
Uncertainty-aware Grounded Action Transformation
towards Sim-to-Real Transfer for Traffic Signal Control

Longchao Da, Hao Mei, Romir Sharma and Hua Wei

Abstract— Traffic signal control (TSC) is a complex and
important task that affects the daily lives of millions of people.
Reinforcement Learning (RL) has shown promising results in
optimizing traffic signal control, but current RL-based TSC
methods are mainly trained in simulation and suffer from
the performance gap between simulation and the real world.
In this paper, we propose a simulation-to-real-world (sim-
to-real) transfer approach called UGAT, which transfers a
learned policy trained from a simulated environment to a real-
world environment by dynamically transforming actions in the
simulation with uncertainty to mitigate the domain gap of
transition dynamics. We evaluate our method on a simulated
traffic environment and show that it significantly improves the
performance of the transferred RL policy in the real world.

I. INTRODUCTION

Traffic Signal Control (TSC) is vital for enhancing traffic
flow, alleviating congestion in contemporary transportation
systems, and providing widespread societal benefits. It re-
mains an active research area due to the intricate nature of
the problem. TSC must cope with dynamic traffic scenarios,
necessitating the development of adaptable algorithms to
respond to changing conditions.

Recent advances in reinforcement learning (RL) techniques
have shown superiority over traditional approaches in TSC [1].
In RL, an agent aims to learn a policy through trial and
error by interacting with an environment to maximize the
cumulative expected reward over time. The biggest advantage
of RL is that it can directly learn how to generate adaptive
signal plans by observing the feedback from the environment.

One major issue of applying current RL-based TSC
approaches in the real world is that these methods are mostly
trained in simulation and suffer from the performance gap
between simulation and the real world. While training in
simulations offers a cost-effective means to develop RL-
based policies, it may not fully capture the complexities
of real-world dynamics, limiting RL-based TSC models’
practical performance [2]. Simulators often employ static
vehicle settings, such as default acceleration and deceleration,
whereas real-world conditions introduce substantial variability
influenced by factors like weather and vehicle types. These
inherent disparities between simulation and reality impede

Hua Wei with Longchao Da, Hao Mei, are at School of Computing
and Augmented Intelligence (SCAI), Arizona State University, USA,
{hua.wei, longchao, hmei7}@asu.edu. Romir Sharma is
with the West Windsor-Plainsboro High School South, West Windsor, USA,
sharmaromir@gmail.com

The work was partially supported by NSF award #2153311. The views
and conclusions contained in this paper are those of the authors and should
not be interpreted as representing any funding agencies.

RL-based models trained in simulations from achieving
comparable real-world performance, as depicted in Figure 1.

To bridge this gap, prior research has concentrated on
enhancing traffic simulators to align more closely with real-
world conditions, using real-world data [3]. This enables
smoother policy or model transfer from simulation to reality,
minimizing performance disparities. Yet, altering internal sim-
ulator parameters can be challenging in practice. To tackle this
issue, Grounded Action Transformation (GAT) has emerged
as a popular technique, aiming to align simulator transitions
more closely with reality. However, GAT has predominantly
been applied to robotics, with limited exploration in the
context of traffic signal control.

In this paper, we present Uncertainty-aware Grounded
Action Transformation (UGAT), an approach that bridges
the domain gap of transition dynamics by dynamically
transforming actions in the simulation with uncertainty. UGAT
learns to mitigate the discrepancy between the simulated and
real-world dynamics under the framework of grounded action
transformation (GAT), which learns an inverse model that
can generate an action to ground the next state in the real
world with a desired next state predicted by the forward
model learned in simulation. Specifically, to avoid enlarging
the transition dynamics gap induced by the grounding actions
with high uncertainty, UGAT dynamically decides when to
transform the actions by quantifying the uncertainty in the
forward model. Our experiments demonstrate the existence
of the performance gap in traffic signal control problems and
further show that UGAT has a good performance in mitigating
the gap with higher efficiency and stability.

II. PRELIMINARIES

This section will formalize the traffic signal control (TSC)
problem and its RL solutions and introduce the grounded ac-
tion transformation (GAT) framework for sim-to-real transfer.

A. Concepts of TSC and RL Solutions

In the TSC problem, each traffic signal controller decides
the phase of an intersection, which is a set of pre-defined
combinations of traffic movements that do not conflict while
passing through the intersection. Given the current condition
of this intersection, the traffic signal controller will choose a
phase for the next time interval ∆t to minimize the average
queue length on lanes around this intersection. Following
existing work [4], [5], [6], an agent is assigned to each
traffic signal, and the agent will choose actions to decide
the phase in the next ∆t. The TSC problem is defined as an
MDP which could be characterized by M = ⟨S,A, P, r, γ⟩

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

U.S. Government work not protected by
U.S. copyright

1124

Fig. 1: The performance gap in sim-to-real transfer and the schematic of GAT and UGAT. Left: The method [4] trained in
simulation has a performance drop when transferred to the real world in all five evaluation metrics in TSC. Middle: GAT
method takes grounded action ât when a policy returns an action at from the Esim. Grounded actions taken with high model
uncertainty on gϕ(·,·) will enlarge the transition between Pθ and P ∗, making the gap between Esim and Ereal large and
policy learning step not stable. Right: UGAT quantifies the model’s uncertainty and decide to take or reject the grounded
action ât based on the current output of model uncertainty ut given the current st state and action at. This behavior will
mitigate the gap between Pϕ and P ∗ and make the policy learning step stable.

where the state space S contains each lane’s number of
vehicles and the current phase of the intersection in the form
of the one-hot code, st ∈ S. Action space (discrete) A is
the phase chosen for the next time interval ∆t. Transition
dynamics P (st+1|st, at) maps S × A → S, describing the
probability distribution of next state st+1 ∈ S. Reward r is
an immediate scalar return from the environment calculated
as rt = −

∑
l w

l
t, where l is the lane belonging to the

intersection and wl
t is the queue length at each lane. And the

γ is the discount factor. Policy πθ could be represented as the
logic of: S → A. An RL approach solves this problem
by maximizing the long-term expectation of discounted
accumulation reward adjusted γ. The discounted accumulated
reward is E(st,at)∼(πθ,M)[

∑T
t=0 γ

T−trt(st, at)]. Since the
action space A is discrete, we follow the past work using
Deep Q-network (DQN) [4] to optimize the πθ, the above
procedure is conducted in simulation environment Esim.

B. Grounded Action Transformation
Grounded action transformation (GAT) is a framework

originally proposed in robotics to improve robotic learn-
ing by using trajectories from the physical world Ereal

to modify Esim. Under the GAT framework, MDP in
Esim is imperfect and modifiable, and it can be param-
eterized as a transition dynamic Pϕ(·|s, a). Given real-
world dataset Dreal = {τ1, τ2, . . . , τ I}, where τ i =
(si0, a

i
0, s

i
1, a

i
1, . . . , s

i
T−1, a

i
T−1, s

i
T) is a trajectory collected

by running a policy πθ in Ereal, GAT aims to minimize
differences between transition dynamics by finding ϕ∗:

ϕ∗ = argmin
ϕ

∑
τ i∈Dreal

T−1∑
t=0

d(P ∗(sit+1|sit, ait), Pϕ(s
i
t+1|sit, ait))

(1)
where d(·) is the distance between two dynamics, P ∗ is the
real world transition dynamics, and Pϕ is the simulation
transition dynamics.

To find ϕ efficiently, GAT takes the agent’s state st and
action at predicted by policy πθ as input and outputs a

grounded action ât. Specifically, it uses an action transfor-
mation function parameterized with ϕ:

ât = gϕ(st, at) = hϕ−(st, fϕ+(st, at)) (2)
which includes two specific functions: a forward model fϕ+ ,
and an inverse model hϕ− , as is shown in Fig. 1.
• The forward model fϕ+ is trained with the data from Ereal,
aiming to predict the next possible state ŝt+1 given current
state st and action at:

ŝt+1 = fϕ+(st, at) (3)
• The inverse model hϕ− is trained with the data from Esim,
aiming to predict the possible action ât that could lead the
current state st to the given next state. Specifically, the inverse
model in GAT takes ŝt+1, the output from the forward model,
as its input for the next state:

ât = hϕ−(ŝt+1, st) (4)
Given current state st and the action at predicted by the pol-

icy πθ, the grounded action ât takes place in Esim will make
the resulted st+1 in Esim close to the predicted next state
ŝt+1 in Ereal, which makes the dynamics Pϕ(st+1|st, ât) in
simulation close to the real-world dynamics P ∗(ŝt+1|st, at).
Therefore, the policy πθ is learned in Esim with Pϕ close to
P ∗ will have a smaller performance gap when transferred to
Ereal with P ∗.

III. METHODS

To mitigate the gap in the transition dynamics between
traffic simulations and real-world traffic systems, we use the
vanilla GAT and analyze its limitations. To overcome it’s
problem, we propose UGAT to further leverage uncertainty
quantification to take grounded action dynamically.

A. Vanilla GAT for TSC

We use the vanilla GAT for the traffic signal control
problem by specifying the learning of fϕ+ and hϕ− :
• The forward model fϕ+(st, at) in traffic signal control
problem predicts the next traffic state ŝt+1 in the real world
given taken action at and the current traffic state st. We

1125

approximate fϕ+ with a deep neural network and optimize
ϕ+ by minimizing the Mean Squared Error (MSE) loss:

L(ϕ+) =MSE(ŝit+1, s
i
t+1) =MSE(fϕ+(sit, a

i
t), s

i
t+1)

(5)
where sit, a

i
t, s

i
t+1 are sampled from the trajectories collected

from Ereal.
• The inverse model hϕ−(ŝt+1, st) in traffic signal control
predicts the grounded action âit in simulation Esim to
reproduce the same traffic states ŝt+1. We approximate hϕ−

with a deep neural network and optimize ϕ− by minimizing
the Categorical Cross-Entropy (CCE) loss since the target ait
is a discrete value:

L(ϕ−) = CCE(âit, a
i
t) = CCE(hϕ−(sit+1, s

i
t), a

i
t) (6)

where sit, a
i
t, s

i
t+1 are sampled from the Esim trajectories.

B. Uncertainty-aware GAT

In this section, we will introduce the limitations of the
vanilla GAT and propose an uncertainty-aware method on
GAT that can benefit from quantifying model uncertainty.

1) Model Uncertainty on gϕ: The vanilla GAT takes
supervised learning to train the action transformation function
gϕ, and grounded action transformation â is taken at each
step while improving in the Esim. However, the action
transformation function gϕ could have high model uncertainty
on unseen state and action inputs, which is likely to happen
during the exploration of RL. With high model uncertainty
on gϕ, the grounded action â in Equation (2) is likely to
enlarge the performance gap instead of mitigating it if the
high uncertainty action is taken because it will make policy
learning unstable and hard to converge.

To overcome the enlarged gap induced by â with high
model uncertainty in gϕ, we need uncertainty quantification
methods [7] to keep track of the uncertainty of gϕ. Specifically,
we would like the action transformation function to output
an uncertainty value ut in addition to ât:

ât, ut = gϕ(st, at) = hϕ−(fϕ+(st, at), st) (7)
In general, any methods capable of quantifying the un-

certainty of a predicted class from a deep neural network
(since hϕ− is implemented with deep neural networks) could
be utilized, like evidential deep learning (EDL), Concrete
Dropout [8], Deep Ensembles [9], etc. In this paper, we
explored different state-of-the-art uncertainty quantification
methods and found out that they all perform well with our
method (their experimental results can be found in Section IV-
B.4). We adopted EDL as the default in our method as it
performs the best with our method.

Intuitively, during action grounding, whenever model
gϕ(st, at) returns a grounded action ât, if the uncertainty
ut is less than the threshold α, the grounded action ât will
be taken in the simulation environment Esim for policy
improvement; otherwise, we will reject ât and take the
original at. This uncertainty quantification allows us to
evaluate the reliability of the transformation model and take
grounded actions â when the model is certain that the resulting
transition Pϕ(st, ât) would mirror that of the real-world
environment Ereal transition P ∗(st, at). This process enables

us to minimize the gap in Equation (2) between the policy
training environment Esim and the policy testing environment
Ereal, thereby mitigating the performance gap.

2) Dynamic Grounding Rate α: The threshold α, which
we referred to as the grounding rate, helps us to decide when
to filter out ât with uncertainty ut. One naive approach of
deciding the grounding rate α is to treat it as a hyperparameter
for training and keep it fixed during the training process.
However, since gϕ(st, at) keeps being updated during the
training process, the model uncertainty of gϕ is dynamically
changing. Even with the same st and at, the output ut and
ât from gϕ(st, at) could be different in different training
iterations.

An alternative yet feasible approach is to set grounding
rate α dynamically changing with the model uncertainty
during different training iterations. To dynamically adjust the
grounding rate with the changing of model uncertainty, we
keep track of the model uncertainty ut of gϕ(st, at) during
each training iteration. At the end of each iteration i, we
update the grounding rate α for the next iteration based on
the past record of model uncertainty by calculating the mean

α =

∑E
e=1

∑T−1
t=0 uet

T × E
(8)

from the logged uncertainties in the last E epochs. This
dynamic grounding rate α can synchronously adjust α with
the update of gϕ and relief efforts on hyper-parameter tuning.

C. Training Algorithm

The overall algorithm for UGAT is shown in Algorithm 1.
We begin by pre-training the RL policy πθ for M epochs in
the simulation environment Esim. In each training iteration
of UGAT, we collect datasets for both Esim and Ereal,
following the data collection process from [10]. It’s worth
noting that data collection in Ereal does not necessarily occur
during the training process; it can be obtained from existing
offline logged data. With the collected data, we update gϕ by
training both the forward model fϕ+ and the inverse model
hϕ− . Using the updated gϕ, we employ policy πθ to interact
with Esim for further policy training. Prior to executing
the action at generated by πθ(st) in the environment Esim,
UGAT grounds the actions using ât and the model uncertainty
ut from gϕ(st, at). If the model uncertainty ut surpasses the
grounding rate α, the grounded action ât is rejected, and
the original action at is executed in the simulation Esim.
Subsequently, ut is added to the logged uncertainty U . The
RL policy πθ undergoes updates during the interaction with
Esim. After E rounds of intersections, we update α using
Equation (8) to prepare for the next round of policy training.

IV. EXPERIMENT AND RESULTS

In this section, we investigate several aspects of our study:
the presence of a performance gap in TSC, the effectiveness
of UGAT in mitigating this gap, the influence of dynamic
grounding rate α, uncertainty quantification, and action
grounding on UGAT’ performance, and the stability of UGAT
across various uncertainty quantification methods.

1126

Algorithm 1: Algorithm for UGAT with model
uncertainty quantification

Input: Initial policy πθ, forward model fϕ+ , inverse
model hϕ− , real-world dataset Dreal,
simulation dataset Dsim, grounding rate
α = inf

Output: Policy πθ, fϕ+ , hϕ−

1 Pre-train policy πθ for M iterations in Esim

2 for i = 1,2, . . . , I do
3 Rollout policy πθ in Esim and add data to Dsim

4 Rollout policy πθ in Ereal and add data to Dreal

5 # Transformation function update step
6 Update fϕ+ with Equation (5)
7 Update hϕ− with Equation (6)
8 Reset logged uncertainty U i = List()
9 # Policy training

10 for e = 1, 2, . . . , E do
11 # Action grounding step
12 for t = 0, 1 ,. . . , T-1 do
13 at = π(st)
14 Calculate ât and ut with Equation (7)
15 if uet ≥ α then
16 ât = at # Reject grounded action
17 end
18 U.append(uet)
19 end
20 # Policy update step
21 Improve policy πθ with reinforcement learning
22 end
23 Update α with Equation (8)
24 end

A. Experiment Settings

In this section, we introduce the overall environment setup
for our experiments, and commonly used metrics.

TABLE I: Real-world Configurations for Ereal

Setting
accel

(m/s2)
decel

(m/s2)
eDecel
(m/s2)

sDelay
(s) Description

Default 2.60 4.50 9.00 0.00 —
V1 1.00 2.50 6.00 0.50 Lighter loaded vehicles
V2 1.00 2.50 6.00 0.75 Heavier loaded vehicles
V3 0.75 3.50 6.00 0.25 Rainy weather
V4 0.50 1.50 2.00 0.50 Snowy weather

1) Environment Setup: In this paper, we implement UGAT
upon LibSignal [11], an open-sourced traffic signal control
library that integrates multiple simulation environments. We
treat Cityflow [3] as the simulation environment Esim and
SUMO [12] as the real-world environment Ereal. In later
sections, we use Esim and Ereal by default unless specified.
To mimic real-world settings, we consider four configurations
in SUMO under two types of real-world scenarios: heavy
industry roads and special weather-conditioned roads, with
their specific parameters defined in Table I.

• Default setting 1. This is the default parameters for SUMO
and CityFlow which describe the normal settings of the
vehicle’s movement in Esim, with 8 phases TSC strategy.
• Heavy industry roads. We model the places where the
majority of vehicles could be heavy trucks. In Table I, for the
vehicles in V 1 and V 2, their accelerating, decelerating, and
emergency decelerating rates are more likely to be slower
than the default settings. We further consider the vehicles’
average startup delay (larger than the default assumption 0s).
As shown in Table I, V 1 describes roads with lighter-loaded
vehicles while V 2 describes the same roads with heavier-
loaded vehicles, and they vary at startup delay.
• Special weather-conditioned roads. We examine scenarios
with adverse weather conditions, specifically rainy (V 3) and
snowy (V 4) conditions, as outlined in Table I. In these
settings, vehicle acceleration, deceleration, and emergency
deceleration rates are reduced compared to the default values,
while startup delays are increased. Notably, in snowy weather,
the first three rates are lower than in rainy conditions, and
the startup delay difference is extended to simulate tire slip.

2) Evaluation Metrics: Following the literatures in
TSC [13], we adopt commonly used traffic signal control
metrics as below:
• Average Travel Time (ATT) is the average time t it takes
for a vehicle to travel through a specific section of a road
network. For a control policy, the smaller ATT , the better.
• Throughput (TP) is the number of vehicles reached their
destinations given amount of time. The larger TP , the better.
• Reward is an RL term that measures the return by taking
action at under state st. We use the total number of waiting
vehicles as the reward, aligned with Preliminaries. The larger
the reward, the fewer waiting vehicles, the better.
• Queue is the number of vehicles waiting to pass through a
certain intersection in the road network. Smaller is better.
• Delay is the average delay per vehicle in seconds and
measures the amount of time that a vehicle spends waiting
in the network. Smaller is better.

In this work, our goal is to mitigate the performance gap of
trained policy πθ between Esim and Ereal, we additionally
calculate the gap ∆ for each referred metric as ATT∆, TP∆,
Reward∆, Queue∆, and Delay∆. For certain metric ψ:

ψ∆ = ψreal − ψsim (9)
Because in real-world settings, policy πθ tends to perform

worse than in simulation, so the ATT , Queue, and Delay
in Ereal are normally larger than those in Esim. Based on
the goal of mitigating the gap, improving πθ performance
in Esim, we expect: for ATT∆, Queue∆, and Delay∆, the
smaller the better. Because TP∆, Reward∆ will be negative
values, the larger, the better.

B. Experiment Results
1) Gap between real-world and simulator: To investigate

the presence of a performance gap in TSC tasks, we conducted
an experiment. We employed the Direct-Transfer method,

1https://sumo.dlr.de/docs/Definition_of_Vehicles,
_Vehicle_Types,_and_Routes.html

1127

TABLE II: The performance using Direct-Transfer method compared with using UGAT method. The (·) shows the metric
gap ψ∆ from Ereal to Esim and the ± shows the standard deviation with 3 runs. The ↑ means that the higher value for the
metric indicates a better performance and ↓ means that the lower value indicates a better performance.

Setting Direct Transfer UGAT

ATT (∆ ↓) TP (∆ ↑) Reward(∆ ↑) Queue(∆ ↓) Delay(∆ ↓) ATT (∆ ↓) TP (∆ ↑) Reward(∆ ↑) Queue(∆ ↓) Delay(∆ ↓)
V1 158.93(47.69) 1901(-77) -71.55(-32.11) 47.71(21.59) 0.73(0.11) 144.72(33.49)±3.61 1925(-52)±4.58 -59.38(-19.94)±3.08 39.58(13.47)±2.04 0.67(0.05)±0.01
V2 177.27(66.03) 1898(-80) -87.71(-48.27) 58.59(32.47) 0.76(0.14) 164.65(53.52)±12.94 1907(-71)±13.06 -75.18(-35.74±8.37 50.25(24.14)±5.56 0.72(0.10)±0.01
V3 205.86(94.63) 1877(-101) -101.26(-61.82) 67.62(41.51) 0.76(0.14) 183.22(71.99)±13.22 1900(-78)±13.08 -82.38(-42.94)±9.11 55.05(28.94)±6.08 0.72(0.10)±0.01
V4 332.48(221.25) 1735(-252) -126.71(-87.23) 84.53(58.42) 0.83(0.21) 284.26(173.03)±6.67 1794(-184)±12.05 -111.68(-72.24)±7.25 74.54(48.43)±4.82 0.8(0.18)±0.01

training a policy model πtest in Esim using the DQN method
for 300 epochs. We then directly transferred πtest to four
distinct Ereal settings, as detailed in Table I. The results are
visualized in Fig. 2, using a radar chart with five metrics
indicating performance in two environments, Esim and Ereal.
The blue line connects the metrics in Esim, while the orange
line represents Ereal. A notable performance gap emerges
when applying πtest to four Ereal settings compared to Esim.
Our experiment confirms the existence of performance gaps,
prompting further study into method generalizability.

Rewards

Queue

-133.33

100.0

66.67

1820.0

1910.0

-66.67

33.33

180.0

260.0

1.00.67 Delay

Travel_Time

340.0

0.33

Sim Test
Real-V1 Test

Throughput

Delay

Rewards

Queue

Travel_Time

0.33 0.67 1.0

66.67

100.0

180.0

260.0

340.0

1820.0

1910.0

-66.67

33.33

-133.33

Sim Test
Real-V2 Test

Throughput

Delay

Rewards

Queue

Travel_Time

0.33 0.67 1.0

66.67

100.0

180.0

260.0

340.0

1820.0

1910.0

-66.67

33.33

-133.33

Sim Test
Real-V3 Test

Throughput

Delay

Rewards

Queue

Travel_Time

0.33 0.67 1.0

66.67

100.0

180.0

260.0

340.0

1820.0

1910.0

-66.67

33.33

-133.33

Sim Test
Real-V4 Test

Throughput

Fig. 2: The performance gap using Direct-Transfer to train
in Esim and tested in 4 Ereal settings.

TABLE III: Direct-Transfer and UGAT performance in Esim

Env ATT TP Reward Queue Delay

Esim 111.23±0.05 1978±1 -39.44±0.03 26.11±0.05 0.62±0.01

2) Gap mitigating by uncertainty-aware UGAT: To verify
whether the UGAT can effectively mitigate the performance
gap, we compare the performance of directly transferring
policies trained in Esim to Ereal with the policies learned
under UGAT in four Ereal settings. Because they are using
the same Esim, so performance in Esim eventually converges
to stable results with tiny variance as shown in Table III.

In Table II, we use (·) to quantify the performance gap
from Ereal to Esim, as computed with Equation (9). This
gap directly reflects the methods’ generalization capability
from Esim to Ereal. Our findings are as follows: (1) When

comparing UGAT to Direct-Transfer, it effectively reduces the
performance gap (∆). Notably, UGAT exhibits smaller gaps
in ATT∆, Queue∆, and Delay∆, while showing larger gaps
in TP∆ and Reward∆, indicating effective performance gap
mitigation. (2) In terms of the original traffic signal control
metrics, UGAT enhances the performance of policy πϕ. It
achieves lower ATT and higher TP than Direct-Transfer.
(3) Table II summarizes experiments across four diverse
real-world settings, encompassing five metrics. The results
underscore UGAT’ robustness and effectiveness in complex
environmental conditions.

3) Ablation Study: In Table IV, We conducted an abla-
tion study on UGAT to assess the impact of its dynamic
grounding module, uncertainty quantification module, and
action grounding module. We systematically analyzed each
module’s influence by removing them step by step. When
the dynamic grounding module is removed, α is fixed at 0.5.
In the third row, when both α and uncertainty are removed,
it becomes Vanilla GAT.

TABLE IV: Ablation Study of UGAT on V 1

Structure
ATT∆

(∆ ↓)
TP∆

(∆ ↑)
Reward∆
(∆ ↑)

Queue∆
(∆ ↓)

Delay∆
(∆ ↓)

UGAT 33.49±3.61 -52±4.58 -19.94±3.08 13.47±2.04 0.05±0.01
w/o dynamic α 39.12±4.21 -72±7.61 -25.07±5.71 16.88±5.11 0.08±0.01

w/o α, uncertainty 44.87±4.81 -73±12.99 -30.59±3.80 20.50±1.97 0.09±0.01
w/o Grounding 47.71±6.73 -77±10.64 -32.11±4.24 21.60±3.12 0.11±0.02

We conducted an ablation study in Table V to investigate
the impact of dynamically adjusted grounding rates α on sim-
to-real training. We activated the uncertainty quantification
module EDL and manually set α values ranging from 0.2 to
0.8. In this study, if the model’s uncertainty output u was less
than the static α, the action was grounded; otherwise, it was
rejected as in Algorithm 1. We compared these results with
UGAT, which dynamically adjusts α based on uncertainty.
Notably, UGAT significantly improved model performance.

TABLE V: Static vs dynamic α on V 1

α
ATT∆

(∆ ↓)
TP∆

(∆ ↑)
Reward∆
(∆ ↑)

Queue∆
(∆ ↓)

Delay∆
(∆ ↓)

dynamic 33.49±3.61 -52±4.58 -19.94±3.08 13.47±2.04 0.05±0.01
0.2 68.59±7.14 -117±12.53 -40.42±3.92 27.11±4.29 0.12±0.05
0.4 55.87±7.83 -73±13.01 -30.69±4.54 20.30±3.28 0.12±0.01
0.5 39.12±4.21 -72±7.61 -25.07±5.71 16.88±5.11 0.08±0.01
0.6 47.09±2.79 -77±4.68 -34.11±3.99 21.31±2.38 0.10±0.03
0.8 48.53±6.70 -85±9.17 -37.85±6.23 25.60±2.91 0.11±0.01

4) Different Uncertainty Methods in UGAT: In our
previous experiments, we utilized EDL [14] for uncertainty
quantification. To gain deeper insights into the benefits of

1128

model uncertainty, we conducted additional experiments using
various uncertainty quantification methods, namely, EDL,
Concrete Dropout [8], and Deep Ensembles [9]. We compared
these methods with w/o that excluded the uncertainty module
shown in Fig. 3, smaller ATT∆ is better and larger TP∆ is
better. These experiments demonstrate that model uncertainty
quantification methods narrow the performance gap, with EDL
outperforming the others, validating its use in our uncertainty
quantification module.

(a) ATT∆ of 4 methods (b) TP∆ of 4 methods

Fig. 3: Uncertainty investigation across 4 methods on V 1

V. RELATED WORK

a) Sim-to-real Transfer: The literature on sim-to-real
transfer [15] can be generally categorized into three groups.
The domain randomization [16] aims to learn policies that
are resilient to changes in the environment. The domain
adaptation [17], [18] tackles the domain distribution shift
problem by unifying the source domain and the target domain
features that mainly applied in the perception of robots [19],
whereas in TSC, the gap is mainly from the dynamics. The
grounding methods, improve the accuracy of the simulator
concerning the real world by correcting simulator bias.
Grounded Action Transformation [10] induces the dynamics
of the simulator to match reality-grounded action, showing
promising sim-to-real transfer results in robotics. Inspired
by GAT, UGAT with the novelty of leveraging uncertainty
quantification to enhance action transformation.

b) Uncertainty Quantification: Effective uncertainty
quantification (UQ) is essential in current deep learning
methods to grasp model limitations and enhance model
acceleration and accuracy. Gaussian Process (GPs) [20] is a
non-parametric approach for quantifying uncertainty, while
another line of research involves using prior distributions on
model parameters to estimate uncertainty during training [21].
Evidential Deep Learning (EDL) [14], MC dropout [8], and
Deep Ensembles [9] are representative methods that leverage
parametric models. This paper experiments on EDL, MC
dropout, and Deep Ensembles to explore their benefits.

VI. CONCLUSION

In this paper, we identify the performance gap in traffic
signal control problems and introduce UGAT, an uncertainty-
aware grounding action transformation method, to dynami-
cally adapt actions in simulations. Our experiments confirm
that UGAT effectively reduces the performance gap with
improved stability. This work represents progress in enhancing
the real-world applicability of RL-based traffic signal control
models, our code can be found at https://github.com/
DaRL-LibSignal/UGAT.git.

REFERENCES

[1] M. Noaeen, A. Naik, L. Goodman, J. Crebo, T. Abrar, Z. S. H. Abad,
A. L. Bazzan, and B. Far, “Reinforcement learning in urban network
traffic signal control: A systematic literature review,” Expert Systems
with Applications, p. 116830, 2022.

[2] Y. Jiang, T. Zhang, D. Ho, Y. Bai, C. K. Liu, S. Levine, and
J. Tan, “Simgan: Hybrid simulator identification for domain adaptation
via adversarial reinforcement learning,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2021, pp.
2884–2890.

[3] H. Zhang, S. Feng, C. Liu, Y. Ding, Y. Zhu, Z. Zhou, W. Zhang, Y. Yu,
H. Jin, and Z. Li, “Cityflow: A multi-agent reinforcement learning
environment for large scale city traffic scenario,” in The world wide
web conference, 2019, pp. 3620–3624.

[4] H. Wei, G. Zheng, H. Yao, and Z. Li, “Intellilight: A reinforcement
learning approach for intelligent traffic light control,” in Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2018, pp. 2496–2505.

[5] C. Chen, H. Wei, N. Xu, G. Zheng, M. Yang, Y. Xiong, K. Xu, and
Z. Li, “Toward a thousand lights: Decentralized deep reinforcement
learning for large-scale traffic signal control,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 34, no. 04, 2020, pp.
3414–3421.

[6] H. Wei, N. Xu, H. Zhang, G. Zheng, X. Zang, C. Chen, W. Zhang,
Y. Zhu, K. Xu, and Z. Li, “Colight: Learning network-level cooperation
for traffic signal control,” in Proceedings of the 28th ACM International
Conference on Information and Knowledge Management, 2019, pp.
1913–1922.

[7] H. D. Kabir, A. Khosravi, M. A. Hosen, and S. Nahavandi, “Neural
network-based uncertainty quantification: A survey of methodologies
and applications,” IEEE access, vol. 6, pp. 36 218–36 234, 2018.

[8] Y. Gal, J. Hron, and A. Kendall, “Concrete dropout,” Advances in
neural information processing systems, vol. 30, 2017.

[9] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable
predictive uncertainty estimation using deep ensembles,” Advances in
neural information processing systems, vol. 30, 2017.

[10] J. Hanna and P. Stone, “Grounded action transformation for robot
learning in simulation,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 31, no. 1, 2017.

[11] H. Mei, X. Lei, L. Da, B. Shi, and H. Wei, “Libsignal: An open library
for traffic signal control,” arXiv preprint arXiv:2211.10649, 2022.

[12] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd,
R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and E. Wießner,
“Microscopic traffic simulation using sumo,” in 2018 21st international
conference on intelligent transportation systems (ITSC). IEEE, 2018,
pp. 2575–2582.

[13] H. Wei, G. Zheng, V. Gayah, and Z. Li, “Recent advances in
reinforcement learning for traffic signal control: A survey of models
and evaluation,” ACM SIGKDD Explorations Newsletter, vol. 22, no. 2,
pp. 12–18, 2021.

[14] M. Sensoy, L. Kaplan, and M. Kandemir, “Evidential deep learning
to quantify classification uncertainty,” Advances in neural information
processing systems, vol. 31, 2018.

[15] W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-real transfer in
deep reinforcement learning for robotics: a survey,” in 2020 IEEE
symposium series on computational intelligence (SSCI). IEEE, 2020,
pp. 737–744.

[16] J. P. Tobin, Real-World Robotic Perception and Control Using Synthetic
Data. University of California, Berkeley, 2019.

[17] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell, “Deep
domain confusion: Maximizing for domain invariance. arxiv 2014,”
arXiv preprint arXiv:1412.3474, 2019.

[18] T. Han, C. Liu, W. Yang, and D. Jiang, “Learning transferable features
in deep convolutional neural networks for diagnosing unseen machine
conditions,” ISA transactions, vol. 93, pp. 341–353, 2019.

[19] S. James, P. Wohlhart, M. Kalakrishnan, D. Kalashnikov, A. Irpan,
J. Ibarz, S. Levine, R. Hadsell, and K. Bousmalis, “Sim-to-real via
sim-to-sim: Data-efficient robotic grasping via randomized-to-canonical
adaptation networks,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 12 627–12 637.

[20] M. Seeger, “Gaussian processes for machine learning,” International
journal of neural systems, vol. 14, no. 02, pp. 69–106, 2004.

[21] Y. Xue, S. Cheng, Y. Li, and L. Tian, “Reliable deep-learning-based
phase imaging with uncertainty quantification,” Optica, vol. 6, no. 5,
pp. 618–629, 2019.

1129

