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Abstract— Inferring unknown constraints is a challenging
and crucial problem in many robotics applications. When only
expert demonstrations are available, it becomes essential to
infer the unknown domain constraints to deploy additional
agents effectively. In this work, we propose an approach to
infer affine constraints in control tasks after observing expert
demonstrations. We formulate the constraint inference problem
as an inverse optimization problem, and we propose an alter-
nating optimization scheme that infers the unknown constraints
by minimizing a KKT residual objective. We demonstrate the
effectiveness of our method in a number of simulations, and
show that our method can infer less conservative constraints
than a recent baseline method, while maintaining comparable
safety guarantees.

I. INTRODUCTION

Specifying reward functions for Control and Reinforce-

ment Learning (RL) tasks is a nontrivial process. One

approach to specify such reward functions is via inverse

Reinforcement Learning (IRL), in which expert demonstra-

tions are used to infer unknown reward functions [1]. Once

a reward function is obtained, then a policy can be derived.

Obtaining policies in constrained environments via Control

or RL is a fairly manageable task when those constraints

are a priori known. In many cases, specifying a reward

function is intuitive. For instance, a robot could use the

inverse distance to its target destination as a reward function.

However, specifying the corresponding constraints for the

task at hand is not always straightforward.

One possible avenue to deal with learning policies under

unknown constraints is the use of Imitation Learning (IL)

algorithms [2]. Simply imitating an expert agent though, has

a number of downsides. First, the inferred policy applies only

to the demonstrated task and may not be generalized to new

ones. Second, an inferred policy under a specific dynamics

model is not guaranteed to be applicable to an agent with

different transition dynamics. On the other hand, given the

expert demonstrations, we could first infer the constraints and

then learn safe policies. The problem of constraint inference

in RL is mostly a new and active research area with a number

of methods proposed so far [3].

Constraint inference in control applications is an important

problem that has not been extensively studied [4]. Given the

fact that most control tasks are modeled as an optimization

problem, elements from inverse optimization theory can be

utilized to infer constraints. In Inverse Optimization (IO),

the parameters of an optimization problem are inferred given
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access to its optimal solution [5]. Although the majority of

work revolves around inferring parameters in the objective

functions, a parallel to reward learning in RL, research has

recently focused on inferring constraint related parameters.

In this work, we propose a method for inferring con-

straints in control tasks, based on expert demonstrations. Our

contributions can be summarized as follows: 1) We show

that the unknown affine constraints can be recovered exactly

from the expert trajectory data, when we know the exact

number of unknown constraints and the states for which

the constraints are binding; 2) When prior knowledge about

the time instances at which the constraints are binding is

not available, we develop a method to infer the unknown

constraints, by minimizing the KKT residual of the optimal

control problem, which could be solved more efficiently than

prior works that rely on Mixed Integer Linear Programming

(MILP); 3) To deal with the challenge of not knowing the

exact number of unknown constraints, we develop a greedy

algorithm which sequentially infers an affine constraint such

that the KKT residual is minimized. We empirically demon-

strate, that our method is robust to observation noise and

suboptimal demonstrations and it can infer less conservative

constraints than a state-of-the-art baseline method with same-

level safety guarantees.

The rest of the paper is organized as follows. In Section

II, we review the relevant literature. In Section III, we

formulate the constraint inference problem. Our main results

are presented in Section IV. In Section V, we demonstrate

the performance of our method in simulations.

II. RELATED WORK

This section outlines the existing work in constraint infer-

ence in RL and Control. We also elaborate on relevant work

from the IO literature as this is particularly relevant to our

framework.

Constraint Inverse Reinforcement Learning (CIRL): In the

context of RL, [6] proposed a greedy method to incremen-

tally add constraints in discrete state and actions spaces.

This is done by assuming access to the reward function and

hence, the likelihood of each state or action being constrained

can be evaluated. At each iteration, the most likely state

or action is classified as a constraint following a maximum

likelihood criterion. A continuous state space framework is

presented in [7] in which the authors propose a method

to learn a constraint classifier. Finally, in [8] the authors

propose a Bayesian approach to infer constraints. Estimating

the full constraint posterior distribution further allows for the

quantification of estimation uncertainty.
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Constraint Inference in Control: In the context of robotics,

the authors in [9] propose a method that infers constraints

based on expert demonstrations of a robot interacting with

items. The inferred constraints are chosen from a catalog of

parametric constraint models so that under them, the robot

demonstrations are reproducible. In [10], cell occupancies

of expert demonstrations are calculated and later used in

an integer programming formulation to provide estimates of

the constraints. Constraints can also be modeled in the form

of control barrier functions. The authors in [11] use expert

demonstrations to learn control barrier functions that enjoy

provable safety guarantees.

Moreover, the authors in [12], [13] infer parameters in

the objective function utilized to obtain control policies in

constraint environments. However, it should be noted that

unknown parameters exist only in the objective function and

not in the constraints. The KKT optimality conditions of an

optimization problem can also be used to infer constraint

sets. In [14], after candidate constraint sets are constructed,

the Lagrange multipliers of the IO problem are used to

infer constraints. The closest work to our framework is [4],

in which the authors use the KKT conditions to construct

safe and unsafe areas of the state-action space, and hence

implicitly the constraints themselves. Although this approach

can also infer uncertainty in the objective function, we

choose to focus solely on the constraint recovery task.

Inverse Optimization: Inverse optimization broadly refers

to the problem of inferring parameters of an optimization

problem by observing the optimal solution [5], [15]. The

majority of the work revolves around estimating parameters

in the objective function. For linear objective functions and

constraints, [16] formulate the inverse optimization problem

also as a linear problem. Regarding constraint inference, [17]

infer the left-hand side of linear constraints of a linear for-

ward optimization problem. Finally, [18] provides a convex

formulation for inferring both the left and right-hand side of

linear constraints in linear optimization problems.

In our work, we base our constraint inference method on

minimizing the KKT residual of the optimization problem.

KKT Residual and alternating optimization: In optimal

control, the KKT conditions are necessary conditions for the

optimality of a sequence of states and controls. Recent works

[19], [20], [21] proposed to minimize the residual of the KKT

conditions as a way to find the best cost function such that

the computed trajectory matches the expert demonstrations.

A benefit of the KKT residual formulation is that it can

be convex in the unknown parameters for some classes of

problems [19], [22]. Moreover, the KKT residual formulation

can be extended to solve the inverse optimal control problem

with inequality constraints on states and controls [19].

III. PROBLEM FORMULATION

In this work, we are interested in providing a methodology

to infer constraints in constrained optimal control problems.

We begin by formalizing the classic forward control opti-

mization problem as follows.

Definition 1: Consider a discrete-time dynamical system

xt+1 = f(xt, ut) where xt ∈ R
n and ut ∈ R

m represent

the state and control inputs at time t ∈ {0, 1, 2, . . . },

respectively. We denote by u = {u0, . . . , uT−1} and x =
{x0, x1, . . . , xT } the control and state trajectories from t =
0 to t = T , respectively. The chosen starting state is

denoted with x0. For a control task with a quadratic cost

function c(x, u) : R
n × R

m → R, terminal cost function

cT (x) : R
n → R and constraint function gθ(x) : R

n → R,

parameterized by a vector θ ∈ R
d, we define the Forward

Control Problem FCP(θ) as follows,

FCP(θ) := min
{ut}T−1

t=0

T−1∑
t=0

c(xt, ut) + cT (xT )

s.t. xt+1 = f(xt, ut), t = 0, . . . , T − 1

gθ(xt) ≤ 0, t = 0, . . . , T.

(1)

In our work, we focus on state constraints, but our method

can be easily utilized for state-action constraints as well.

Having access to the optimal solution u∗ := {u∗
t }T−1

t=0 from

the FCP we can formulate the Inverse Control Problem

(ICP) as an optimization problem that provides an estimate

of the unknown parameters, using a performance metric and

constraints that involve the optimal solution.

Definition 2: Given Definition 1, we define the In-

verse Control Problem as ICP(x∗,u∗):= minθ {�x∗,u∗(θ)
|hx∗,u∗(θ) ≤ 0} that recovers the unknown constraint

parameters θ via an appropriately chosen loss function � and

constraints h, with x∗,u∗ denoting the optimal state and

input solution of FCP.

Given these definitions, we are interested in tackling the

following problem. Assume we are given a set of trajectories

{τi}Ni=1, with each τi = {x0, u0, x1, u1, . . . , xT }. What

objective function � and constraints h should we use in an

ICP formulation to recover the unknown constraint parame-

ters θ efficiently? The inferred parameters θ̂ should be such

that the induced optimal trajectories are close to the expert

demonstrations and feasible to the unknown constraints.

Assumption 1: We assume that we have an expert data

set composed by a number of expert state and control input

trajectories, which optimally solve the FCP(θ).
For the remainder of this work, we focus on the case of

linear dynamics functions and on finite horizon tasks. More

specifically, we consider linear dynamics of the form

xt+1 = Axt +But, (2)

where xt ∈ R
n and ut ∈ R

m. Furthermore, A ∈ R
n×n and

B ∈ R
n×m are considered known matrices. In what follows,

we elaborate on the formulation of the FCP and ICP in the

case of quadratic cost functions with linear constraints.

A. Quadratic Objective and Linear Constraints

We consider control tasks of finite horizon T , with linear

dynamics, quadratic cost functions and M distinct linear
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constraints of the following form

min
{ut}t=T−1

t=0

T−1∑
t=0

x�
t Qxt + u�

t Rut + x�
TQxT

s.t. xt+1 = Axt +But, ∀t ∈ {0, . . . , T − 1} (3)

c�i xt ≤ di, ∀t ∈ {0, . . . , T}, i ∈ {1, . . . ,M},
where Q and R are cost matrices associated with states and

control inputs, respectively. Given that we are studying linear

constraints, the unknown parameters θ we are interested in

inferring are the ci ∈ R
n and di ∈ R that parameterize

the i-th constraint, with i ∈ {1, 2, . . . ,M}. Let x0 be the

initial condition and U = [u0, u1 . . . , uT−1]
� ∈ R

mT be the

compact representation of the control input sequence. The

problem can be rewritten in a compact way as

min
U∈RmT

(GU +Hx0)
�(IT ⊗Q)(GU +Hx0)

+ U�(IT ⊗R)U

s.t. C(GU +Hx0) ≤ D, (4)

where G ∈ R
nT×mT , H ∈ R

nT×n, C ∈ R
MT×nT and

D ∈ R
MT are defined as follows

G =

⎡
⎢⎢⎢⎣

B 0 0 · · · 0
AB B 0 · · · 0

...
...

...
. . .

...

AT−1B AT−2B AT−3B · · · B

⎤
⎥⎥⎥⎦ , H =

⎡
⎢⎢⎢⎣
A
A2

...

AT

⎤
⎥⎥⎥⎦ ,

C =

⎡
⎢⎣
IT ⊗ c�1

...

IT ⊗ c�M

⎤
⎥⎦ , D =

⎡
⎢⎣
1T d1

...

1T dM

⎤
⎥⎦ , (5)

with In denoting the identify matrix and 1n a vector of ones,

both of size n. We use for simplicity 0 in matrix definitions

to denote all zero matrices of appropriate dimensions.

IV. CONSTRAINT INFERENCE

This section introduces the constraint recovery approach

using the inverse problem formulation. Initially, we present

conditions for exact constraint recovery. Afterwards, we

proceed to deriving a more general approach for constraint

inference based on the KKT optimality conditions.

A. Exact Constraint Recovery

Under certain assumptions, exact constraint inference is

possible by solving a linear system of equations. This is

possible in the case where the exact number of constraints

and the states for which the constraints are binding are known

a priori. First, we present conditions under which constraint

inference can be exact in the case where the right-hand side

of the constraints di, i = 1, . . . ,M is known. Afterwards, we

extend these conditions to the case where the right-hand side

is also unknown, a setup that will be kept for the remainder

of the paper.

Proposition 1: Assume the existence of M total linear

unknown constraints with known right-hand sides di, i =
1, . . . ,M and that for each constraint i = 1, . . . ,M there

are ni, with T > ni ≥ n, states for which the constraint

is binding at time steps Ti, where Ti = {t|c�i xt = di}.

If, for each constraint, n of these state vectors are linearly

independent, then the constraint vector ci can be recovered

exactly, for i = 1, . . . ,M .

Proof: For each of the constraints i we select n of

the ni states for which the constraint is binding. Then the

following holds

CTi
·XTi

= DTi
, (6)

where

CTi =
[
In ⊗ c�i

]
, XTi =

⎡
⎢⎣
xti,1

...

xti,n

⎤
⎥⎦ , ti,1, . . . , ti,n ∈ Ti and

DTi
=

[
1ndi

]
. (7)

Rearranging (6) we obtain

X̃Ti · ci = DTi , (8)

where

X̃Ti
=

⎡
⎢⎣
x�
ti,1
...

x�
ti,n

⎤
⎥⎦ . (9)

Since X̃Ti
is full row rank given the linear independence of

xti,j , j = 1, . . . , n, ci can be recovered exactly. The non-

binding states can be used to determine the sign of the

constraint inequality.

For the remainder of the paper we will regard the right-hand

side of the constraints unknown as well. To deal with the

unknown right-hand side parameter di, i ∈ {1, . . . ,M}, we

expand the state dimension by one element that corresponds

to the right-hand side of the constraints to simplify notation.

More specifically, xt := [xt, 1]
� ∈ R

n+1 and

A :=

[
A 0
0 1

]
, B :=

[
B
0

]
. (10)

Now each constraint can be compactly written as c�i xt ≤ 0
where c�i := [c�i ,−di] ∈ R

n+1. Exact constraint inference

in this case can occur in a similar way to Proposition 1 and

under the same assumptions. More specifically, the right-

hand-side of the constraints can be set equal to an arbitrary

value and the inferred constraints will be inferred up to scale.

The above result suggests that, we can infer the exact con-

straints under the strong assumptions that we know the total

number of constraints and for which states the constraints

are binding. In this work, we are primarily interested in

providing a framework for constraint inference in challenging

scenaria in which the actual number of constraints and the

time steps at which the constraints are binding, if at all, are

unknown. To solve this challenging problem, we utilize the

following KKT residual objective formulation, which is a

general framework that allows for constraint inference in the

most general settings.

1764



B. General Constraint Inference via KKT Residual

In this section we focus on the case where the actual num-

ber of constraints M is known a priori. We will be extending

our approach to the case where M is unknown in section IV-

D. In what follows, we formulate the Lagrangian for one

demonstration from one initial condition. This setup can

be easily extended to multiple demonstrations from distinct

initial conditions by taking the sum of their Lagrangians. The

optimization problem in (4) admits the following Lagrangian

L(U, λ) := (GU +Hx0)
�(IT ⊗Q)(GU +Hx0)

+ U�(IT ⊗R)U + λ�C(GU +Hx0), (11)

with λ ∈ R
MT
+ denoting the vector of Lagrange multipliers.

The KKT conditions of stationarity, complementary slack-

ness, primal and dual feasibility are then

∇UL(U
∗, λ) = 2G�(IT ⊗Q)(GU∗ +Hx0)+

2(IT ⊗R)U∗ +G�C�λ = 0 (12)

λ�C(GU∗ +Hx0) = 0 (13)

C(GU∗ +Hx0) ≤ 0 (14)

λ ≥ 0. (15)

The KKT residual formulation obtains estimates of the

unknown parameters, in our case ci, i = 1, . . . ,M and λ, by

minimizing some metric of the stationarity and complemen-

tary slackness conditions, while satisfying primal and dual

feasibility. More specifically,

min
{ci}i=M

i=1 ,λ
�({ci}i=M

i=1 , λ)

s.t. C{ci}M
i=1

A2 ≤ 0

λ ≥ 0,

(16)

where for conciseness we define

�({ci}i=M
i=1 , λ) = ‖A1 +G�C�

{ci}M
i=1

λ‖22

+ ‖(C{ci}M
i=1

A2)
�λ‖22+ρ1

M∑
i=1

‖ci‖22+ρ2‖λ‖22 (17)

A1 = 2G�(IT ⊗Q)(GU∗ +Hx0) + 2(IT ⊗R)U∗ (18)

A2 = GU∗ +Hx0, (19)

with ρ1, ρ2 being regularization parameters. Given that the

constraints ci are now unknown, we use the notation C{ci}M
i=1

to denote the function that maps the cis as follows

C{ci}M
i=1

:=

⎡
⎢⎣
IT ⊗ c�1

...

IT ⊗ c�M

⎤
⎥⎦ . (20)

It should be noted that this is a biconvex optimization

problem in ci, i = 1, . . . ,M and λ [23]. The most common

approach for solving biconvex optimization problems, is via

an alternating optimization scheme, which we outline in the

following section.

C. Alternating Optimization Formulation

Observing Problem (16), it is evident that by fixing one

of the variables the problem becomes a constrained least

squares problem with respect to the other variable. Without

loss of generality, in this section, we focus on the case where

M = 1 with the only constraint being c ∈ R
n+1. More

specifically, by fixing c Problem (16) becomes

min
λ

‖Ãλ− b̃‖22+ρ2‖λ‖22
s.t. λ ≥ 0,

(21)

where

Ã =

[
G�C�

{c}
(C{c}A2)

�

]
, b̃ =

[
−A1

0

]
and C{c} = [IT ⊗ c].

On the other hand, when minimizing over c, problem (16)

can be rewritten as

min
c

‖ ˜̃Ac− ˜̃
b‖22+ρ1||c||22

s.t. C{c}A2 ≤ 0,
(22)

where

˜̃A =

[
G�Λ
A�

2 Λ

]
,
˜̃
b =

[
−A1

0

]
,

and Λ is a constructed sparse matrix with elements the

coordinates of λ, such that C�
{c}λ = Λc. The reformulation

using matrix Λ is solely done to show that Problem 22 is

indeed a least squares problem on c, with constraints that

are also linear in c.
Problems (21) and (22) included in the objective function a

regularization term to ensure a unique solution. The detailed

process of the alternating optimization approach can be seen

in Algorithm 1. For a number of K iterations, we solve

Problems (21) and (22) in an alternating way.

Algorithm 1 Alternating Minimization Algorithm

1: Initialize randomly: c ∈ R
n+1

2: for K = 1, . . . do
3: Solve Problem (21)

4: Update λ value

5: Solve Problem (22)

6: Update c value

7: end for
8: Output: c, λ

Theorem 1: Algorithm 1 converges to a stationary point

of (16).

Proof: For the theorem to hold, Problem (21) and

Problem (22) must have unique solutions [24]. Problem (21)

is a regularized constrained least squares problem in which

the objective function is strictly convex. Thus, Problem (21)

admits an unique solution. Similarly, Problem (22) also

admits a unique solution due to strong convexity. Conver-

gence then follows from Proposition 2.7.1 in [24]. The result

is shown for the case when we infer only one constraint

because, as it will become clear is subsequent sections, we

utilize Algorithm 1 to infer one constraint at a time.
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D. Greedy Constraint Inference

The previous sections, have tackled the scenario of un-

known constraints with an a priori known number of con-

straints in the environment. However, in realistic scenaria,

such cases are rare and thus we need a heuristic approach

that infers constraints when their number is unknown. In that

direction, we propose using the KKT residual objective as

an estimate of the quality of constraint inference. In what

follows, we propose a greedy constraint inference algorithm,

that incrementally adds constraints until a certain criterion is

met.

The Incremental Greedy Constraint Inference (IGCI) ap-

proach, shown in Algorithm 2, utilizes at each iteration

Algorithm 1 to incrementally add a constraint in the set of

inferred constraints. The method starts with an empty set

of constraints C. After a constraint ci and the Lagrange

multiplier have been inferred following Algorithm 1, the

constraint is temporarily added to the constraint set C. Then

the KKT residual objective �({ci}ci∈C , λ) is evaluated. If the

difference between this value and the KKT residual in the

previous iteration, which is denoted with E in Algorithm 2,

is above a user-specified threshold δ, then the constraint

ci remains in the constraint set. The process is repeated

until this difference drops below the predefined threshold at

which point the process terminates, without including the last

inferred constraint in C. When the algorithm terminates, the

Algorithm 2 IGCI

1: Parameters: Convergence threshold δ, E>>1
2: Initialize: C′ = {}
3: for Nc = 1, . . . do
4: Obtain cNc

∈ R
n+1 and λ ∈ R

NcT from Algorithm 1

5: C′ ← C′ ∪ {cNc
}

6: λ′ ← λ
7: if |�({c}c∈C′ , λ′)− E|≤ δ then
8: break

9: else
10: C ← C′, λ ← λ′

11: E ← �({c}c∈C , λ)
12: end if
13: end for
14: Output: C, λ

set of Nc inferred constraints C = {c̃1, . . . , c̃Nc
} is returned.

It should be noted that Nc need not be equal to the original

number of constraints M . Furthermore, IGCI will add at

least one constraint given that the criterion in line 7 will

not be satisfied in the first iteration. This can be modified

if needed, by appropriately choosing a smaller initial value

for E. Finally, in line 4, Algorithm 1 can be run multiple

independent times in order to obtain a better solution.

At an arbitrary iteration k of IGCI, in line 4 we obtain the

estimate for an additional constraint and Lagrange multiplier.

This is achieved by solving (16) using Algorithm 1 with

the unknowns being ck and the multiplier λ ∈ R
kT , while

fixing the values of the already inferred constraints, c̃i, i =

1, . . . , k − 1. Although further fixing the already inferred

Lagrange multipliers and only inferring an additional λ ∈
R

T at each iteration works well, our simulations showed

that inferring at iteration k the Lagrange multipliers for all

constraints i = 1, . . . , k gives slightly more accurate results.

Finally, the analysis so far has been based on a single

optimal demonstration U∗. In subsequent sections, we allow

for inference from multiple demonstrations by modifying

Ã, b̃, ˜̃A and
˜̃
b in problems (21) and (22) appropriately. More

specifically, for N demonstrations U∗
1 , . . . , U

∗
N starting from

states x
(1)
0 , . . . , x

(N)
0 and by denoting

A
(i)
1 = 2G�(IT ⊗Q)(GU∗

i +Hx
(i)
0 ) + 2(IT ⊗R)U∗

i

(23)

A
(i)
2 = GU∗

i +Hx
(i)
0 , (24)

the new Ã and b̃ for Problem 21 now become

Ã =

⎡
⎢⎢⎢⎢⎢⎢⎣

G�C�
{c}

(C{c}A
(1)
2 )�

...

G�C�
{c}

(C{c}A
(N)
2 )�

⎤
⎥⎥⎥⎥⎥⎥⎦
, b̃ =

⎡
⎢⎢⎢⎢⎢⎣

−A
(1)
1

0
...

−A
(N)
1

0

⎤
⎥⎥⎥⎥⎥⎦
.

The definitions for
˜̃A and

˜̃
b are analogous.

In this paper, we utilize demonstrations whose starting

states x
(i)
0 are sampled by injecting normal noise to a chosen

x0 state. The latter is chosen so that sufficient interaction

with the constraints is attained. Evidently, if there is no

interaction between the demonstrations and the constraints,

inference can be inaccurate. Furthermore, we can approxi-

mate the Lagrange multipliers associated with each trajectory

by a single set of Lagrange multipliers as the demonstrations

in our work are close to each other, leading to improved

computational efficiency. In case initial conditions spanning

the entire state space are used, which can effectively lead

to better exploration of the state space, individual Lagrange

multipliers for each demonstration would be required.

V. SIMULATIONS

In this section, we carry out simulations to quantify

the performance of IGCI. We utilize a two dimensional

navigation task and a robotic arm environment and consider

scenaria of perfect and noisy state observations, as well as

suboptimal trajectories. To evaluate the quality of the inferred

constraints, we utilize the following metrics. Similar to [4],

we report the coverage of the actual safe region and the

overlap with the unsafe one. More specifically, we define

the constrained and unconstrained regions as

A =
⋃

i=1,...,M

{x|c�i x > 0} (25)

Ac =
⋂

i=1,...,M

{x|c�i x ≤ 0}, (26)

respectively. The corresponding regions constructed using

the estimated parameters c̃i, i = 1, . . . , Nc are designated
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with Ã and Ãc, respectively. We now define the coverage

of the unconstrained set as
V ol(Ãc∩Ac)

V ol(Ac) and the overlap of

the inferred unconstrained and the actual constrained sets

as
V ol(Ãc\Ac)

V ol(A) . These metrics can be seen as analogous to

the True Positive (TP) and False Positive (FP) classification

rates, and hence they will be called as such.

A. 2D Navigation Task

In this set of simulations we study a two dimensional linear

system with xt ∈ R
2, ut ∈ R, dynamics matrices

A =

[
0.8 0.1
0.1 0.8

]
, B =

[
0.1
0.5

]
, (27)

and quadratic cost matrices Q = 100 · I2 and R = 0.1. The

goal of the controller is to stay close to a predetermined

trajectory xtrack, listed in Appendix A, for the duration

of the task. We evaluate Algorithm 1 in an environment

with two linear state constraints, shown in Figures 1 and

2. The control task has a horizon T = 8 and the starting

states are normally distributed around [−0.5,−5.5]� with

σ = 0.05. We consider two cases, one with perfect and

one with imperfect state observations. In all simulations, we

vary the number of expert demonstrations N , in order to

quantify its impact on inference. IGCI is terminated after 2
iterations as for subsequent iterations the KKT cost function,

as seen in Figure 7a, no longer decreases significantly. For

all simulations in this section, we followed the elbow rule for

the termination of the algorithm, without explicitly choosing

a threshold δ. For each experiment, we carry out 10 indepen-

dent simulations with newly obtained expert demonstrations.

We first investigate constraint inference under perfect state

observations. In Figure 1, we plot the expert demonstrations

along with the actual and estimated constraint regions, for

N = 1 and N = 10. We denote with OC and OCR the orig-

inal affine constraint and corresponding region, respectively.

EC and ECR designate the estimated affine constraint and

constraint regions.

(a) N = 1. (b) N = 10.

Fig. 1: Examples of original and estimated constrained

regions for N = 1 (Fig. 1a) and N = 10 (Fig. 1b) along

with expert demonstrations under perfect state observations.

In the case of noisy state observations, we assume that

each demonstration i is polluted with observation noise as

follows

τi = {x0, u0, x1 + ε, u1, x2 + ε, . . . , uT−1, xT + ε}, (28)

with ε ∼ N (0, 0.005). In Figure 2 we plot the original

constraints along with an instance of the inferred ones for

N = 1 and N = 10, respectively. For N = 1, we showcase

one of the 10 simulations in which inference for one of the

constraints was inaccurate. Clearly, for both perfect and noisy

state observations, a larger number of demonstrations, which

possibly results in more interactions with the constraints,

leads to more accurate inference. Figure 3 contains the TP

and FP rates, as discussed in the next section.

(a) N = 1. (b) N = 10.

Fig. 2: Examples of original and estimated constrained

regions for N = 1 (Fig. 2a) and N = 10 (Fig. 2b) along

with expert demonstrations under noisy state observations.

B. Baseline Comparison

To emphasize the benefits of inferring constraint param-

eters and not just safe/unsafe regions, we compare IGCI

with the inference method presented in [4]. The latter,

infers regions of the state space that are deemed constrained

or unconstrained. We solve Problem 5 from [4] in order

to obtain an estimate of the unconstrained region for our

two dimensional navigation task, in the cases of perfect

and imperfect state observations. We utilize 10 different

query points to obtain the estimate of the unconstrained set.

Evaluation of the algorithms is carried out using the TP and

N = 1 N = 10 N = 10 (Baseline)
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Fig. 3: Classification rates for IGCI and baseline under

perfect and noisy state observations. Results averaged over

10 simulations. When N = 10, our method has significantly

higher true positive rate than the baseline method while

maintaining same-level of false positive rates.

FP classification rates.

The results for both the noiseless and noisy state observa-

tions are given in Figure 3. Increasing the number of avail-

able trajectories naturally leads to better estimation, which

by itself allows for safer policies. The baseline method,

which we only implemented in the more favorable case

of N = 10 demonstrations, only manages to recognize

rectangular areas around the trajectories and hence fails
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to identify the majority of the unconstrained regions “to

the right” of the demonstrations. On the other hand, our

approach manages to infer the majority of the unconstrained

region while having a false positive rate similar to the more

conservative baseline. It should be stressed, that our method

returns the full parameterization of the constraints and hence

a new forward optimization problem is still convex. On the

other hand, the baseline method infers rectangular regions,

the union of which need not be a convex set, hence, requiring

more complex techniques for novel forward problems in the

inferred domain. Finally, the baseline method requires the

solution either of a nonlinear program or a MILP, which

can be significantly more inefficient when compared to our

alternating approach.

C. 3D Manipulation Task with Suboptimal Demonstrations

In this section, we utilize the Fetch-Reach robotic simula-

tion [25] which is designed to complete tasks, like pushing

and grabbing objects, in three dimensional environments.

The control inputs are the desired displacement of the robot

gripper in the x, y and z coordinates, xt ∈ R
3, ut ∈ R

3. We

assume that the nominal dynamics matrices, the ones the end

effector of the robot theoretically adheres to, are A = I3 and

B = I3 and the quadratic cost matrices are Q = 10 · I3 and

R = 10 · I3.

It should be noted that the nominal dynamics are a

simplification of the actual dynamics, as the underlying

physics engine is far more complicated and for a particular

control input the arm gripper will not land in the predicted

state by our nominal model but at a state in the proximity

of the former. For this reason, we study two cases, one

with nominal trajectories and one with the actual robot

trajectories. To obtain the latter, after obtaining an optimal

trajectory by solving (3) using the nominal dynamics, we

utilize a closed loop controller between optimal waypoints

to guide the gripper close to the nominal states (robot states).

The controller is run for 5 iterations for each waypoint and

its action is determined by the difference between its current

state and the waypoint. Clearly, these trajectories, shown in

Figure 4b, are no longer optimal according to (3).

The control task is for the end effector to stay close to a

tracking trajectory, which can be found in Appendix A, over

a horizon of T = 8. The ground truth underlying constraints,

schematically pictured in Figure 4a, are x ≥ 0.9 and y ≤ 1.1,

which can also be written as c�i x ≤ 0, i = 1, 2 with c1 =
[−1, 0, 0, 0.9]� and c2 = [0, 1, 0,−1.1]�. The boundaries

of the entire domain are x ∈ [0.4, 1.4]�, y ∈ [0.4, 1.4]�

and z ∈ [0.4, 1.4]�. We gather N = 1 and N = 10
expert trajectories with the starting states being normally

distributed around [1, 1, 0.8] with σ = 0.05. Figure 4b shows

N = 10 trajectories in which the green points correspond to

the nominal trajectories and the red ones are the actual robot

states. We infer the constraints by using both the nominal

and the suboptimal demonstrations, in order to quantify the

performance of our method in view of suboptimality. We

run IGCI for 10 independent simulations and we report the

average classification rates in Figure 5. Clearly, estimation

yyyyyyyyxxxxxxx

zzzzzz

(a) Fetch-Reach robot. (b) End effector trajectories.

Fig. 4: (4a) Fetch-Reach robot along with constraints (red,

green). (4b) Nominal and corresponding actual robot trajec-

tories for N = 10.
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Fig. 5: Classification rates for nominal and robot trajectories.

The robot trajectories are considered to be suboptimal,

because of the model discrepancy between the nominal

dynamics and the real robot dynamics in the Fetch-Reach

simulation environment [25]. Results are averaged over 10
independent simulations. Our method is still effective even

when the trajectories are suboptimal.

is effective even by utilizing a single expert demonstration.

In Figure 6 we plot the actual and the inferred constraints

as obtained for N = 10 nominal trajectories. Figure 7b

displays the convergence rate of the KKT residual objective

with respect to the number of iterations. As expected, for

optimal demonstrations the KKT cost function is lower than

the corresponding for suboptimal demonstrations.

x
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Fig. 6: Nominal trajectories (N = 10) of the end effector

along with actual and inferred constraints. The inferred

constraints align well with the actual constraints.
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Fig. 7: KKT residual cost function, normalized by the

number of trajectories, with respect to iterations for the 2D

navigation task (Fig. 7a) and 3D manipulation task (Fig. 7b).

Results averaged over 10 simulations.

VI. CONCLUSION AND FUTURE EXTENSIONS

In this work, we presented a method that infers constraints

in control tasks after observing expert demonstrations. We

showed conditions under which exact recovery is possible.

We proposed to learn the unknown constraints by minimizing

the KKT residual objective function. We further introduced

IGCI, an algorithm that can be utilized to infer constraints

in cases where no information, except for their parametric

representation, is available. We evaluated the performance of

IGCI in a number of simulations, in which we showed that

the inferred constraints can be accurate without jeopardizing

safety under perfect, noisy and suboptimal observations.

The alternating minimization procedure presented in this

paper is flexible enough to handle more complicated con-

straints that can be modeled as unions and intersections of

half-spaces. Another promising direction is designing control

inputs to actively gather information about unknown convex

or even non-convex constraints in potentially nonlinear con-

trol problems.
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APPENDIX

A. Simulation Details

Although IGCI is not very sensitive in the choice of

ρ1, ρ2, in all simulations we use ρ1 = 10 and ρ2 = 0.

2D Navigation Task: The tracking trajectory is xtrack =
[0.,−5.5;−0.6,−4.5;−1.5,−3.8;−1.5,−3.5;−1.6,−2.5;
− 0.2,−2; 0.5,−2; 0.8,−1.5]�.

Gym Environment: The tracking trajectory is xtrack =
[0.95, 1, 0.8; 0.9, 1, 0.8; 0.85, 1, 0.8; 0.8, 1.1, 0.9; 0.9, 1.15,
0.9; 0.95, 1.2, 0.9; 1, 1.25, 0.9; 1.1, 1.3, 0.9]�.
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