV. We employ
Newell’s car-following model [19] to predict the HDVs’
future trajectories, which are used to formulate no-conflict
constraints in the optimal control problem. The constraints
help each CAV avoid conflicts with the vehicles traveling
on the same road and those traveling on the other merging
road. Since the predicted trajectories may deviate from those
arising from the human drivers’ actions, we design a safety
filter for the CAVs based on control barrier functions [20],
[21]. The safety filter modifies the original optimal control
input of the CAV in a minimally invasive fashion so that
conflict-free maneuvers are ensured. We demonstrate the
efficacy of the proposed framework by simulations given
different levels of CAV penetration and traffic volumes.

The remainder of the paper proceeds as follows. In Sec-
tion II, we formulate the coordination problem of CAVs in
a mixed-traffic merging scenario. In Section III, we present
the optimal control problem formulation combined with a
method for predicting the future trajectories of HDVs, and
a control barrier function-based safety filter. The simulation
results are provided in Section IV. Finally, we draw conclud-
ing remarks in Section V.

II. PROBLEM FORMULATION

We consider the problem of coordinating multiple CAVs,
co-existing with HDVs, in a scenario where two merging
roadways intersect at a conflict point; see Fig. 1. We define
a control zone inside which a coordinator is able to monitor
the motion of all vehicles (including CAVs and HDVs).
Communication errors or delays are neglected. The analysis
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Fig. 1: Merging scenario with two merging roadways intersecting at a
conflict point. The blue area represents the control zone. In the merging
zone (green area), virtual projection is utilized as detailed in Section III-B.

of such effects is left for future research. Next, we provide
the following necessary definitions for our exposition.

Definition 1: Let L(t) = {1, . . . , L(t)}, t ∈ R≥0, be the
set of vehicles traveling inside the control zone at time t,
where L(t) ∈ N is the total number of vehicles. Let
A(t) ⊂ L(t) and H(t) ⊂ L(t) be the sets of CAVs and
HDVs, respectively. For example, considering the sce-
nario in Fig. 1, L(t) = {1, . . . , 8}, A(t) = {1, 2, 5, 8}, and
H(t) = {3, 4, 6, 7}. Note that the indices of the vehicles are
determined by the order in which they enter the control zone.

Definition 2: For a vehicle i ∈ L(t), let Si(t) ⊂ L(t) and
Ni(t) ⊂ L(t), t ∈ R≥0, be the sets of vehicles inside the
control zone traveling on the same road as vehicle i and on
the neighboring road, respectively.

We consider that the dynamics of vehicle i ∈ L(t) are
described by a double integrator model:

ṗi(t) = vi(t),

v̇i(t) = ui(t),
(1)

where pi ∈ P , vi ∈ V , and ui ∈ U denote the longitudinal
position of the rear bumper, speed, and control input (accel-
eration) of the vehicle, respectively. The sets P,V, and U
are compact subsets of R. Note that we set pi = 0 at the
conflict point; see Fig. 1. The control input is bounded by

umin ≤ ui(t) ≤ umax, ∀i ∈ L(t), (2)

where umin < 0 and umax > 0 are the minimum and max-
imum control inputs given by the physical acceleration and
braking limits of the vehicles or imposed by driver/passenger
comfort. Next, we provide the speed limits of the CAVs,

0 ≤ vi(t) ≤ vmax, ∀i ∈ A(t), (3)

where vmax > 0 is the maximum allowable speed. We do
not impose a maximum speed limit for HDVs since human
drivers may violate it, but we still assume that

0 ≤ vi(t), ∀i ∈ H(t), (4)

which means the HDVs do not go backward.
To avoid conflicts between vehicles, we impose two types

of constraints: (i) between vehicles traveling on neighboring

roads (to avoid that they meet at the conflict point) and
(ii) between vehicles traveling on the same road (to avoid
rear-end collisions). To prevent a potential conflict between
CAV–i and a vehicle k ∈ Ni(t) traveling on the neighboring
road, we require a minimum time gap tmin > 0 between the
time instants tfi and tfk when the CAV–i and vehicle k cross
the conflict point, respectively, i.e.,∣∣tfi − tfk

∣∣ ≥ tmin. (5)

To prevent rear-end collision between CAV–i and its imme-
diate preceding vehicle k traveling on the same road, i.e.,
k = max {j ∈ Si(t) | j < i}, we impose the constraint:

pk(t)− pi(t) ≥ dmin + thminvi(t), (6)

where dmin > 0 and thmin > 0 are the minimum standstill
distance and the minimum time headway. Note that we use
the distance between the vehicles’ rear bumpers, and the
vehicle length is included by choosing sufficiently large dmin.

III. OPTIMAL CONTROL FORMULATION

In this section, we present an optimal control framework
to coordinate the CAVs in mixed traffic, extending the one
developed for 100% CAV penetration in [2], [4]. For each
CAV, we use the unconstrained trajectory solution of a low-
level energy-minimal optimal control problem to formulate
an upper-level optimization problem that finds the minimum
time for crossing the conflict point while satisfying all state,
control, and safety constraints.

A. Optimal Control Problems

We formulate the low-level optimization by considering
that the solution to the upper-level optimization problem
is known, i.e., that the minimum time tfi which satisfies
all constraints is given. Then, the low-level optimal control
problem aims at finding the control input (acceleration) for
each CAV by solving the following optimization problem.

Problem 1: (Low-level energy-optimal control) Let t0i and
tfi be the times that CAV–i enters and exits the control
zone, respectively. Then, CAV–i solves the following optimal
control problem at t0i :

minimize
ui(t)∈U

1

2

∫ tfi

t0i

u2
i (t) dt,

subject to:
(1), (2), (3),

(6), k = max {j ∈ Si(t
0
i ) | j < i},

given:

pi(t
0
i ) = p0, vi(t

0
i ) = v0i , pi(t

f
i) = 0, ui(t

f
i) = 0,

(7)

where p0 is the position of the entry point of the control
zone. The boundary conditions in (7) are set at the entry and
exit of the control zone.

Note that (5) is not included in the low-level problem
since the time tfi, derived through the upper-level problem
discussed below, satisfies (5). Also, note that in (7) we
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minimize the L2 norm of control input ui(t) in t ∈ [t0i , tfi]
while the energy consumption per unit mass is given by

ε =

∫ tfi

t0i

vi(t)g(ui(t)) dt, (8)

where g(x) = max{0, x}. However, it was shown in [22] that
the energy consumption (8) can be upper and lower bounded
by monotonic functions of the cost function in (7). Therefore,
minimizing the L2 norm of the control input still benefits
energy efficiency.

The closed-form solution of Problem 1 can be derived
using the Hamiltonian analysis [2]. In case none of the
state and control constraints are active, the unconstrained
Hamiltonian is formulated as

Hi(t, pi(t), vi(t), ui(t)) =
1

2
u2
i (t) + λp

i vi(t) + λv
i ui(t), (9)

where λp
i and λv

i are co-states corresponding to position
and speed, respectively. The Euler-Lagrange equations of
optimality are given by

λ̇p
i = −∂Hi

∂pi
= 0, (10)

λ̇v
i = −∂Hi

∂vi
= −λp

i , (11)

∂Hi

∂ui
= ui + λv

i = 0. (12)

Since the speed of CAV–i is not specified at the travel time
tfi, we have the boundary condition

λv
i (t

f
i) = 0. (13)

Applying the Euler-Lagrange optimality conditions (10)-(12)
to the Hamiltonian (9), yields the optimal control law

u∗
i (t) = −λv

i
∗ = 6ait+ 2bi, (14)

where ai and bi are constants of integration. Therefore, the
unconstrained solution takes the form

v∗i (t) = 3ait
2 + 2bit+ ci,

p∗i (t) = ait
3 + bit

2 + cit+ di,
(15)

where ci, di ∈ R are constants of integration. Note that
substituting (13) into (12) at tfi yields the terminal condition
ui(t

f
i) = 0. Given the boundary conditions in (7), if tfi is

known, the constants of integration can be found as
ai
bi
ci
di

 =


(t0i )

3 (t0i )
2 t0i 1

3(t0i )
2 2t0i 1 0

(tfi)
3 (tfi)

2 tfi 1
6tfi 2 0 0


−1 

p0

v0i
0
0

 , (16)

in case the matrix above is not singular.
Next, we formulate the upper-level optimal control prob-

lem to minimize the travel time and guarantee all the
constraints for the energy-optimal trajectory (15); see [23].

Problem 2: (Upper-level minimal-time planning) Once en-
tering the control zone, CAV–i solves the following optimal

control problem at t0i

minimize
tfi∈Ti(t0i )

tfi

subject to:
(2), (3),

(5), ∀ k ∈ Ni(t
0
i ),

(6), k = max {j ∈ Si(t
0
i ) | j < i},

(15),
given:

pi(t
0
i ) = p0, vi(t

0
i ) = v0i , pi(t

f
i) = 0, ui(t

f
i) = 0.

(17)

Here, the compact set Ti(t0i ) = [tfi, t
f
i] represents the feasible

range of travel time under the state and input constraints of
CAV–i computed at t0i .

The computation steps to solve Problem 2 numerically are
summarized next; for more details, see [4]. First, we initialize
tfi = tfi, and compute the parameters [ai, bi, ci, di] using (16).
We evaluate all the state, control, and no-conflict constraints.
If none of the constraints is violated, we return the solution;
otherwise, tfi is increased by a step size. The procedure is
repeated until the solution satisfies all the constraints. By
solving Problem 2, the optimal exit time tfi along with the
optimal trajectory (15) and control law (14) are obtained for
CAV–i for t ∈ [t0i , t

f
i].

If a feasible solution to Problem 2 exists, then the solution
is a cubic polynomial of the form (15), guaranteeing that
none of the constraints are activated. If the solution of
Problem 2 does not exist, one may derive an alternative
trajectory numerically by piecing together the constrained
and unconstrained arcs [23].

B. Human Drivers’ Trajectory Prediction

To solve Problem 2, all vehicles’ trajectories and exit times
having potential conflicts with CAV–i must be available.
When CAV–i enters the control zone, the trajectories and
exit times of other CAVs traveling in the control zone can be
obtained from the coordinator via wireless communication.
The states of HDVs are assumed to be available, but their
future trajectories are not known.

Next, we present an approach to predict the future trajecto-
ries and exit times of the HDVs traveling in the control zone
based on Newell’s car-following model [19]. This model
simply considers that due to traffic wave propagation, the
trajectory of a vehicle is a shifted copy in time and space of
its predecessor. Specifically, the position of each HDV–k,
k ∈ H(t), is predicted from the position of its preceding
vehicle j = max {l ∈ Si(t) | l < i} as

pk(t) = pj
(
t− τk

)
− w τk, (18)

where τk > 0 is the time shift of HDV–k, and w > 0 is the
speed of the backward propagating traffic waves, which is
considered to be constant [24]. Here we use w = 5m/s.

Since vj(t) ≥ 0 and w > 0, pj (t− τk)− wτk is a strictly
decreasing function of τk. Thus, there exists a unique value
of τk such that (18) is satisfied for any t. That is, when
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Fig. 2: An example of virtual projection in the merging zone, where the
CAV–2 is projected from the perspective of HDV–3.

CAV–i enters the conflict zone at t = t0i , it can solve (18)
for τk for each HDV–k based on the positions of the vehicles
(obtained from the coordinator). If there is no preceding
vehicle in front of HDV–k, it is assumed to maintain its
current speed, making its position an affine function of time.

In the proximity of the conflict point, defined as the
merging zone in Fig. 1, the HDVs interact with vehicles on
the neighboring road and control their longitudinal motion
accordingly. This is achieved by the virtual projection of
vehicles traveling on the neighboring road, an example
shown in Fig. 2. Here, from the perspective of HDV–3,
the projected CAV–2 is considered as the preceding vehicle
instead of CAV–1. Similar generalized car-following models
for merging and lane-changing scenarios have been reported
in [25], [26].

Using the proposed prediction model, the position of each
HDV in the control zone can be represented either by a cubic
polynomial or by an affine function of time. The trajectory
prediction is then used for estimating the HDVs’ exit times
to impose the no-conflict (5) and rear-end safety constraints
(6). We use tfk and [ak, bk, ck, dk], k ∈ H(t), to denote the
predicted exit time and the constants parameterizing the
predicted trajectory of HDV–k. Substituting the solution (15)
into (18) (for both pk and pj), the trajectory parameters
of HDV–k can be obtained from those of the preceding
vehicle j according to

ak = aj ,

bk = bj − 3ajτk,

ck = cj + 3ajτ
2
k − 2bjτk,

dk = dj − ajτ
3
k + bjτ

2
k − cjτk − wτk,

(19)

and tfk can be found by solving

ak(t
f
k)

3 + bk(t
f
k)

2 + ckt
f
k + dk = 0. (20)

Then tfk and [ak, bk, ck, dk] can be integrated into the con-
straints (5) and (6) between CAV–i and HDV–k.

C. Safety Filter using Control Barrier Functions

Using Newell’s car-following model, we can predict the
HDVs’ future trajectories and then integrate them into Prob-
lem 2 to derive the trajectory and control law for CAVs in
the control zone. However, in reality, HDVs may behave
differently from the predicted model. Under this discrepancy,

the derived optimal control law for CAVs may not always
ensure conflict-free maneuvers. To address this issue, in this
subsection, we utilize control barrier functions [20] to design
a safety filter that modifies the original optimal control input
to a safe control action once unsafe situations are realized.
Thus, conflict-free maneuvers are guaranteed for the CAVs.

To develop this safety filter, we consider a system in-
volving a CAV–i and a preceding vehicle k traveling inside
the control zone. Note that the preceding vehicle may be
either an HDV or a CAV. Also, to ensure both rear-end
safety and to avoid conflicts with vehicles on the other
merging road, the preceding vehicle j refers to the vehicle
either physically ahead of the CAV–i on the same lane, i.e.,
k = max {j ∈ Si(t

0
i ) | j < i}, or virtually projected from

the neighboring lane, i.e., k = max {j ∈ Ni(t
0
i ) | j < i},

whichever is the closest in front. Based on (1), the dynamics
of such a system can be written as

Ḋik(t) = vk(t)− vi(t),

v̇i(t) = ui(t),
(21)

where Dik := pk − pi is the distance between vehicles i
and k. By defining the state x := [Dik vi]

⊤ and the input
u := ui, system (21) can be rewritten into the concise form

ẋ = f(x) + g(x)u, (22)

with

f(x) =

[
vk − vi

0

]
, g(x) =

[
0
1

]
. (23)

We characterize the safety of CAV–i by the forward in-
variance of a safe set S ⊂ R2, that is, we require that
x(0) ∈ S ⇒ x(t) ∈ S, ∀t ≥ 0. We define a scalar-valued
control barrier function (CBF) such that h(x) ≥ 0 when
x ∈ S, that is, safety can be ensured by maintaining the
positivity of the CBF. Here we define

S = {x ∈ R2 : Dik ≥ dsf + thsfvi},
h(x) = (Dik − dsf)/t

h
sf − vi,

(24)

where dsf ≥ 0 is the safe standstill distance while thsf is the
safe time headway. An illustration of the safe set S is shown
in Fig. 3 where thsf and dsf are indicated.

It was shown in [21] that since ∇h(x)g(x) < 0 always
holds, the positivity of the CBF defined in (24) can be
assured if the control action satisfies

u ≤ us(x) = −∇h(x)f(x) + α(h(x))

∇h(x)g(x)
, (25)

with α > 0. Substituting (23) and (24) into (25) we obtain

us(x) =
vk − vi
thsf

+ α

(
Dik − dsf

thsf
− vi

)
. (26)

Such safe control input can upper bound the CAVs’ control
inputs. In particular, denoting the optimal control input
derived from Problems 1 and 2 as uo, a safety filter can
be synthesized as

u = min{uo, us}, (27)
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Fig. 3: Safe set S (green region) visualized in state space for thsf = 1 [s] and
dsf = 7 [m]. The range policies corresponding to the CAV constraints (3)
and (6) (purple dashed), Newell’s car following model (18) (black dotted)
and the intelligent driver model (28) (yellow dotted) are also indicated.

which modifies the original optimal control input uo to safe
input us in a minimally invasive fashion. This ensures CAVs’
conflict-free maneuvers under uncertain HDVs’ behaviors.

IV. SIMULATION RESULTS

In this section, we demonstrate the proposed framework
by numerical simulations under various penetration rates of
CAVs and various traffic volumes. We consider a merging
scenario for a control zone of length 300m, and we define a
merging zone of length 75m upstream of the conflict point.
Vehicles enter the control zone with uniformly randomized
initial speeds between 22 and 26m/s. We generate random
vehicle entering time by a normal distribution where the
traffic volumes determine the mean.

Given a preceding vehicle j (which may be projected from
the neighboring road), the following HDV–k’s control input
is given by

uk= a

(
1−
(

vk
vmax

)4

−

(
dmin + thvk − vk(vj−vk)

2
√
ab

pj − pk

)2)
, (28)

where vmax and dmin are the same as the speed limit
and the standstill distance imposed for CAVs in (3)
and (6) but here these denote desired values rather than
constraints. Also, th is the desired time headway, a is
the desired maximum acceleration, and b is the com-
fortable deceleration. The parameters used in the simula-
tions are umin = −3m/s2, umax = 2m/s2, vmax = 26m/s,
tmin = 2 s, dmin = 10m, thmin = 1 s, dsf = 7m, thsf = 1 s,
α = 0.6 1/s, th = 2 s, a = 1m/s2, and b = 1.5m/s2.

On the state space diagram in Fig. 3, we plot the range
policy embedded in the IDM and compare it with Newell’s
car-following model (using the most aggressive τk value
obtained from simulations). Both lie inside the safe set S .
We also remark that for simplicity of the simulation, when
a feasible solution of Problems 1 and 2 does not exist at
the entrance of the control zone, the safe controller us is
used for the CAV, instead of numerically solving a two-level
optimization problem to derive uo.

Fig. 4: Average travel time (a) and output traffic flux (b) under different
penetration rates of coordinated CAVs.

Fig. 5: Simulated position, speed, and acceleration profiles for a CAV and
surrounding HDVs without and with CBF-based safety filter. The trajectories
of HDVs are represented by black curves. For CAV, red segments denote
where optimal control input uo is used while blue segments denote where
safe input us is used. The actual control input used for the CAV is
highlighted by the thick curve in panel (f). The vehicles moving on different
roads are distinguished by solid and dashed curves. The blue and green
shaded areas highlight the control and merge zones.

We conduct simulations using the proposed framework for
six CAV penetration rates: 0%, 20%, 40%, 60%, 80%, 100%,
and three traffic volumes: 1000, 1200, and 1400 vehicles
per hour. To quantify the benefits of coordinated CAVs, we
use two metrics: average travel time in the control zone
of the vehicles and the output traffic flux of the vehicles
exiting the control zone. We conduct the simulations with
200 vehicles to compute these two metrics. In Fig. 4, we
summarize the results of average travel time and output flux
for different CAV penetration rates and traffic volumes. Note
that by increasing the CAV penetration rate, the average
travel time improves significantly. Under high traffic volume
(1400 veh/h), 100% coordinated CAVs can improve the
average travel time by 11% compared to the baseline traffic
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with pure HDVs. Moreover, with higher CAV penetration,
we also observe moderate improvements in the output traffic
flux; see Fig. 4(b).

To demonstrate the CBF-based safety filter, the position,
speed, and acceleration profiles of a few CAVs and HDVs
are shown in Fig. 5 for traffic volume 1200 veh/h. The
left panels reveal that without the safety filter, the optimal
trajectories of the CAVs (red curves), derived at the entry
of the control zone, may come very close to the trajectories
of the HDVs (black curves). On the other hand, the right
panels demonstrate that with the help of the safety filter,
the CAVs can avoid conflicts with the HDVs. Note that in
panels (d) and (e), the red segments represent where the
optimal control input uo is used for the CAV, while the blue
segments represent where the safe input us is used. In panel
(f), the control inputs uo and us are plotted in red and blue,
respectively, with the overall control input that the CAV used
highlighted by the thicker curve.

V. CONCLUDING REMARKS

In this paper, we presented a framework for coordinating
CAVs in mixed traffic where they interact with HDVs. We
developed an upper-level optimization problem that yields
the minimum travel time of the CAVs and uses the un-
constrained trajectory solution of a low-level energy-optimal
control problem. We utilized Newell’s car-following model
with virtual projection to predict human driving behavior and
introduced a control barrier function-based safety filter to
address possible unsafe situations arising from the inaccuracy
of these predictions. Numerical simulations were used to
demonstrate the performance and implications of the pro-
posed framework. Future research should address the prob-
lem of merging scenarios with multiple lanes and conduct
experimental validation to assess the real-time practicality
of the proposed framework.
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