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Abstract— In this paper, we address the positive invariance
property in linear discrete-time systems in the presence of time-
varying delays in the states. We build the study on a recently
proposed approach based on an appropriate model transforma-
tion which allows the derivation of delay-dependent invariance
conditions. For polyhedral sets, we establish necessary and
sufficient invariance conditions with respect to the transformed
model and prove that such conditions imply the confinement
of the state trajectories of the original system in the set for
arbitrary realizations of the varying delay, as long as the initial
states belong to a set which is positively invariant with respect
to an augmented switching system without delay, and can be
computed in a finite number of steps known in advance.

I. INTRODUCTION

Positive invariance of sets is a concept that has been
intensively applied for the analysis and control of dynamical
systems subject to state and input constraints. Even though
the literature on this topic is mature nowadays for linear dy-
namic systems [1], some problems remain open when time-
delays in the system’s states and/or inputs appear [2] in both
continuous- and discrete-time settings. In continuous-time,
it is well-known that the delays describe time-heterogeneity
and represent one of the simplest way to model propagation
and transport phenomena or the behavior of population
dynamics, and it is commonly accepted that their presence
may result in poor performance and/or instabilities in the
corresponding systems (see, for instance, [3], [4], [5], and
the references therein).

The classical and most used definition of positive invari-
ance (also called D-invariance) for linear discrete-time delay
systems leads to delay-independent conditions, i.e. that do
not depend on the size of the delay [6], [7], [8]. Knowing
that the size of the delay may affect the stability of the time-
delay system, the conditions for the existence of D-invariant
sets are very restrictive.

A different perspective has been proposed in [9], where a
model transformation allowed for a delay-dependent analysis
of linear delay systems with a single delayed state and
fixed value of the delay. This idea originates in some earlier
works in the analysis of continuous-time linear delay systems
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eugenio.castelan@ufsc.br
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[10] (see also [11]). A parameterized transformation of the
original dynamical systems exploits its structure and allows a
better decoupling between the so-called “delay-independent”
and “delay-dependent” modes. Algebraic conditions for D-
invariance of polyhedral sets with respect to (w.r.t.) this
transformed model have been derived, which depend on
the size of the delay. A Linear Programming (LP) problem
has been formulated to check if a given polyhedron is D-
invariant and to establish a range of values of the delay that
preserve invariance. Furthermore, it has been established that
invariance w.r.t. the transformed model impĺies confinement
of the state trajectory in the set for the original model
provided that the initial conditions of the system belong to
an admissible set, which has also been characterized. These
results have been extended to systems with multiple delays
in the state in [12].

In the present work, we characterize positive invariance of
polyhedral sets for linear discrete-time systems with time-
varying delay in the states, subject to standard assumptions
as, for instance, boundedness of the admissible delays. To the
best of the authors’ knowledge, this problem has not been
object of study in the literature and this characterization is,
in itself, the main contribution of this paper. Approaches
based on Linear Matrix Inequalities (LMIs) exist, which
are able to compute ellipsoidal invariant sets associated to
quadratic Lyapunov functions. In [13], for instance, an LMI
approach was proposed for robust stabilization of state-
delayed discrete-time systems with bounded delay variation
and actuators saturation.

First, we derive conditions for D-invariance of polyhedral
sets w.r.t. a transformed model with time-varying delay.
Then, we show that the trajectories of the original model
are confined in the invariant set of the transformed model
if the initial conditions belong to an admissible set. Fur-
thermore, we prove that this admissible set is a maximal
positive invariant set of an augmented linear switched system
without delays, and finitely determined in a number of steps
equal to the size of the maximal delay. To illustrate the
approach, we present two numerical examples (first- and
second-order systems) and close the exposition by drawing
a few concluding remarks.

Notations: Throughout the paper, the notations are standard
or explained the first time they are introduced. In particular,
Z[a,b], with a, b ∈ Z stands for the set of integers i such that
a ≤ i ≤ b. Z+ represents the set of nonnegative integers.
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II. PRELIMINARIES

In the sequel, we introduce a few notions and results
adapted from [1] to cope with our framework.

Definition 1: (Convex Polyedral Set) Any closed and con-
vex polyhedral set Ω ⊆ Rn can be characterized by a
shaping matrix F ∈ Rf×n and a vector w ∈ Rf , i.e.,

Ω = {x ∈ Rn : Fx ≤ w}. (1)
The class of polyhedral sets including the origin will be of
interest, and can be characterized by w > 0 in (1).

Consider now a linear discrete-time system given by:

x(k + 1) = Ax(k), (2)

where x(k) ∈ Rn is the state, and a compact set Ω containing
the origin.

Definition 2: Given a scalar 0 ≤ λ ≤ 1, Ω is called
positively invariant with respect to (2) if for any initial
condition x(0) ∈ Ω, it follows that x(k) ∈ λΩ,∀k ∈ Z+.

If 0 ≤ λ < 1, Ω is additionally said to be λ-contractive.
To simplify the exposition, from now on we will not ex-

plicitly represent λ-contractivity (which amounts to consider
λ = 1), but all the results remain valid with minor changes
if we assume a given contraction factor λ < 1.

The i-step pre-image of a set Ω is defined as Pi(Ω) =
{x : Aix ∈ Ω}. Pi(Ω) is the set of states x(k) such that
x(k + i) ∈ Ω. By convention, P0(Ω) = Ω. Ω is positively
invariant if, and only if Ω ⊂ P1(Ω).

If Ω is closed, contains the origin but is not positively
invariant with respect to a stable dynamics (2), there exists
a maximal positively invariant set contained in Ω [14].

The set PN (Ω) of states x(k) such that x(k + i) ∈ Ω
∀i ∈ Z[0,N ] is defined as the intersection:

PN (Ω) =

N⋂
i=0

Pi(Ω). (3)

Let Ω be the convex polyhedral set containing the origin
in (1). Then, PN (Ω) is given by:

PN (Ω) = {x : FAix ≤ w, for i ∈ Z[0,N ]}. (4)

P∞(Ω) (called the maximal output admissible set in [15])
is the maximal positively invariant set contained in Ω and is
given by: P∞(Ω) = {x : FAix ≤ w, for i ∈ Z+}.

III. POSITIVE INVARIANCE IN LINEAR SYSTEMS WITH
TIME-VARYING DELAY

Consider the discrete-time system with time-varying delay

x(k + 1) = Ax(k) +Adx(k − d(k)), (5)

with x(k) ∈ Rn, A and Ad are real constant Rn×n matrices,
and the time-varying delay may take any value in a given
bounded interval: d(k) ∈ Z[1,dm]. The initial conditions of
(5) are given by x(i), i ∈ Z[−dm,0].

We extend the set invariance definition in [16] (see also
[6], [7]) to cope with time-varying delay as follows:

Definition 3: A set Ω ⊂ Rn containing the origin is called
positively D-invariant with respect to the time-delay system

(5) if for any initial conditions x(i) ∈ Ω, i ∈ Z[−dm,0], it
follows that x(k) ∈ Ω,∀d(k) ∈ Z[1,dm],∀k ∈ Z+.

Consider now the convex polyhedral set Ω described in (1).
Necessary and sufficient conditions for D-invariance have
been established as follows [6]:

Theorem 1: The polyhedral set Ω is positively D-invariant
w.r.t. (5) if, and only if there exist nonnegative matrices

H0, L0 ∈ Rf×f such that:
{

H0F = FA, L0F = FAd

(H0 + L0)w ≤ w.
These conditions are delay-independent. As a conse-

quence, they are also valid for the time-varying delay case
[2]. Often these conditions are very hard to meet, because
most commonly the size of the delay affects stability and,
consequently, positive invariance. Then, D-invariant polyhe-
dral sets may not exist even if (5) is stable. An alternative
for avoiding this conservatism is to work with an equivalent
undelayed augmented model. Consider the augmented state
vector:

X(k) =
[
xT (k) xT (k − 1) · · · xT (k − dm)

]T ∈ RN ,
(6)

with N = n(dm + 1). The dynamics of the time-varying
delay system (5) can be represented equivalently by the
augmented delay-free switched system given by [17]:

X(k + 1) = A(d(k))X(k), (7)

A(d(k)) =

=

[
A Γ1(d(k)) . . . Γdm−1(d(k)) Γdm(d(k))

0n×n Indm 0ndm×n

]
,

(8)

Γi(d(k)) =

{
Ad, if i = d(k),
0n×n, otherwise, ∀i ∈ Z[1,dm].

The block Ad changes its position according to the delay
d(k). The switched system (7) has dm modes A(i), one
mode for each possible d(k) ∈ Z[1,dm]: A(i) = A(d(k))
for d(k) = i.

The model (7) is equivalent to the original model (5) in the
sense that an initial condition x(i), i ∈ Z[−dm,0] results in the
same trajectory x(k), k ≥ 0. Hence, the methods for analysis
and construction of invariant sets for undelayed switched
systems can be used. In particular, positively invariant sets
can be constructed if the origin is stable for this augmented
model.

Let us now define the following polyhedron in the aug-
mented state space,

Ωa = {X ∈ RN : FaX ≤ wa}, Fa ∈ Rfa×N , wa ∈ Rfa .
(9)

The one-step pre-image of Ωa w.r.t. (7) is now given by:
P(Ωa) = {X : A(i)X ∈ Ωa,∀i ∈ Z[1,dm]}.

This definition takes into account the fact that any mode
i of the switched system (7) can be active. Note that we
use here for the pre-image operator a similar notation to the
one we used for the linear time-invariant dynamics (2). The
system it refers to will become clear from the context.

The i-step pre-image of Ωa is obtained by applying P(.)
recursively: Pi(Ωa) = {X(k) : X(k + i) ∈ Ωa}.
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The reader will notice that X(k + i) is obtained by left-
multiplying X(k) by the product of i matrices A(l), with l
assuming all possible values in Z[1,dm]. For instance, if Ωa

is the polyhedral set defined in (9), then

P2(Ωa) = {X(k) : FaA(j)A(l)x(k) ≤ wa, ∀j, l ∈ Z[1,dm]}.

The set PN (Ωa) = {X(k) : X(k+i) ∈ Ωa, ∀i ∈ Z[0,N ]}
is given by the intersection:

PN (Ωa) =

N⋂
i=0

Pi(Ωa). (10)

In the polyhedral case, PN (Ωa) is a polyhedral set given
by a set of inequalities similar to those in (4), but defined
in the augmented state space and with Ai replaced by the
product of i matrices A(l), with l assuming all possible
values in Z[1,dm]. Theoretically, the maximal positively
invariant set contained in Ωa is the set P∞(Ωa), but it can
be obtained from (10) in a finite number of steps. In general,
the number of steps is not known in advance though, and can
be very large.

Note that positive invariance w.r.t. the switched model
(7) must satisfy the same conditions as positive invariance
w.r.t. a linear system subject to polytopic uncertainties having
the matrices A(i) as the vertices of the set defining the
uncertainties [18].

By writing the delayed system as a switched undelayed
one in an augmented state space, we can use known methods
to compute polyhedral invariant sets. This way we detour
from the conservatism of D-invariance conditions w.r.t. the
delayed model, being able to compute invariant sets if the
system is stable. On the other hand, depending on the size of
the maximal delay, we can end up with a high-dimensional
augmented model, for which the computation of invariant
polyhedral sets may become intractable.

In what follows we develop a solution to the problem
addressed in this text: characterizing invariance of polyhedral
sets defined in the original Rn space w.r.t. the system with
time-varying delay (5), but without the conservatism of D-
invariance.

IV. SET INVARIANCE IN A TRANSFORMED MODEL

In [9], [12], invariance of polyhedral sets has been studied
for systems with fixed time-delay. As a novelty, we extend
here the use of a transformation in model (5) similar to that
proposed in [9], [12] as a tool to obtain delay-dependent
invariance conditions for the time-varying delay case. By
introducing an auxiliary variable K ∈ Rn×n, the time-delay
model above can be rewritten as:

x(k + 1) = (A+K)x(k) + (Ad −K)x(k − d(k))

−K(x(k)− x(k − d(k))).

By writing the difference in the last term as:

x(k)− x(k − d(k)) =

−1∑
i=−d(k)

(x(k + i+ 1)− x(k + i)),

and replacing x(k + i + 1) by the expression defining
the model (5), after standard calculations we arrive to the
following transformed model with time-varying delay:

x(k + 1) = (A+K)x(k) + (Ad −K)x(k − d(k))

−
−1∑

i=−d(k)

K(A− I)x(k + i)−
−d(k)−1∑
i=−2d(k)

KAdx(k + i))

(11)
with the initial conditions x(i), i ∈ Z[−2dm,0].

Based on the construction principles of the transformed
model, one can notice that the equivalence of the trajectories
of the original model (5) with those of the transformed model
holds only if, in this last model, x(k+ i+1) = Ax(k+ i)+
Adx(k + i − d(k)) for i ∈ Z[−d(k),−1]. This equivalence is
formally established as follows:

Theorem 2: Consider systems (5) and (11) and let their
state trajectories for k ∈ Z+ be denoted, respectively, by
x(k) with initial conditions x(i), i ∈ Z[−dm,0], and by xt(k)
with initial conditions xt(i), i ∈ Z[−dm,dm]. If the realization
of the delay d(k) ∈ Z[1,dm] for k ∈ Z+ is the same for both
systems, and the initial conditions of (11) are given by:

xt(i) = x(i), for i ∈ Z[−dm,0],
xt(i+ 1) = Ax(i) +Adx(i− d(i)), for i ∈ Z[0,dm−1],

(12)
then xt(k) = x(k) ∀k ≥ 0.
Proof: The state trajectories of (5) and (11) coincide in the
interval Z[−dm,dm] as follows:

• For k ∈ Z[−dm,0], xt(k) coincide with the initial
conditions of (5).

• For k ∈ Z[1,dm], xt(k) is given by the dynamics of (5).
For k = dm + 1, the state xt is given by (11):
xt(dm+1) = (A+K)xt(dm)+(Ad−K)xt(dm−d(dm))−

−1∑
i=−d(dm)

K(Axt(dm+i)+Adxt(dm+i−d(dm)−xt(dm+i)).

From (12), Axt(dm+i)+Adxt(dm+i−d(dm)) = xt(dm+
i+ 1) for i ∈ Z[−dm,−1]. Hence:

xt(dm + 1) = (A+K)xt(dm)
+(Ad −K)xt(dm − d(dm))

−K
∑−1

i=−d(dm)(xt(dm + i+ 1)− xt(dm + i))

= (A+K)xt(dm) + (Ad −K)xt(dm − d(dm))
−K(xt(dm)− xt(dm − d(dm)))

= Axt(dm) +Adxt(dm − d(dm))
= Ax(dm) +Adx(dm − d(dm)) = x(dm + 1).

The same development can be made for k = dm + 2 and,
naturally by induction, for k = dm + i, ∀i ≥ 2, proving that
the state trajectories x(k) and xt(k) coincide for k ≥ 0. □

The main consequence of this result is that any trajectory
of the original model (5) is an admissible trajectory of
the transformed model (11). This will allow us to derive
invariance results over (5) from D-invariance of polyhedral
sets in the transformed model (11).

The D-invariance definition and conditions can be applied
to the transformed system (11), but with the initial conditions
defined by x(i), with i ∈ Z[−2dm,0]. Necessary and sufficient
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conditions for positive D-invariance of the polyhedron Ω
w.r.t. the transformed system (11) have been established in
[9] for the fixed delay case. Here, we extend these results to
system (11) with time-varying delay.

Theorem 3: Ω is positively D-invariant w.r.t. system
(11) if, and only if, there exist nonnegative matrices
H,L,M,N ∈ Rf×f such that:

HF = F (A+K), LF = F (Ad −K) (13)
MF = −FK(A− I), NF = −FKAd (14)

(H + L+ dm(M +N))w ≤ w. (15)
Proof: A possible realization of d(k) is d(k) = dm ∀k ∈ Z+,
leading to the fixed delay case, for which the necessity of
the conditions above has been proven in [9].

For sufficiency, assume that

Fx(k + i) ≤ w, i ∈ Z[−2dm,0]. (16)

Then, from (11) we have that:

Fx(k + 1) = F ((A+K)x(k) + (Ad −K)x(k − d(k))

−
−1∑

i=−d(k)

K(A− I)x(k + i)−
−d(k)−1∑
i=−2d(k)

KAdx(k + i))).

And from (13)-(16):

Fx(k + 1) = HFx(k) + LFx(k − d(k))

+

−1∑
i=−d(k)

MFx(k + i) +

−d(k)−1∑
i=−2d(k)

NFx(k + i))

≤ Hw + Lw + d(k)Mw + d(k)Nw
≤ Hw + Lw + dmMw + dmNw ≤ w.

We have proved that x(k + 1) ∈ Ω if x(k + i) ∈ Ω, i ∈
Z[−2dm,0] for arbitrary k ∈ Z+. Since, from Definition 3,
this hypothesis is true for k = 0, we conclude, by induction,
that x(k) ∈ Ω ∀k ∈ Z+. □

Simplified expressions for D-invariance of polyhedral sets
which are symmetrical w.r.t. the origin can be derived
following arguments similar to those in [9].

Given the polyhedron Ω (matrices F,w) and the maximal
delay dm, conditions (13)-(15) are linear on the matrix vari-
ables H,L,M,N and K. Then, positive D-invariance of Ω
can be checked by solving the following linear programming
(LP) problem, where the contraction factor λ is optimized:

min
λ,K,H,L,M,N

λ

s.t.:
{

(13)-(14) , H, L,M,N ≥ 0
(H + L+ dm(M +N))w − λw ≤ 0

(17)

If the optimal solution λ∗ is such that λ∗ ≤ 1, then Ω
is positively D-invariant for the given value of dm. These
conditions can also be used to find a maximal value of dm
that preserves invariance.

V. SET INVARIANCE IN THE ORIGINAL MODEL

The following result relates D-invariance of Ω w.r.t. the
transformed system with the confinement of state trajectories
of the original model (5) in Ω.

Theorem 4: If the set Ω is positively D-invariant w.r.t.
(11), then, the state trajectory of (5) is such that x(k) ∈ Ω
∀k ≥ 0, provided that:

x(i) ∈ Ω, ∀i ∈ Z[−dm,0],
x(i) ∈ Ω, ∀i ∈ Z[1,dm],∀x(i) given by
x(i+ 1) = Ax(i) +Adx(i− d(i)), i ∈ Z[0,dm−1],
∀ possible realizations of d(i) ∈ Z[1,dm], i ∈ Z[0,dm−1].

(18)
Proof: Consider systems (5) and (11) and let their state
trajectories be denoted, respectively, by x(k), k ∈ Z+ with
initial conditions x(i), i ∈ Z[−dm,0], and by xt(k), k ∈ Z+

with initial conditions xt(i), i ∈ Z[−dm,dm]. Since Ω is D-
invariant w.r.t. (11), if xt(i) ∈ Ω, ∀i ∈ Z[−dm,dm], then,
xt(k) ∈ Ω ∀k ≥ 0. From Theorem 2, under the conditions
(18), for any possible realization of d(i), i ∈ Z[0,dm−1] there
exists a trajectory of (11) such that x(k) = xt(k), ∀k ≥ 0.
Due to the D-invariance of Ω, we have that x(k) = xt(k) ∈
Ω, ∀k ≥ 0. □

A given polyhedral set Ω that is not D-invariant w.r.t. the
original model (5) can be so w.r.t. the transformed model
(11). In this case, Theorem 4 states that the confinement
of x(k) in Ω w.r.t. the original model is achieved if the
initial conditions result in a state trajectory belonging to Ω
in the interval Z[1,dm], for all possible realizations of d(k).
This condition induces the following definition of admissible
initial states w.r.t. state confinement in the set Ω.

Definition 4: Consider the system (5) and a polyhedral
set Ω which is positively D-invariant w.r.t. the transformed
system (11). The set of admissible initial states of Ω w.r.t.
(5) is defined as follows:
I(Ω) = {x(i) ∈ Ω, i ∈ Z[−dm,0] s.t. x(i) ∈ Ω, i ∈ Z[1,dm]}.

I(Ω) is the set of initial states
(
x(i) for i ∈ Z[−dm,0]

)
which belong to Ω and make the next states x(i) for i ∈
Z[1,dm] also belong to Ω, for all possible realization of d(i).

For a polyhedral set Ω = {x : Fx ≤ w}, I(Ω) represents
a polyhedral set in the extended state space of (7). Indeed,
given that the trajectories x(k), k ∈ Z+ generated by (5)
and (7) are identical, we can characterize I(Ω) using the
augmented model. To this end, let us define the cartesian
product of Ω over the augmented state space as:

Ωdm = Ω× Ω× . . .× Ω ∈ R(dm+1)n.

Notice that X(0) ∈ Ωdm is equivalent to the constraints
Fx(i) ≤ w, i ∈ Z[−dm,0] in (18). Furthermore, the states
x(i), i ∈ Z[1,dm] in (18) are the n first elements of X(i +
1) = A(d(i))X(i), i ∈ Z[0,dm−1] (7). Hence, the constraints
x(i) ∈ Ω ∀i ∈ Z[1,dm], for all possible realizations of
d(i), i ∈ Z[0,dm−1] correspond to X(i) ∈ Ωdm ∀i ∈ Z[1,dm].
Since X(0) ∈ Ωdm , we have deduced that the admissible
initial states are characterized by X(i) ∈ Pdm

(Ωdm), where
Pdm

(Ωdm) is a polyhedral set defined as in (10). The
set of admissible initial conditions I(Ω) is then given by
Pdm(Ωdm), which is the set of augmented states X(k) such
that X(k + i) ∈ Ω, ∀i ∈ Z[0,dm]. Now, we will prove that
this set is positively invariant w.r.t. the augmented switched
system (7).
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Corollary 1: If Ω = {x : Fx ≤ w} is D-invariant w.r.t.
(11), then Pdm(Ωdm) is positively invariant w.r.t. (7).
Proof: Assume that X(k) ∈ Pdm

(Ωdm). Then, the con-
straints (18) are satisfied. The trajectories of x(k) in (5)
and (7) coincide, because both models are equivalent. From
Theorem 4, if Ω is D-invariant w.r.t. (11), then, for the
original model (5), x(k+dm+1) ∈ Ω if the initial conditions
of (5) at time k belong to I(Ω), i.e., if X(k) ∈ Pdm

(Ωdm).
Then, we have that x(k + i) ∈ Ω for i ∈ Z[−dm+1,1] are
such that x(k + i) ∈ Ω for i ∈ Z[2,dm+1]. This proves
that X(k + 1) ∈ I(Ω) = Pdm(Ωdm) and, hence, the
positive invariance of the set of admissible initial conditions
Pdm

(Ωdm). □
The next result shows that, in addition, Pdm(Ωdm) is the

maximal positively invariant set contained in Ωdm

Corollary 2: If Ω = {x : Fx ≤ w} is positively D-
invariant w.r.t. (11), then Pdm(Ωdm) is the maximal posi-
tively invariant set contained in Ωdm .
Proof : From the definition of Pdm

(Ωdm) we have that
P∞(Ωdm) ⊆ Pdm

(Ωdm). Since Pdm
(Ωdm) is positively

invariant and P∞(Ωdm) is the maximal invariant set, then,
it is clear that P∞(Ωdm) = Pdm(Ωdm). □

We can summarize the preceding results as follows. D-
invariance of Ω w.r.t. the transformed model implies the
confinement in Ω of the state trajectories of the original time-
varying delay system, provided that the initial conditions
belong to a set, that turns out to be positively invariant w.r.t.
an equivalent switching augmented model. Furthermore, this
set is the maximal positively invariant set contained in the
extension of Ω to the augmented model. Differently from the
general case, the number of steps to compute this maximal
set from (10) is known in advance and equal to dm.

The reader will notice that the transformed model (11) is
a tool that enables a delay-dependent analysis of invariance
w.r.t. the original model (5), whereas the augmented model
(7) is a tool to characterize the set of admissible initial states
that ensures state confinement in the invariant set.

From the computational point of view, the previous con-
struction starts with a D-invariant set defined over the n-
dimensional state space of the transformed model (11), less
complex than directly working with an augmented model.
The set Pdm

(Ωdm) is constructed over the augmented state
space, but with only dm steps of the general algorithm (10).
Moreover, due to the particular structure of matrices A(i)
(8), many inequalities from a given step are repeated in
the next one, and can be easily removed. Also, numerical
methods that progressively eliminate redundant inequalities
along the recursion, as in [19], can be used to alleviate the
computational burden.

We close this section by pointing out that these results
developed for the varying delay case can be easily partic-
ularized to the fixed delay case, treated in [9], [12], where
the augmented model is a non-switching linear time-invariant
model. The characterization of the set of admissible initial
conditions as a maximal positively invariant set is a novelty
proposed in the present paper and is beneficial for the
computations in the constant delay case.

VI. ILLUSTRATIVE EXAMPLES

A. Example: first-order model

Consider the following system, analysed in [9] in the fixed
delay case: x(k+1) = 0.8x(k)− 0.4x(k− d), for which no
D-invariant polyhedron containing the origin in its interior
exists. For d > 4 this system is unstable, and this is one
of the reasons why delay-independent invariance cannot be
achieved.

The polyhedral set Ω is given by Ω = {x : |x| ≤ 1}. The
solution of the LP problem (17) (adapted to the symmetrical
case), after a trial-and-error adjustment of the value of dm,
gives K∗ = −0.4, dm = 2, implying that Ω is D-invariant
w.r.t. the time-varying transformed model (11) with d(k) ∈
{1, 2}. Hence, the state trajectories of the original varying-
delay model (5) will remain in Ω if its initial conditions
belong to the set of admissible initial conditions P2(Ω

2).
The set P2(Ω

2) has been computed as described in section
V. In Figure 1, a trajectory is depicted starting from the
initial sequence {−0.375,−1, 0.75} of x(k). This sequence
belongs to the intersection of the sets of admissible initial
states associated to each mode composing the switching
system (7) (which amounts to consider fixed delays d = 1
and d = 2). However, the initial sequence does not belong
to P2(Ω

2). The three first values of the realization of d(k) ∈
Z[1,2] are {2, 1, 2}, and the remaining values are random.
With this realization x(k) leaves Ω, as depicted in Figure 1.
The polyhedron P2(Ω

2) ∈ R3 is defined by 12 inequalities.
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Fig. 1. Example 1: a state trajectory starting from initial conditions not
belonging to P∞.

B. Example: second-order model

Consider the system (5) with matrices A and Ad borrowed

from [17]: A =

[
0.8 0
0 0.97

]
, Ad =

[
−0.1 0
−0.1 −0.1

]
.

We obtained a symmetrical polyhedral set {x : |F̄ x| ≤
w̄} with F̄ =

[
0 1

2.2443 0.1189

]
, w̄ =

[
1
1

]
, which is

D-invariant w.r.t. the transformed model (11) with dm = 5,
using the invariance conditions (13)-(15) as constraints of a
bilinear programming problem, as proposed in [20].

The solution of the LP problem (17) (adapted to the

symmetrical case) leads to K∗ =

[
−0.0948 −0.0023

0 −0.0947

]
.
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The computation of the set of admissible initial states
P5(Ω

5) resulted in a polyhedron defined over R12 by 86
inequalities. We simulated the state trajectories of the sys-
tem with initial conditions given by 2 different vertices of
P5(Ω

5). For each of them, we simulated the trajectories
for 20 randomly generated realizations of the varying delay
d(k) ∈ Z[1,5]. These trajectories are depicted in Figure 2. It
can be seen that, as expected, none of them left the invariant
polyhedron, even though some of them reached its boundary.
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Fig. 2. Example 2: state trajectories starting from 2 different initial
conditions, resulting from 20 different realizations of the varying delay.

VII. CONCLUSIONS

In this paper we analysed set invariance of polyhedral
sets for linear discrete-time systems with time-varying delay
on the states. We derived conditions that allow to check if
invariance can be achieved for a given maximum size of the
varying delay, and this is an advantage when compared to
approaches that use classical delay-independent conditions.
To the best of our knowledge, this is one of the first works
that treat polyhedral invariance for varying-delay systems
under this perspective. The set invariance conditions were
established w.r.t. the original n-dimensional state space, and
that is an advantage over approaches that use an augmented
state space. We showed that confinement of the state in the
considered set is achieved if the initial conditions belong to
an admissible set, which is a maximal positively invariant
set of a switched model and can be computed exactly in
a number of steps equal to the size of the maximal delay.
This result paves the way to the extension of this study to
systems for which this maximal positively invariant set exists
and can be computed, for instance, systems with polytopic
uncertainties and bounded additive disturbance. The present
paper, through the novel connections made between invariant
sets for time-delay systems and switched systems, offers new
perspectives on a relationship that raised attention in other
recent studies [21]. Another possible extension regards the
design of controllers for systems with delayed inputs and
subject to state and control constraints, one of the major

applications of invariant sets. The case of varying delay with
bounded variation is also of interest.
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set-invariance for linear difference equations with multiple delays: a
polyhedral approach,” Journal of Difference Equations and Applica-
tions, pp. 1–18, 2024.

[13] C. de Souza, V. J. S. Leite, E. B. Castelan, and L. F. P. Silva,
“ISS robust stabilization of state-delayed discrete-time systems with
bounded delay variation and saturating actuators,” IEEE Transactions
on Automatic Control, vol. 64, no. 9, pp. 3913–3919, 2019.

[14] I. Kolmanovsky, E. G. Gilbert et al., “Theory and computation of dis-
turbance invariant sets for discrete-time linear systems,” Mathematical
problems in engineering, vol. 4, pp. 317–367, 1998.

[15] E. Gilbert and K. Tan, “Linear systems with state and control con-
straints: the theory and application of maximal output admissible sets,”
IEEE Transactions on Automatic Control, vol. 36, no. 9, pp. 1008–
1020, 1991.

[16] W. Lombardi, S. Olaru, M. Lazar, and S.-I. Niculescu, “On positive
invariance for delay difference equations,” in Proceedings of the 2011
American Control Conference. IEEE, 2011, pp. 3674–3679.

[17] L. Hetel, J. Daafouz, and C. Iung, “Equivalence between the
Lyapunov-Krasovskii functionals approach for discrete delay systems
and that of the stability conditions for switched systems,” Nonlinear
Analysis: Hybrid Systems, vol. 2, no. 3, pp. 697–705, 2008.

[18] F. Blanchini, “Ultimate boundedness control for uncertain discrete-
time systems via set-induced Lyapunov functions,” IEEE Transactions
on Automatic Control, vol. 39, no. 2, pp. 428–433, 1994.
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