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Abstract— The paper presents Redundancy-Aware Physics
Informed Neural Networks (R-PINNs) for learning of unknown
model parameters of nonlinear algebraic systems in continuous
time with non-measurable state variables. R-PINNs accomplish
the learning task in presence of non-measurable states of the
system by incorporating input-output representation of the a
priori available physics based laws, generally in form of nonlin-
ear differential (partial) equations within the NN based learning
procedure, leading to learning of a set of optimal parameters
that determine the optimal mapping between input-output data
while adhering to the known physics. Analytical Redundancy
Relationships (ARRs) are able to express input-output represen-
tation of system using solely the measured/known variables by
exploring the redundancy within the analytical structure of the
system. The paper proposes a methodology that includes ARR
derivation and suitable integration within PINNs framework
to develop R-PINNs. Mathematically rigorous novel proofs on
uniform and ultimate boundedness (UUB) of the output and
parametric estimation errors in Lyapunov sense is provided.
Finally a DC motor enabled friction drive system based
simulation study is presented to demonstrate the effectiveness
of the approach.

I. INTRODUCTION

The predictive ability of physics based models is
dependent on the available knowledge of governing laws,
identification / calibration of model parameters under
given conditions and the model uncertainties, to name a
few. With the advent of modern deep learning, there has
been an unprecedented progress in the field of data driven
modelling [9] and nonlinear identification [12]. Two factors
that remain extremely crucial for accurate learning are:
large high quality data sets (rich and diverse) and immense
computing power. While the former leads to variance
reduction, the latter, allows for large models to be trained
leading to a certain bias reduction. However, the availability
of usable high quality data is not always guaranteed
leading to less generalization capability and high variance.
Moreover, model calibration under limited data introduces
high bias. To reduce model bias and increase generalization
capability, various approaches have been proposed including
learning of governing equations and generalised coordinates
[3], semi physical models and recently, the focus has been
on the incorporation of physics based knowledge within the
neural network (NN) structure [14].
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Past semi decade has witnessed an ever growing interest
and extensive work using physics informed neural networks
(PINNs) for the discovery of governing laws (forward
problems) as well as learning of model parameters using
the available data (inverse problems) in several fields of
engineering including discovery of Navier-Stokes equation
[14], Schrodinger equation [14], Burger [14], Hamilton and
Euler-Lagrange equation [14] to name a few. Readers are
referred to [5] for the latest comprehensive review on PINNs
and their application in various engineering domains starting
from 2017. Most existing NN(deep) based approaches for
parametric learning or system identification, target learning
of the mapping function between input and output data
(black-box approach) that neglect inclusion of physics laws
within learning paradigm[10][12]. On the other hand, only
very few notable works based on variants of PINNs have
appeared recently for system identification [16] .
In general, PINNs based approaches accomplish the learning
task by incorporating the a priori available physics based
laws, generally in form of nonlinear differential (partial)
equations within the NN based learning procedure, leading
to learning of a set of optimal parameters that determine
the optimal mapping between input-output data, while
adhering to the known physics. Generally the feature that
makes a classical NN into PINNs is the incorporation of
nonlinear differential(partial) equation(s) within the loss
function leading to minimisation of the corresponding
residual. The loss is indicative of consistency (measure
of difference from zero). The latter must be minimised
to accomplish the learning task. These residuals are
constructed using system variables that are usually assumed
to be measurable/available. However, in reality, dynamical
systems may have only a set of states measurable. In this
context, existing PINNs approaches neglect the problem
arising from the presence of unknown/non-measurable
state variables. This becomes crucial especially for
the construction of nonlinear differential residual as the
presence of unknown state variables calls for their estimation
along with unknown parameters. As per the authors, there
is no existing work that formally enables inclusion of
only known (measurable) information along with unknown
parameters within PINNs for parametric learning.

On the other hand, Analytical Redundancy Relationships
(ARRs) are able to express input-output representation of
system using solely the measured/known variables, by ex-
ploring the redundancy within the analytical structure of the
system [15]. Under nominal functioning of the system, ARRs
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must be consistent and as such, have been extensively ex-
ploited for residual generation. ARRs have been extensively
investigated in Fault detection and isolation (FDI) literature
wherein the main utility remains in generation of residuals
using only the measured variables [17][1]. It must be noted
that ARRs are closely related to input-output representation
of dynamic systems and as such, ARR derivation techniques
have been heavily inspired by the former that involve only
measured variables of system [17].
For nonlinear systems, ARR derivation principally involves
state elimination techniques [1], broadly based on three
methods: elimination theory that rests primarily on Euclidean
division and successive derivation [6], Grobner bases which
uses Euclidean division and the computation of the so-called
S-polynomials [4] and Characteristic sets (also called Ritt’s
algorithm) that involves direct elimination of state to find
minimum order differential input-output constraints [7]. In
the case of algebraic dynamic systems, elimination theory
provides the most straightforward and intuitive tool for state
elimination [1].

To bridge the existing scientific gap, this paper blends the
benefits of ARR with PINNs framework in order to address
the parametric learning problem for dynamical systems with
non-measurable state variables (section II). To that end, as
novelty, the paper presents Redundancy aware PINNs (R-
PINNs) for nonlinear algebraic systems in continuous time
with non-measurable state variables (section III). Therein, the
redundancy within system variables is exploited to construct
ARRs which are then suitably integrated within PINNs struc-
ture to learn unknown parameters. The paper also presents
mathematically rigorous novel proofs on uniform and ul-
timate boundedness (UUB) of the output and parametric
estimation errors in Lyapunov sense and provides a DC
motor enabled friction drive system based simulation study
to demonstrate the effectiveness of the approach (section IV).

II. PROBLEM FORMULATION

Consider a dynamical system in continuous time with
physics laws given by a set of nonlinear differential algebraic
equations (DAEs) [2][11] leading to state space model as:

ẋ = f(x, u, λ)

y = g(x, u)
(1)

where x ∈ Rn ∈ Ω is the state variable vector, which is non
available, Ω being a compact set, ẋ is the time derivative of
state variable vector, u ∈ Rm ∈ Ω is the control input vector
with λ ∈ Rd are the unknown parameter vector, y ∈ Rp is
the output measurement vector. This work considers f(·) and
g(·) as nonlinear DAEs such that f(·) and g(·) are C1 where
C1 denotes the set of continuously differentiable functions
over the compact set Ω.

Remark 1. Restricting the known system dynamics of (1)
to nonlinear DAEs makes it possible to use mathematical
properties from differential algebra. Moreover, the assump-
tion is not as restrictive as non-polynomial non-linearity
can be transformed to equivalent polynomial DAEs. For

example, y =cos(x) can be equivalently written as a DAE
as y2ẋ2 + ẏ2 = ẋ2.

1) Known and unknown variables: The system variables
sets Z = x ∪ y ∪ u can be decomposed in two cate-
gories: measurable variables K = y ∪ u and unknown non-
measurable variable(s) X = x.

2) Residual Generation: Using traditional PINNs based
approach, the nonlinear differential residual corresponding
to system (1) will be generated as:

ẋ− f(x, u, λ) (2)

Readers are referred to [5] for more details. The existing
PINNs based approaches oblige the implication of state
variables x into the residual expression. As such, in presence
of unknown(partially) variables x which is the case for most
of the nonlinear dynamic systems, it becomes imperative
to resort to state estimation methods in order to facilitate
parametric estimation approaches.

III. PROPOSED METHODOLOGY

To alleviate the difficulty arising from unknown state
variables, this paper proposes a variable elimination based
approach via generation of ARRs by exploiting the analytical
redundancy in the system mathematical model (1). Elimina-
tion of x leads to transformation of the original mathematical
model to an equivalent input-output representation of the
system. To that end, this paper proposes ARR derivation
followed by construction of R-PINNs.

A. ARR derivation with known inputs

Consider the system (1), wherein the inputs are known
and all functions are differentiable (as (1) is DAE). Then,
the steps below are followed to obtain the ARRs [1].

Step I: Derivation of outputs. It is possible to obtain the
total derivative of the output signal as:

ẏ =
∂g(·)
∂x

ẋ+
∂g(·)
∂u

u̇ (3)

Substituting (1) in (3) leads to:

ẏ =
∂g(·)
∂x

f(x, u, λ) +
∂g(·)
∂u

u̇

:= g1(x, ū
(1), λ)

(4)

where for the sake of ease of notation, ū(1) = (u′, u̇′)′.
Then, through iterative derivation up-to some order of deriva-
tion q one obtains:

ȳ(q) = G(q)(x, ū(q), λ) (5)

with ū(q) ∈ R(q+1)m , is set of (q + 1)p DAE based
constrains that must be satisfied under nominal functioning
of the system.

Step II: Elimination of the state. It is assumed that (q+
1)p > n and the Jacobian ∂G(q)(·)

∂x is of rank n (see [15][6]
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for a more mathematically rigorous treatment omitted here).
Then, (5) can be decomposed into two subsystems:(

ȳ
(q)
I

ȳ
(q)
II

)
−

(
G

(q)
I (x, ū(q), λ)

G
(q)
II (x, ū

(q), λ)

)
= 0 (6)

where subsystem (ȳ
(q)
I , G

(q)
I (x, ū(q), λ)) ∈ Rn and

(ȳ
(q)
II , G

(q)
II (x, ū

(q), λ)) ∈ R(q+1)p−n Then, x can be com-
puted as a function of other variables that are known leading
to:

x = ϕ(ȳ
(q)
I , ū(q), λ) (7)

where ϕ(·) ∈ Rn is some nonlinear DAE.
Further, using implicit function theorem [8] one can substi-

tute (7) in (6) to obtain (5) sensitive to only known variables
as:

r(ȳ(q), ū(q), λ) = ȳ
(q)
II −G

(q)
II

(
ϕ(ȳ

(q)
I , ū(q), λ), ū(q), λ

)
= 0

(8)

where r(ȳ(q), ū(q), λ) is a set of constraints or ARRs that
are sensitive to only known system variables and unknown
parameters that must be satisfied.

B. R-PINNs

To address the inverse problem for system (1), i.e. es-
timation of unknown parameters λ given measured data y,
this paper proposes the latter, along with ARRs (input-output
representation of original system (1)) to constitute R-PINNs
as:

y = h(z)

r(ȳ(q), ū(q), λ) = 0
(9)

where z := [u1, u2, ....um; t] is the input space-time vector
with z ∈ Ω , h(·) ∈ Rm is a hidden nonlinear function that
maps the available measured data to input time series and
r(·) are the derived set of ARRs in (8).

To solve (9), this paper proposes R-PINNs that considers
as input, z to computationally predict the hidden relation
h(z) using a NN, parameterised by a set of parameters θ ∈
R(m+1)×p leading to the approximation:

ŷθ = ĥθ(z) (10)

where (·)θ denotes the NN approximation realised with
parameter set θ. Further, since ARRs must be satisfied at all
times, an approximation of r(·) can be generated using ŷθ
and its (partial)derivative(s) as:

ˆrθ,λ(ˆ̄y
(q)
θ , ū(q), λ) = 0 (11)

Consider the R-PINNs parameter set Θ as tuple of shared
parameters Θ = (θ, λ) that consists of NN approximation
parameters θ and unknown system parameters λ. Then, an R-
PINNs parameter set Θ∗can be found through minimisation
of total loss funciton L(Θ) as:

Θ∗ = argmin
Θ

L(Θ) (12)

where the R-PINNs based loss function can be defined as:

L(Θ) = (wyLy + wrLr) (13)

considers the weighted sum of: loss Ly due to true measure-
ment data y and its respective estimation by NN; and loss Lr

based on the corresponding estimated residual which must
be equal to zero (11), with wy and wr being the weight
coefficients.
The building blocks of proposed R-PINNs are shown in
Fig.1.

Fig. 1: Proposed R-PINNs Architecture.

Remark 2. R-PINNs based methodology estimates the R-
PINNs shared parameter set Θ = (θ, λ) simultaneously to
give optimal parameters corresponding to NN based approx-
imation error and residual based approximation error.

The loss Ly represents the mismatch between the available
measurement data y and its approximation by NN ŷθ and
attempts to fit the data to learn accurately the mapping ĥθ

over Ω . On the other hand, Lr represents the difference
of estimated residual (value of ARRs) from zero in order to
”orient” the learning in such a way that known physical laws
are adhered to. Ly and Lr can be expressed as:

Ly(Θ) =

∫
Ω

y − ĥΘ(z)dz

Lr(Θ) =

∫
Ω

ˆrθ,λ(ˆ̄y
(q)
θ , ū(q), λ)dz

(14)

Consider Nd measurement data points such that {zi, yi}Nd
i=1

are the observation points. Then, typically, these losses can
be numerically obtained using mean squared error (MSE)
formulation as:

Ly(Θ) = MSEy =
1

Nd

Nd∑
i=1

∥∥∥yi − ĥθ(zi)
∥∥∥2

Lr(Θ) = MSEr =
1

Nd

Nd∑
i=1

∥∥∥(ˆ̄y(q)θ , ū(q), λ)
∥∥∥2 (15)

As the ARRs are sensitive to only known/measured data,
(12) can be estimated over the domain Ω. It should be noted
that the derivatives (partial) required to construct the ARRs
(11) can be obtained directly using Automatic Differentiation
(AD)procedure [5][14] that evaluates derivatives(partial) in
an algorithmic fashion through analytical evaluation. Usage
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of AD is extensively common in the state of the art works as-
sociated with NN, to accomplishing back-propagation based
NN weight update. Almost all available Deep Learning pack-
ages, such as Pytorch/TensorFlow, provide numeric estimates
of derivatives with high accuracy.

C. Boundedness of errors

Universal approximation property of feed-forward NN,
enables expression of output of R-PINNs yΘ(z) in an exact
manner on a compact set Ω, ∀z ∈ Ω:

y = Θ∗Tσ(z) + εNo
(z) (16)

where Θ∗ = (θ∗, λ∗) ∈ RNo is the ideal weight
vector, No is the number of neurons, σ(z) =
(σ1(z)), σ1(z), ...σNo

(z))T ∈ RNo is the nonlinear
activation function (sigmoid or tanh) with σj(z) ∈ C1(z),
σ(0) = 0, and the set of activation functions {σj(z)}j=No

j=1

are linearly independent ( to assure persistence of excitation)
and εNois a bounded R-PINNs function that represents the
reconstruction error. The derivative of 16 can be given as:

ẏ = ∇σT (z)Θ∗ +∇εNo
(z) (17)

where ∇σ(z) = ∂σ(z)
∂(z) and ∇εNo

(z) = ∂εNo(z)
∂(z) . R-PINNs

based output estimate can be expressed as:

ŷ = Θ̂Tσ(z) (18)

where Θ̂ is the estimation of Θ∗. Denote weight estimation
and output estimation errors respectively as Θ̃ = Θ∗−Θ̂ and
ỹ = y∗ − ŷ. The parameters Θ̂ of PINNs are updated using
gradient descent as:

˙̂
Θ = −lr

∂L(Θ̂)

∂Θ̂
(19)

where 0 < lr < 1 is a non negative learning rate.
Assumption 1. The parameters of R-PINNs are upper
bounded by known constants such that ||Θ|| ≤ ΘM and
∀z ∈ Ω, ||σ(z)|| ≤ σM , ||∇σ(z)|| ≤ σ∇M . Moreover, the
R-PINNs reconstruction errors are upper bounded by known
constants such that ||εNo

|| ≤ εM and ||∇εNo
|| ≤ ε∇M

Assumption 2. The gradient of loss L(Θ) with respect to
parameters is bounded such that ||∂L(Θ̂)

∂Θ̂
|| ≤ δL⇕ .

It is noted that these assumptions are not as restrictive as
various saturating nonlinear activation functions that satisfy
these properties such as sigmoid or tanh functions exist.

Theorem 1. Under the assumptions 1 and 2, given the R-
PINNs weight update law as (19), then the R-PINNs based
estimation error as well as parameter estimation errors are
guaranteed to be uniformly and ultimately bounded (UUB).

Proof: Consider a Lyapunov function candidate:

L(z) = L1 + L2 (20)

where

L1 = 1/2ỹT ỹ

L2 = 1/2Θ̃T Θ̃
(21)

Taking derivative of L1 we have:

L̇1 = ỹT ˙̃y

= (y − ŷ)T .(ẏ − ˙̂y)

= (Θ∗Tσ(z) + εNo − Θ̂σ(z))T

(∇σT (z)Θ∗ +∇εNo −∇σT (z)Θ̂− ˙̂
ΘTσ(z))

= (Θ̃σ(z) + εNo)
T (∇σT (θ̃) +∇εNo − ˙̂

ΘTσ(z))

= σT (z)Θ̃T∇σT (z)Θ̃ + σT Θ̃T∇εNo

+ σT Θ̃T lr
∂L(Θ̂)

∂Θ̂
σ(z) + εTNo∇σT Θ̃ + εTNo∇εNo

+ εTNolr
∂L(Θ̂)

∂Θ̂
σ(z)

(22)

Using the Cauchy-Schwartz inequality aT b ≤ (1/2)aTa+
(1/2)bT b for any two vectors a and b and some mathematical
manipulations, (22) yields :

L̇1 ≤ ||σ(z)||.||∇σ(z)||.||Θ̃||2

+ ||σT (z)||.(Θ̃TΘ+∇εTNo∇εNo)

+ ||σT (z)||.(ΘTΘ+ σT (z)σ(z))lr||
∂L(Θ̂)

∂Θ̂
||

+ εTNo(∇σT∇σ + Θ̃T Θ̃)

+ ||εNo||.||∇εno||

+ ||ε||.||lr
∂L(Θ̂)

∂Θ̂
||.||σ(z)||

(23)

Then, taking into account the assumptions 1 and 2, following
is obtained:

L̇1 ≤ (σM + σ∇M + σM + σM )||Θ̃||2 + σMσ2
∇M

+ σ3
M lrδL⇕ + εMσ2

∇M

+ εMε∇M + εM lrδL⇕σM

(24)

Similarly, consider derivative of L2 as:

L̇2 = Θ̃T ˙̃Θ

= (Θ∗ − Θ̂)T .(Θ̇∗ − ˙̂
Θ)

= (Θ∗ − Θ̂)T (lr
∂L(Θ̂)

∂Θ̂
)

(25)

Using Cauchy-Schwartz inequality and some mathemati-
cal manipulations, one obtains:

L̇2 ≤ (1/2)||Θ̃||2 + (1/2)||∂L(Θ̂)

∂Θ̂
|| (26)

Putting (24) and (26) into (20), one obtains L̇(z) ≤ 0 which
implies that ỹ and Θ̃ are UUB over the compact set Ω if
ỹ(0) = 0 and Θ̃(0) = 0 are bounded over Ω. The latter
being true, the proof is completed hereby.

IV. SIMULATIONS AND RESULTS

To demonstrate the effectiveness of the approach, a friction
drive system composed by a driver device (a DC motor) and
a driven device (a wheel) is considered for simulation based
analysis. The system dynamics and details can be consulted
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in [13] . Here, the DC motor system along with nonlinear
friction drive dynamics is considered in form of DAE with
states x(t) = [i(t), ω1(t), ω2(t)]

T as:

L
di

dt
= U −Ri−Keω1 (27)

J1
dω1

dt
= Kei− b1ω1 + TL (28)

J2
dω2

dt
= Ts − b2ω2 (29)

where U(t) is the input voltage, R=0.08 Ohms is rotor
resistance, i(t) is the motor current Ke=0.1 being the elec-
tromotive force constant, L=0.005 Henry being the electric
inductance, J1 and J2 are respectively moments of inertia of
the driver and the driven device, ω1 and ω2 are respectively
the angular speeds of driver and driven device and b1, b2 are
the viscous friction coefficiencts, TL is a load torque seen
from the driver side, TS is a source of torque observed from
the driven side. Both torques can be written in terms of the
contact force Fc as:

TL(t) = −Fcr1

Ts(t) = Fcr2
(30)

where Fc is the contact force proportional to the relative
tangential speed at the contact level as:

Fc = α(r1ω1 − r2ω2)
2 (31)

with r1, r2 being the radii of driver and driven device respec-
tively, α being a model parameter known as contact quality
coefficient generally non-measurable and must be estimated.
Moreover, viscous friction coefficient b1 is considered as
the unknown parameter. Thus, unknown parameter set is
λ = [α, b1]

T . Motor current i(t) and driven device speed
ω2 are assumed measurable, leading to the following output
measurement vector as:

y(t) = [i(t), ω2(t)]
T (32)

The objective is to estimate α and b1 using some available
data y(t) and ARR based input-output representation using
R-PINNs. ARRs are derived through elimination of non-
measurable variable ω1. To that end, (27) is considered so
that ω1 = (L di

dt − U + Ri)/Ke and substituted in (28) as
well as (27) is differentiated with respect to time to give ω̇1

and substituted in (28) leading to ARR1 as:

ARR1 : Kei+ (1/Ke)(U −Ri− L
di

dt
)(−b1 − r2α)

−(J1/Ke)(U̇ −R
di

dt
− L

d2i

dt2
)− ω2r1r2α = 0

(33)

Similarly, substituting ω1 from (27) in (28) leads to ARR2
as:

ARR2 :− b2ω2 − J2
dω2

dt

+ r2α(r1(1/Ke)(U −Ri− L
di

dt
)− r2ω2) = 0

(34)

As can be seen, ARR1 and ARR2 are sensitive to unknown
parameters λ = [α, b1]

T and only the measurable state
variables. A simulated data set comprising of Nd = 10000
data points is considered for learning. The simulation is
done in continuous time using Runge-Kutta solver with
fixed step of integration as 0.0001. Additive white Gaus-
sian noise with signal to noise ratio (SNR) as 50db is
considered as noise over measured variables. System input
U(t) with white additive Gaussian noise with SNR 50
db, in form of step signals with variable amplitudes and
period is injected within the system model to generate
the data set. To approximate the output (32), a fully con-
nected NN having 8 hidden layers with neurons in-order
as [188,144,64,32,16,8,4,2] and all activation functions as
Hyperbolic tangent tanh(·) is considered, leading to the
approximation of y(t) as ˆy(t). Then, the total loss function

(13) constitutes of Ly(Θ) = (1/Nd)
Nd∑
i=1

∥∥∥y(t)− ˆy(t)
∥∥∥2 and

Lr(Θ) = (1/Nd)
Nd∑
i=1

∥ARR1 +ARR2∥2 with the impor-

tance weights wy = wr = 0.5 to attribute equal importance
to the former two.

Fig. 2: Total loss per epoch of training

Fig. 3: Estimation of Alpha
The training of R-PINNs is done till 1000 epochs (training

iteration) wherein the total loss function saturates to a value
close to zero and demonstrates change less than 10−6 in
value (see Fig. 2). Within each epoch, 500 mini-batches of
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Fig. 4: Estimation of b1

200 data are considered for gradient-descent based R-PINNs
weights update. The R-PINNs is able to approximate the
measured noisy variables with high accuracy as shown in
Fig. 5. R-PINNs effectively estimate the unknown model
parameters as shown in Fig. 3 and Fig. 4.

Fig. 5: Estimation of measured variables using R-PINNs

V. CONCLUSIONS

R-PINNs are able to successfully incorporate the ARR
based input-output representation of the known physics based
laws within the NN based learning paradigm leading to
an efficient learning of unknown model parameters in the
presence of non measurable state variables. The paper estab-
lishes mathematically the uniform and ultimate boundedness
of parametric estimation and NN approximation errors. R-
PINNs give a framework to exploit only the measurable
system variables, thus, avoiding the dependence to unknown
states. ARRs have proven to be extremely useful for fault
detection and isolation. As such, R-PINNs based approaches
promise many possibilities in this direction. Moreover, R-
PINNs also provide a means to integrate various Deep NN
structures, well adapted to sequential learning within the
proposed framework, leading to numerous possibilities for
future work.
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