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Abstract— We consider the problem of autonomous explo-
ration in search of targets while respecting a fixed energy
budget. The robot is equipped with an incremental-resolution
symbolic perception module wherein the perception of targets in
the environment improves as the robot’s distance from targets
decreases. We assume no prior information about the number
of targets, their locations, and possible distribution within
the environment. This work proposes a novel decision-making
framework for the resulting constrained sequential decision-
making problem by first converting it into a reward maxi-
mization problem on a product graph computed offline. It is
then solved online as a Mixed-Integer Linear Program (MILP)
where the knowledge about the environment is updated at each
step, combining automata-based and MILP-based techniques.
We demonstrate the efficacy of our approach with the help of
a case study and present empirical evaluation. Furthermore,
the runtime performance shows that online planning can be
efficiently performed for moderately-sized grid environments.

I. INTRODUCTION

Robotic exploration for critical missions such as post-
disaster search-and-rescue (SaR), extra-terrestrial explo-
ration, etc. demand promising, time-optimal solutions. In
practice, these problems are resource-constrained due to
information acquisition costs and hardware limitations such
as finite battery life. Furthermore, the information available
a-priori could be very limited.

This necessitates strategic use of the observation history
to direct the search to regions with a high likelihood of
containing targets [1], [2] or estimating the risk of misper-
ception [3] for safe exploration. In this work, we consider
the robot perception model that provides partial symbolic
information incrementally as the distance to yet-to-explore
regions decreases [4]. Consider an autonomous robot with a
fixed energy budget deployed in a SaR environment tasked
to extinguish as many instances of fire and rescue as many
victims as possible before reaching the EXIT.

Generally, the problem is modeled as a Partially-
Observable Markov Decision Process [5], [6] and approached
by belief space planning [7]–[9]. Nevertheless, these for-
malisms have a limited scalability with environment size. The
exploration-exploitation trade-off due to resource constraints
is well-studied for reinforcement learning [1], [10]. How-
ever, training for these approaches is often time, resource-
intensive. Maximum information exploration was tackled
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using next-best-view planning [11], frontier-based explo-
ration [12]. Many works use sampling-based approaches
for multi-objective exploration [13], reward shaping [10],
reactive planning [14]. For complex tasks, automata [15]–
[17] and optimization-based [18], [19] approaches have
been proposed. [18], [19] consider Mixed-Integer Linear
Programming (MILP). Though MILPs are NP-hard, off-the-
shelf tools [20] facilitate real-time control synthesis.

This work addresses the problem of energy-constrained
exploration in search of targets whose locations, numbers
are a-priori unknown. While exploring, the robot observes
and tracks the symbolic label associated with each grid
cell in an incremental-resolution manner. This differs from
existing works in several aspects. Specifically, as opposed
to [16], we consider static, incrementally-sensed rewards to
be maximized on a fixed energy budget. As opposed to [5],
[21], [22] no information about the numbers, locations and
possible distributions of the targets is assumed. In [12], [23],
fixed budget exploration to maximize the information about
the environment is proposed. On the other hand, the objective
of our work is to maximize collection of targets.

We propose a decision-theoretic framework in which the
product graph between the robot motion and the energy
available for motion is pre-computed. Using this, an online
planning algorithm solves an MILP at each time step by
utilizing the observations given by an incremental-resolution
symbolic perception module. Our approach preserves the
accumulation of symbolic information as the robot moves
through the environment. The problem of constrained plan-
ning for maximizing target collection from unknown loca-
tions is then turned into a deterministic optimal flow problem
with respect to the current knowledge about the environment.

The main contributions of this work are: 1) Extending [4],
we propose the problem of energy-constrained exploration
with incremental-resolution symbolic perception where no
information about the targets is assumed. 2) We present
abstraction models that formally capture this problem and
propose a decision-theoretic framework that combines ran-
domized energy allocation with automata-based and MILP-
based appproaches. 3) We highlight the performance of the
proposed planning framework using case studies and empir-
ically evaluate the performance in terms of expected regret.
Additionally, we characterize the performance of the online
planning algorithm with the help of runtime performance.

Notation: A set of integers starting at a and ending at b,
both inclusive, is denoted by [[a, b]]. The 1-norm of a vector
x is denoted as ∥x∥1. The sets of integers and non-negative
integers are denoted as Z and Z≥0. Let B = {0, 1}. 1f=a

denotes the indicator function which is 1 if f = a and 0
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Fig. 1: (a) A robot with a sensing range limited to its immediate
neighbors (blue cells), and has no observations about all grey cells.
(b) shows an instance of refinement in symbolic perception where
the root indicates no observation is available. For each subsequent
layer, the symbols are refined. Thus, (a) and (b) depict the metric
and symbolic representation of the agent’s perception, respectively.
As the robot moves along the green arrow, its observation about
cell x1 changes from Fire to Class A Fire with probability p6.

otherwise.

II. PROBLEM SETUP

Consider a planar grid environment with objects of interest
(e.g., artifacts, victims), referred to as targets, see Fig. 1.
The targets are hidden in the environment and no prior
information about the total number of targets, their locations
or the frequencies of their occurrences is available. Given an
autonomous robot with a fixed energy budget, our objective
is to design a path that services as many of these targets
as possible and ultimately reaches the given goal location.
Next, we describe various components of the problem.
Robot Motion and Environment. Let X denote the set
of locations, i.e., grid cells. The robot can move North,
East, South, West to adjacent locations deterministically. The
initial and goal locations, xinit and xgoal, are given.

Let the set of targets be denoted by L. Each location may
contain a single target, another object of no interest to the
robot or nothing at all. Let Π contain all symbols of targets
and objects. Let I0 denote a set of ground truth symbols
that correspond to full semantic information, I0 ⊂ Π. We
associate each cell with a ground truth symbol from I0 that
includes the targets, L ⊆ I0. A cell that does not contain
targets or objects is called empty associated with the symbol
ℓ∅ ∈ Π. We assume that the environment is static and the
ground truth symbols are independent between locations.

This work focuses on the high-level motion of the robot
in the grid environment. We assume the low-level controllers
to enforce the motion of the robots in the grid are available.
Incremental-resolution Perception. The robot is equipped
with a perception module necessary for detecting the po-
tential targets. We consider sensing within a limited range
around the robot that provides observations with symbolic
resolution decreasing with the distance from the robot. The
sensing range D ∈ N allows the robot to observe all cells
x′ within D-Manhattan distance away from the current cell
x, i.e., ||x − x′||1 ≤ D for all x′ ∈ X . We denote by N d

x

all cells x′ for which ||x′ − x|| = d, where x is the current
robot location and d ∈ Z≥0. Thus, the set of visible cells is
N≤Dx = N 0

x ∪ . . . ∪ND
x .

The symbolic perception information is modeled in an
incremental-resolution manner as described in [4]. As the

robot moves through the environment, it deterministically
observes the symbols of cells within the sensing range
D at different resolution levels depending on its distance
from them. For each distance d ∈ Z≥0, we associate a
set of symbols Id that can be observed at the Manhattan
distance d by the robot. The set of all symbols is denoted by
I =

⋃D
d=0 Id. At its current location, the robot can observe

only ground truth symbols, i.e., I0 ⊆ Π. Some ground truth
symbols may be observed from farther away (d ≥ 1), see
Fig. 1. The symbols I\Π are called incremental symbols and
capture lower resolution (incomplete) semantic information.

Moreover, we are given a priori distribution on what
symbols may be observed by moving one cell closer to
an observed cell x′. Formally, for any ℓ ∈ Id the prior
probability distribution pℓ : Id−1 → [0, 1] is given, where
pℓ(ℓ

′) > 0 iff the symbol ℓ′ can be observed for cell x′

at distance d − 1 given that at distance d symbol ℓ was
observed. For distance d ≥ D + 1, no observations are
available. For uniformity of presentation, we associate this
mode with a root symbol ℓ▷◁ and prior pℓ▷◁ : ID → [0, 1],
where pℓ▷◁(ℓ) > 0 for all ℓ ∈ ID. The relationship captured
by priors {pℓ}ℓ∈I∪{ℓ▷◁} represents the symbolic perception
refinement structure of the robot’s sensing.

Example II.1. Consider the robot in the 4 × 4 grid
environment in Fig. 1(a) containing fire and victim targets.
The robot needs to perform as many instances of rescuing
severely injured victims and extinguishing Class-A fire as
possible, if they are present, and reach the goal location.
The set of symbols is I0 = {Severely Injured Victim,
Mildly Injured Victim,Class A Fire,Class B Fire,
Other}; L = {Severely Injured Victim,Class A Fire}.

Fig. 1(b) is an instance of perception refinement with
D = 1. The directed edges indicate the evolution of symbolic
information. The robot can observe the ground truth symbols
I0 for its current location and the incremental symbols
I1 = {Victim,Fire,Other} for the cells that are one-step
away. The root symbol ℓ▷◁ corresponds to no observation
available and that is the current robot observation for cells
beyond sensing range. Thus, the (a) and (b) denote the metric
and symbolic representation of the perception model.

Energy Constraints and Target rewards. The robot has
a fixed energy budget E that implicitly bounds the horizon
over which the exploration mission can be performed. Each
transition between adjacent grid cells x, x′ ∈ X takes
w(x, x′) > 0 energy.

A target in the environment is satisfied when the robot
moves to a cell containing that target and collects a target
reward r(ℓ), ℓ ∈ L. The energy required for servicing each
symbol is captured by the map e : Π → Z≥0. For all targets
ℓ ∈ L the servicing energy e(ℓ) > 0, while for any other
symbol e(ℓ) = 0, ∀ℓ ∈ Π \ L.

Problem II.1 (Energy-Constrained Active Exploration).
Given a robot with incremental-resolution symbolic percep-
tion refinement {pℓ}ℓ∈I∪{ℓ▷◁}, the energy budget E deployed
in a grid environment with unknown cell symbols, and the
set of ground truth symbols L with servicing rewards r and
energy costs e, find a path such that the robot maximizes
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Fig. 2: The symbolic tracking models for cells x0, x1and x3

considering d = 1. The rest of the grid cells are yet to be observed.

the sum of target servicing rewards and reaches the goal
location xgoal while respecting the energy budget.

III. APPROACH : ABSTRACTION MODELS

A. Robot Motion and Environment

The robot motion in the environment is abstracted as a
weighted transition system (TS) T = (X,xT0 , δT ,Π, h, w),
where X is a finite set of states associated with the grid’s
cells; xT0 = xinit ∈ X is the initial state; δT ⊆ X×X is a set
of transitions; Π is a set of symbols (atomic propositions);
h : X → Π is a labeling function; and wT : δT → Z>0

is a weight function. The state transition function δT is
deterministic. As opposed to the standard setting, the labeling
function h(·) is unknown. It is observed locally as the robot
senses its immediate environment.

We define a path of the system as a finite sequence of
states x = x0x1 . . . xm such that (xk, xk+1) ∈ δT for all
k ≥ 0, and x0 = xT0 . The set of all trajectories of T is
Runs(T ). We define the weight of a trajectory as wT (x) =∑|x|

k=1 wT (xk−1, xk). The set of states visited by trajectory
x is V is(x) = {x | ∃k ∈ [[0, |x|]] s.t. xk = x}.

B. Incremental-resolution Symbolic Tracking Model

Given a past observation ℓ of cell x′ at distance d, only
the action of moving closer to x′ leads to an observation
ℓ′ of higher resolution. Since the environment is static, and
the robot makes observations deterministically, the robot’s
knowledge about cell’s symbols is cumulative. Thus, the
evolution in the robot’s knowledge about the environment
is governed not only by the probabilities of the perception
refinement, but also by its evolution of distances from cells
throughout the mission. We capture the robot’s knowledge
about the environment as Markov Decision Processes (MDP)
that we refer to as symbolic tracking model. A finite, sta-
tionary discrete-time Markov Decision Process (MDP) is a
tuple M = (M,m0,U,P), where M is the state space,
m0 denotes the initial state, U is the input space, and
P : M ×U×M → [0, 1] is a next-state transition probability
function such that for all states m ∈ M and inputs u ∈ U,
we have Σm′∈MP(m,u,m′) ∈ B.

A trajectory of M is a sequence of states and inputs
starting in state m0 denoted as m0, u0,m1, u1,m2, u2, . . .
where uk denotes the input at state xk. The state space M
corresponds to all possible symbolic observations interpreted
as the knowledge about a cell x′. Thus, M = I ∪{ℓ▷◁}. The
initial state m0 is the root ℓ▷◁ indicating that no observation
is yet available. The input space U = Z≥0 captures the

Fig. 3: The product graph computed offline is used for solving an
MILP at each step as the robot’s knowledge is updated.

distances to the observed cell x′ from the robot locations x.
The transition probability function maps the current robot’s
knowledge state m about cell x′ and input distance u =
∥x− x′∥1 into the next knowledge state m′. Formally,

P(m,u,m′) =


pm(m′) m ∈ Iu+1,m

′ ∈ Iu

1 m′ = m,m ∈ Id, u ≥ d

0 otherwise
(1)

and induces a Directed Acyclic Graph (DAG) over the state
space M (excluding self-loops). Below, we denote the MDP
associated with a cell x′ ∈ X by Mx′ .

Example III.1. Consider Fig. 2. The current MDP states are
m(x0),m(x1) = Other,m(x3) = Fire. If the robot moves
to x3, the resulting MDP states will be m(x3) = Case A
with probability p6 and m(x3) = Case B with probability p7
whereas m(x1),m(x0) = Other. If, instead, the robot moves
to x1, the resulting MDP states will be m(x1) = Other with
probability 1, m(x3) = Fire,m(x0) = Other.

With these abstraction models, we now proceed to the
decision-making framework. Given T , we define rewards for
all cells that encourage exploration of the environment for
targets thereby converting Problem II.1 into a constrained
reward maximization problem over T . The problem is solved
at each time step of the mission as the robot observes the
environment and its knowledge about cells is updated.

maxx∈Runs(T )Rpath(x)

s.t. x0 = xT
0 , xT = xgoal, T = |x|

wT (x) +
∑

x∈V is(x) e(h(x)) ≤ E

(2)

where R(x) is a reward function over paths in T (see
Sec. IV-C) defined based on target service rewards r and
robot’s knowledge Mx′ at the current time. The rewards
in eq.2 are path-dependent which is difficult to compute.
The proposed approach transforms the objective into a state-
dependent reward maximization problem that can be easily
solved as an integer linear program. The reward and energy
path constraints of the problem are accounted for by the con-
straints of the MILP and automata construction, respectively.

IV. ALGORITHMS

This section elaborates our approach to Pb. II.1 that aims
to find a good solution tractably rather than an optimal one.
The Energy-constrained Incremental Symbolic Perception
(EISP) planning framework proceeds by first decomposing
the problem into an offline product space construction and
an online planning problem. Given the energy constraints, the
offline algorithm heuristically estimates the energy required
for satisfying potential targets thus, splitting the available
energy budget for target satisfaction and for exploration
(Alg. 2). The reachable solution space is then pre-computed
based on the energy for exploration and the robot motion

6859



Algorithm 1: EISP Planning Algorithm()
Input: T , xgoal,L, D, e,E
Output: path
// Offline

1 Eκ,Eε, N ← sample energy budget() // Alg. 2
2 Gε ← construct product DAG()
3 path← [], x← xT

0 , Rserv ← 0 // Initialize
4 while x ̸= xgoal do // Online
5 path← [path, xc] // Update path
6 Get observations ℓx(x

′) at x for all x′ ∈ N≤D
x – Sec. II

7 Update Mx′ with u =
∥∥x− x′∥∥

1
, for all x′ ∈ N≤D

x – Sec. III-B
8 if e(h(x)) ≤ Eκ then // Target servicing updates
9 Eκ ← Eκ − e(h(x))

10 Rserv ← Rserv + r(h(x)) // Servicing rewards
11 else No service
12 Update rewards R(·) – Sec. IV-C
13 xnext ← solve milp(Gε, x, R(·)) – Sec. IV-D
14 Eε ← Eε − wT (x, xnext) // Update motion energy
15 x← xnext // Robot moves to xnext

16 return path

Algorithm 2: sample energy budget()

Data: E, e,L, xT
0 , xgoal

Result: Eκ, Eε, N

1 Initialize Eκ = E

2 Egoal =
∥∥∥xgoal − xT

0

∥∥∥
1

// Min energy to goal

3 while Eκ ≥ E− Egoal do
4 Draw {αℓ}ℓ∈L ∼ D(·), αℓ ∈ Z≥0 ∀ ℓ ∈ L
5 Eκ = Σℓ∈Lαℓ · e(ℓ) // Energy estimate for targets

6 return Eκ,Eε = E− Eκ, N = Eκ/minj∈L{ej}

model. Finally, a modified optimal flow problem is solved
online at each step on the pre-computed product graph
(Alg. 1). Specifically, the observations of the cells within
the sensing range are used to update rewards and the energy
available for servicing targets in case a target is serviced.
With the updated rewards, solving the MILP (4) determines
the maximum reward path to the goal xgoal. The first step is
executed and the process is repeated until the robot reaches
xgoal. An outline of EISP planning algorithm is shown in
Fig. 3 . In what follows, we present a detailed discussion
about each of these components.

A. Energy allocation for servicing targets and exploration

As outlined in Alg. 2, the energy budget is divided
offline into the energy for collecting targets Eκ and that
for exploration Eε. First, we compute the energy required
to ensure the robot reaches the goal xgoal. Next, we draw
the frequencies of occurrence of each target denoted as αℓ

from some arbitrary distribution D (line 4) until the target
collection energy Eκ (line 5) is less than the available energy
E − Egoal. Finally, we compute the upper bound on the
number of targets to be collected by dividing Eκ by the
minimum energy to service a target (line 6).

Proposition 1. The number of targets that robot services is
upper bounded by N = E/minj∈L{ej}, see Alg. 2.

B. Product Graph Construction

As the energy Eε allocated by Alg. 2 depletes as the robot
moves through the grid, it provides a ”directionality” to the
planning problem. Leveraging this, we construct a product
graph between the robot motion model and an enumeration of
Eε resulting in an DAG. Given the robot motion model T =
(X,xT0 , δT ,Π, h) and the energy available for exploration

Eε, the product graph is a tuple Gε = (Vε, v
ε
0,Ξε, Fε), where

Vε ⊆ X × [[0,Eε]] is the state space, vε0 = (x0,Eε) denotes
the initial state, Ξε ⊆ Vε × Vε represents the transition
function, and Fε is a set of final states. The transition
((x, e), (x′, e′)) if and only if (x, x′) ∈ δT and e′ =
e − wT (x, x

′). The product graph synchronously captures
the robot’s motion and energy constraints.

C. Online Planning
Given the pre-computed Gε, the robot utilizes the obser-

vations made at runtime to synthesize a path from its current
cell to the goal that may lead to targets. To incentivize
exploration for targets, we introduce rewards as follows.

1) Reward Design for Active Exploration: The expected
target reward for cell x with MDP state m(x) in Mx is

EMx [r(L) | m(x)] =
∑

ℓ∈Lm(x)
P(ℓ | m(x)) · r(ℓ) (3)

where Lm(x) = {ℓ ∈ L | ℓ ⪯ m(x)} is the set of targets
that may be observed given m(x), and ⪯ is the descendent
relation in DAG Mx. The probabilities in (3) are given by

P(ℓ | m(x)) =
∑

br∈P
m(x),ℓ
Mx

∏
(ℓpa,ℓn)∈br pℓpa(ℓ

n)

where P
m(x),ℓ
Mx

is the finite set of all directed paths from
m(x) to ℓ in DAG Mx, and pℓ′ : Id → [0, 1], d ∈ [[0, D]],
are the a priori distributions, see Sec. II.

For an observed cell x (m(x) ̸= ℓ▷◁), we assign the
expected target reward (3) if previously unvisited and may
still contain targets (Lm(x) ̸= ∅). Visited cells are assigned
a reward of −1. In addition to the given rewards for target
servicing, we introduce rewards for exploration denoted by
rε > 0 associated with observed cells that do not contain
targets, Lm(x) = ∅. Lastly, all unobserved cells (m(x) = ℓ▷◁)
are associated with a reward dependent on the estimated
number of targets that can be serviced and the number of
unobserved cells. The designed path-dependent reward is (a)
R(x) = EMx [r(L) | m(x)] if m(x) ̸= ℓ▷◁,Lm(x) ̸= ∅, x /∈
V is(path), (b) R(x) = −1 if m(x) ̸= ℓ▷◁, x ∈ V is(path),
(c) R(x) = rε if m(x) ̸= ℓ▷◁,Lm(x) = ∅, x /∈ V is(path),
(d) R(x) =

N ·
∑

ℓ∈L r(ℓ)

|X\Obs|·|L| if m(x) = ℓ▷◁, where path is the
robot’s path at the current step (see Alg. 1), and Obs = {x |
m(x) ̸= ℓ▷◁} is the set of observed cells.

2) Reward Collection: As the robot moves through the
environment, it collects the reward for the current cell and
some partial rewards for observing the incremental symbols
of the cells within the sensing range. The partial rewards
ensure that the robot progresses towards cells with targets.

For each cell x along a path x to be evaluated, the
rewards are collected for all cells x′ ∈ N≤Dx , i.e., Rx(x

′) =
λ−d · R(x′) · 1d=∥x′−x∥1≤D for λ ∈ (0, 1). In case a cell x′

is observed from multiple cells along x, then the maximum
reward is collected. Let Obsx(x

′) = {x ∈ V is(x) | x′ ∈
N≤Dx }. Formally, if |Obsx(x

′)| > 1, then the collected
reward is maxx∈Obsx(x′) Rx(x

′).
D. Maximum Reward Path Planning

Pb. II.1 can now be cast as finding a path in Gε from
the source node (xT0 ,Eε) to one of the goal states in Fε

whose projection on T maximizes the total collected rewards.
We obtain the solution via a mixed-integer linear program
(MILP) with an objective

maxyx

∑
x∈X

{
max

x′∈N≤D
x

Rx′(x) · yx′
}

(4)
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subject to the constraints
∑

v∈N−
u
ζu,v −

∑
v∈N+

u
ζu,v =

1u=t − 1u=s, where N−u and N+
u denote the predecessors

and successors of node u ∈ Vε, respectively. ζu,v ∈ B is a
decision variable indicating whether the edge (u, v) is part of
the solution path. s is (x0,Eε), and t is a virtual state such
that all states Fε are connected to t. This constraint captures
flow conservation. Next, we impose zu =

∑
v∈N+

u
ζu,v , yx ≤∑

u=(x,e)∈Vε
zu, yx ≥ zu, ∀ u = (x, e) ∈ Vε and ∀x ∈ X .

For zt, we use N−u instead. These constraints indicate if state
x was visited via path in the product model. The visited states
of T determine the collected reward. This formulation is a
modified version of the standard optimal flow algorithms on
DAGs that accounts for the robot’s sensing range.
Discussion. The decision variables of (4) are defined on Gε.
To ensure efficient execution, the product model is pruned
at each step. Finally, the energy budget allocation can be
informed by the robot’s knowledge at runtime. However,
deciding when to reallocate the energy is a non-trivial
decision and is a topic for future research.
Feasibility. Alg.1 is recursively feasible by construction.
However, no guarantees can be provided about optimality.

V. CASE STUDIES

In this section, we demonstrate the efficacy of the proposed
decision-making framework applied to a Mars exploration
scenario. We evaluate the performance of the EISP algorithm
with a baseline case where complete information about the
environment is available a-priori. Finally, we present data on
the runtime performance of the MILP defined in (4).
Planning. Consider an autonomous robot in a Martian en-
vironment deployed to collect samples of Biomarkers and
Fossils. Thus, L = {Fossil,Biomarker}. Fig. 6 shows the
perception refinement. The sensing range is D = 2 cells. On
an 8 × 8 grid, the robot is tasked to go from xinit = (0, 0)
to xDOCK = (7, 6) with E = 22, and e(Fossil) = 3,
e(Biomarker) = 2, and r(Fossil) = 8, r(Biomarker) =
6. For testing, we plant targets at x(2,3), x(4,7), x(7,2) with
h(x(2,3)) = Fossil, h(x(4,7)) = Fossil and h(x(7,2)) =
Biomarker and these are hidden from the robot. Each
transition in the grid consumes 1 unit of energy.

Fig. 4 shows the evolution of rewards at various instances
with respect to the robot’s current location, past knowledge,
and some limited information about currently visible cells.
The figure shows the rewards at the top and the planned
path (dark blue nodes, black arrows) as well as the cells
within the sensing range (cyan). The targets are shown using
purple diamonds. At t = t0, since no targets can be observed,
the rewards are uniformly distributed over the cells outside
the robot’s sensing range. Subsequently, the robot’s tracking
model is updated at each time step e.g., at x(2,1), m(x(2,3)) =
Rock and so on. Note that, at t = t11, even though the robot
acquires partial information about the target at x(4,7), it is
unable to re-plan and collect the sample due to low remaining
energy, reaching the DOCK at t12.
Empirical Evaluation. To the authors’ best knowledge, there
are no existing exploration algorithms with incremental-
resolution symbolic perception. Thus, for empirical evalu-
ation of our approach, we resort to a baseline case where
full information about the environment is assumed.

We refer to the baseline with full information as F.I. and
our model with no initial information as N.I.I.. To set up the
testing scenarios, the number of events of each type {νi}i∈L
are sampled at random from D(·), where D(·) is chosen to be
a geometric distribution and the total number of events is ν =∑

i∈L νi. The event locations are generated randomly using
Shuffle method given the grid size where first ν locations
are chosen. For each test case, the event locations and the
number of events of each type are same for F.I. and N.I.I.
The perception refinement, target symbols, energy values e
and target rewards r are same as the previous case study. We
vary the grid sizes, energy budget, total number of targets
present as well as event locations and evaluate the empirical
mean regret of not having the full information. For each
grid size and ν, we generate 10 scenarios corresponding to
different locations of events.

We use regret to quantify the effectiveness of the proposed
approach. Even though N.I.I. considers incremental rewards
for observing incremental symbols of targets, this case study
only considers rewards for targets collected to ensure objec-
tive comparison. The expected regret is calculated in terms
of total expected reward for collecting samples given by
E[Regret] = E

ν,ℓ′∈L
[Rserv(ℓ

′)F.I.]− E
ν,ℓ′′∈L

[Rserv(ℓ
′′)N.I.I.]

Table I summarizes the evaluations across multiple com-
binations of the varying entities. Despite having the full
information about the event locations, F.I. may not collect
all targets due to energy constraints.

TABLE I: Regret Evaluation
Case Grid Size E No. of targets Targets serviced Mean
No. present F.I. N.I.I. Regret
1 4 × 4 15 3 2.8 1.5 9.6
2 5 × 5 17 3 2.2 1.5 5.4
3 5 × 5 20 4 2.8 2.4 3.2
4 6 × 6 23 4 3. 4 2.4 7.8
5 8 × 8 29 6 4.4 3.8 4
6 8 × 8 18 1 1 0.6 3.2
7 8 × 8 20 2 1.7 1.3 2.8

Runtime Performance. We evaluate the runtime perfor-
mance for solving the objective defined in 4 using Gurobi
[20] on an Intel i9-10900K computer with 64 GB RAM
using python 3.9.7. We vary the grid sizes and energy
budget. We compare the number of binary and continuous
variables used and report the time taken by Gurobi to find an
optimal solution for the first iteration of the MILP problem,
Tab. II. The product size is the number of its transitions,
each associated with a binary variable, Sec. 4. Moreover,
linearizing the objective function requires an auxiliary binary
variable for each node in the product such that its projection
on T is within the sensing range D of the current cell. This
introduces a large number of decision variables. These values
are reported at the beginning of model creation which after
pre-solving, reduce drastically.

VI. CONCLUSION

This work presents a decision-making framework
for energy-constrained autonomous exploration with
incremental-resolution symbolic perception without any
knowledge of targets. We define the abstraction models for
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Fig. 4: The figure shows the rewards over all grid cells given current robot location x and the planned path to goal (blue markers) at
various time instances between t0 and t11. The cells within the sensing range of the robot are shown in cyan and the targets are shown
in purple diamonds. These figures depict the evolution in rewards during mission execution.

Fig. 5: TS with initial position START and goal DOCK. Visible
cells are color-coded w.r.t. the refinement MDP shown in Fig. 6.
e.g., at x(1,1), the robot exactly knows ”No Sample”.

Fig. 6: A refinement for biomarker and fossil. Black arrows show
transition probabilities to incremental symbols and the yellow, green
arrows as well as the corresponding colored values indicate the
probability of finding a biomarker and fossil, respectively. Finally,
the gray arrows and states lead to event of not finding any sample
and thus, are eliminated for clarity of presentation.

encapsulating robot motion, perception, and observation
history as the robot explores the environment. Our method
casts the problem as an instance of reward maximization
problem implicitly integrating the energy constraints within
the models. Updating the rewards over the environment at
each step, a modified optimal flow problem is solved. The
empirical results obtained via case studies demonstrate the
efficacy of the proposed planning framework.
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